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Emergence and stability of periodic two-cluster states for ensembles of excitable units
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We study dynamics in ensembles of identical excitable units with global repulsive interaction. Starting from
active rotators with additional higher order Fourier modes in on-site dynamics, we observe, at sufficiently
strong repulsive coupling, large-scale collective oscillations in which the elements form two separate clusters.
Transitions from quiescence to clustered oscillations are caused by global bifurcations involving the unstable
clustered steady states. For clusters of equal size, the scenarios evolve either through simultaneous formation
of two heteroclinic trajectories or through two simultaneous saddle-node bifurcations on invariant circles. If the
sizes of clusters differ, two global bifurcations are separated in the parameter space. Stability of clusters with
respect to splitting perturbations depends on the kind of higher order corrections to on-site dynamics; we show
that for periodic oscillations of two equal clusters the Watanabe-Strogatz integrability marks a change of stability.
By extending our studies to ensembles of voltage-coupled Morris-Lecar neurons, we demonstrate that similar
bifurcations and switches in stability occur also for more elaborate models in higher dimensions.
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I. INTRODUCTION

Oscillatory states, ubiquitous in natural and artificial sys-
tems, are of particular interest when they emerge as collective
phenomena through interactions in ensembles of smaller cou-
pled units [1–3]. Depending on the individual dynamical
properties of the ensemble constituents, three cases may be
roughly distinguished: (a) the case where already in the ab-
sence of interaction every single unit is oscillating, treated,
e.g., in the seminal paper of Kuramoto [4] and, under the
assumption of weak coupling, reducible to a system of phase
oscillators [5], (b) the case where without coupling some units
oscillate on their own whereas the others are at rest [6,7], and
(c) the case where all units stay at rest as long as they do
not interact with each other but can show nontrivial collective
dynamics if they interact [8].

Systems where every single unit is quiescent if isolated
but may oscillate if “stimulated” in some appropriate way
play a crucial role in neuroscience: A typical single neuron
on its own is at rest, but a sufficiently strong input, e.g., in
form of incoming action potentials from other neurons in a
network, provokes spikes in its membrane voltage. This prop-
erty, known as excitability [9], allows us to view the neuron
as a dynamical system, close to some kind of limit cycle
bifurcation [10]. In the course of the spike, a sufficiently large
perturbation away from the stable state of rest rapidly grows
before eventually converging back to rest, thereby tracing
fragments of a hidden large-scale limit cycle. In particular,
what is known as class I excitability [11] relates to the neuron
being close to a saddle-node homoclinic bifurcation [12], also
known as the saddle-node bifurcation on an invariant circle
(SNIC). The scenario of this global codimension-1 bifurca-
tion with normal form ẋ = ε + x2, x ∈ R ∪ {∞} begins with
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negative value of the bifurcation parameter ε: the stable equi-
librium at −√−ε and the unstable one at

√−ε are connected
by two orbits that start at the latter and end at the former. At
ε = 0, two equilibria merge into a neutrally stable state of rest
with a homoclinic trajectory (imagine x diverging toward +∞
and “coming back” to the origin from −∞) which for ε > 0
gives rise to a periodic orbit.

Probably the simplest example of a class I excitable unit
is the active rotator [13] which obeys the Adler equation [14]
φ̇ = ω − sin φ for the variable φ. For ω2 > 1, φ rotates on the
circle S1. Here, e.g., ε = |ω| − 1 can serve as a bifurcation
parameter for the two SNIC at ω = ±1.

Coming back to the general classification of ensembles
of potentially oscillating units in terms of neuroscience vo-
cabulary, the first two cases of ensemble dynamics listed in
the opening paragraph may be referred to as pure ensembles
of oscillating units or mixed ensembles of oscillating and
excitable units while the third case regards pure ensembles
of excitable units.

While there is a large body of literature for the first two
cases, less attention has been paid to ensembles of exclusively
excitable units, perhaps because many contexts favor attrac-
tively coupled elements. Let us informally separate two types
of coupling. Whenever two units are put at a close distance
and the action of the coupling between them tends, regardless
of the position in the phase space, to decrease this distance, we
call the coupling between these units attractive. If, on the con-
trary, the coupling between two close units, regardless of their
position, contributes to the increase of the distance between
them, we call the coupling repulsive. Below, we consider the
interactions that vanish when the states of interacting elements
exactly coincide.

Attractive coupling for excitable units leads to trivial
behavior. Each decoupled unit, if perturbed, eventually con-
verges to its stable state of rest. Attractive coupling (for
identical elements) only makes this tendency collective.
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Hence, nontrivial dynamics for ensembles of excitable units
needs at least some of the units to be coupled repulsively [15].

Below, we restrict ourselves to ensembles of identical
units. If, in the absence of coupling, each element possesses
the unique robust stable state of rest, the synchronous col-
lective equilibrium with every unit at the rest position exists
and remains stable as long as repulsion is weak. Recently, a
scenario of destabilization of this state of rest for the case
of identical all-to-all repulsively coupled active rotators was
discussed [8]. One of the main results was the existence, for
sufficiently strong repulsive coupling, of the continuous fam-
ily of periodic solutions with neutral stability where different
initial conditions lead to different asymptotic periodic states.
This neutral stability has to do with the fact that the model,
treated in [8] and based on sinusoidally coupled active rotators
[13], features what is known as the Watanabe-Strogatz (WS)
integrability [16]. The latter phenomenon holds for a set of
N identical phase variables that obeys a fairly general set
of conditions [17]. It leads to highly degenerate dynamics,
caused by foliation of the phase space in invariant three-
dimensional manifolds and goes along with the existence
of N − 3 conserved quantities. At least for N large enough,
the WS formalism shows that this continuum of periodic
states emerges exactly when one of the synchronous states
of rest changes its stability under sufficiently strong repulsive
coupling [18]. Since neutral stability is a strong hint that a
periodic solution is not persistent under perturbations of the
vector field, the question arises of how common this family
of periodic orbits really is. To investigate more persistent
scenarios of transition from rest to collective oscillations is
the main objective of the current paper.

It turns out that there exists another type of periodic os-
cillations that, in the course of enhancement of the repulsive
coupling, emerges independently from the WS-related family
of periodic orbits. This type of solution is a state where the en-
semble splits in two groups, inside which all units assume the
same instantaneous values: a two-cluster state. In this work,
we investigate through which bifurcation scenarios these peri-
odic states emerge and how their stability is affected by higher
order Fourier modes in their on-site dynamics.

Dynamics of clustered states has been thoroughly studied
in the context of phase oscillators and in other similar setups.
In particular, formation of two clusters of equal or comparable
size has been encountered in many different contexts, from
neuroscience to electrochemistry [19–23]. Below, we extend
those studies to the case, when the uncoupled units do not
oscillate, and the very existence of oscillating clusters owes to
the interaction between the elements. It turns out that in the
WS dynamics the oscillatory states composed of two oscillat-
ing clusters play a special role, different from those of other
periodic solutions.

This paper is divided in two parts. In Sec. II, we present the
ensemble of active rotators (II A) and our results concerning
the existence and stability of two-cluster solutions. Starting
in Sec. II C with a reduced (two-dimensional) description in
terms of cluster coordinates, we discuss in Secs. II D and II E
the global bifurcation scenarios, observed within this reduced
model for clusters of equal or unequal size at different choices
of system parameters, and complete our discussion in Sec. II F
by numerical stability analysis of collective oscillations. In

Sec. III, we go beyond active rotators and consider an en-
semble of two-dimensional excitable units of Morris-Lecar
neurons [24]. This is a common choice for systems of mixed
ensembles [6,7] because its parameters can be tuned to ensure
class I excitability or oscillatory behavior [25,26]. We briefly
discuss emergence and stability of periodic two-cluster states
in this system and how the results for the phase model trans-
late to ensembles of more general excitable elements.

II. COUPLED ACTIVE ROTATORS

A. The model

We start by discussing the active rotator model and basic
properties of observed two-cluster periodic solutions.

Consider the system φ̇ = f (φ, δ) for a phase-like1 variable
φ ∈ S1 with the bifurcation parameter δ in some open interval
around 0, and assume that for δ < 0 the function f pos-
sesses exactly two regular zeros f (φs, δ) = f (φu, δ) = 0 with
f ′(φs, δ) < 0 and f ′(φu, δ) > 0, and no zeros whatsoever for
δ > 0 ( f ′ denotes the derivative of f with regard to φ). The
zero point φs is then the stable equilibrium of the system
and φu is the unstable one. At δ = 0 the system undergoes a
saddle-node bifurcation on the invariant circle S1. (Interested
in class I excitability, we always implicitly assume that δ < 0
is chosen such that two zeros φs and φu lie “close enough” to
each other on the circle.) We call this system an active rotator.

If the function g : S1 → R has a regular zero at zero argu-
ment, we call it an attractive coupling function if g′(0) < 0
and a repulsive coupling function if g′(0) > 0.

We are interested in systems of N identical active rotators
which we assume to be coupled in such a way that the interac-
tion (i) is pairwise, (ii) depends on the difference between the
phases, (iii) is all to all, and (iv) is repulsive. Such a system
can be written as

φ̇ j = f (φ j, δ) + 1

N

N∑
k=1

g(φk − φ j ),

with f (φ, δ) describing the “internal” (on-site) dynamics of
each phase variable and g being the coupling function between
any pair of phases. Cyclic nature of the phase implies 2π

periodicity of f and g with respect to phase arguments. The
phase space is a torus T N := S1 × · · · × S1 of dimension N .
Notably, phases cannot surpass each other; in other words, for
a lift of the system from T N to RN , a fixed order of phases, say
φ1 � φ2 � · · · � φN < φ1 + 2π at some time t leads to the
same order at any other time t ′. Equivalently, φ j (t0) = φk (t0)
at time t0 implies φ j (t ) = φk (t ) for all t .

The arguably simplest model of this type, introduced by
Shinomoto and Kuramoto [13], is of the form

φ̇ j = ω − sin φ j + κ

N

N∑
k=1

sin(φk − φ j ),

where for each isolated unit j, a SNIC occurs at ω = ±1 and
the coupling is repulsive if κ < 0. Each unit is an active rotator

1Below, we use the term “phase” in the colloquial sense: unlike a
proper phase, φ does not rotate uniformly; moreover, for a nonoscil-
latory system the proper phase cannot be introduced.
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if |ω| < 1 so that |ω| − 1 may serve as the bifurcation parame-
ter δ. Publications on variants of this model, mostly involving
action of noise, include Refs. [27–29] as well as Ref. [8].
Since the model fulfils provisions of the Watanabe-Strogatz
integrability (identical units are coupled to the common field
only via their first Fourier modes), the class of possible at-
tractors is immensely reduced [30]. Therefore, to account for
more generic kinds of ensemble dynamics, the system should
be modified; a natural way to do this is to take into account
higher Fourier modes. Below, we violate the WS condition by
including the higher modes in the on-site part f (φ j ) of

φ̇ j = f (φ j ) + κ

N

N∑
k=1

sin(φk − φ j ). (1)

On introducing

V (φ1, . . . , φN ) = −
∑

k

∫
f (φk ) dφk − κ

2N

∑
j,k

cos(φk − φ j ),

we observe that regardless of the particularities of f (φ),
dynamics of the system (1) is of the gradient type: φ̇ j =
−∂V/∂φ j . This property [shared by arbitrary odd coupling
functions g(−ξ ) = −g(ξ )] prohibits small-scale periodic mo-
tions and, as a consequence, the Hopf bifurcations. Hence,
emergence of periodic states occurs only through global bi-
furcation scenarios.

In the space of all periodic f (φ), the WS case—absence
of all higher Fourier harmonics—has infinite codimension,
and does not occur in generic families with finite number
of parameters (like Hamiltonian dynamics does not occur in
generic families of ordinary differential equations). However,
at our starting point—the rotators of Refs. [13] and [8]—this
degeneracy is ensured by design, and therefore we consider
below specially tailored families of functions for which si-
multaneous vanishing of all higher order terms becomes
the codimension-1 event. Choosing appropriate rescaling and
shift of the variables φ j and time t , we rewrite local dynamics
as

f (φ) = ω − sin φ + ε

∞∑
n=2

(
cneinφ + cne−inφ

)
, (2)

separating the higher order Fourier terms from the zeroth- and
first-order terms. Here, z denotes the complex conjugate of
a complex number z, and the new parameter ε controls the
deviation from the WS case (i.e., ε = 0).

To make the problem more definite, we consider two ex-
emplary cases of local dynamics:

f (φ) = ω − sin φ + ε sin 2φ, (3a)

f (φ) = ω − sin φ + ε

(
1

sin φ − 2
+ a + b sin φ

)
. (3b)

The case (3a) where merely the second Fourier harmonic is
added is a simple way to perturb the original system; it allows
for explicit expressions for certain bifurcations (see below).
The case (3b) features infinitely many Fourier harmonics and
is a representative of more common “perturbations” away
from the WS-integrable system of Ref. [8]. The Fourier

expansion of the perturbative term in (3b) reads(
a − 1√

3

)
+

(
2 − 4√

3
+ b

)
sin φ

−
(

8 − 14√
3

)
cos 2φ + · · · .

Below we fix a = 1/
√

3 and b = 4/
√

3 − 2, so that the two
first terms in the expansion vanish and the deviation from
the Shinomoto-Kuramoto form starts from the second Fourier
harmonics. With both perturbations in (3a) and (3b) bounded
by ±ε, the function f at |ω| < 1 and sufficiently small |ε| still
possesses two regular zeros nearby, so that both cases indeed
describe an active rotator.

Since all units are identical, their arbitrary permutations
for a periodic state trivially yield different periodic states.
Therefore, we henceforth assume the units to be in a natural
order φ1 � φ2 � · · · � φN < φ1 + 2π .

Integrating Eq. (1) numerically for different choices
of f reveals various kinds of periodic attractors. Among
them, two types play the prominent role. The first one in-
cludes splay states: periodic solutions of the form φ j (t ) =
φ(t + j

N T ), j = 0, . . . , N − 1 for some T -periodic function
φ(t ). There, the consecutive units j and j + 1 are always sep-
arated by the time interval T/N in their respective dynamics.
The other type is a two-cluster periodic solution: The en-
semble is composed of two groups of oscillating units within
which the instantaneous states coincide. We will discuss the
properties of splay states elsewhere [18] and concentrate here
on the origin and properties of the two-cluster solutions.

Besides these two, there can be other, possibly stable, peri-
odic solutions. Among them is kind of a combination of both
types: the clustered splay states where the ensemble splits in
a set of clusters that are regularly staggered in time. Further,
if the clusters are not of the same size, this staggering is, at
best, approximate. It seems that these states emerge in the
same way as the true splay state. Yet other periodic states can
exist but in our simulations the majority of initial conditions
has lead to either two-cluster states or (clustered) splay states.
This is why we focus on these two types.

Both choices for f (φ) characterize on-site dynamics in
terms of two parameters ω and ε. Together with the coupling
strength κ , this yields a three-parameter description. Being
interested in the coupling-induced effects, below we largely
discuss the scenarios that evolve when |κ| is increased and
plot slices of the parameter space along the planes of constant
ω.

A notable difference between a Kuramoto phase oscil-
lator and an active rotator is the homogeneous evolution
of the phase for the former and the coordinate-dependent
dφ/dt for the latter. As a result, in case of the global coupling
the symmetry of the ensemble of identical phase oscillators is
higher than of the ensemble of identical active rotators: Both
ensembles share the richness of permutation symmetries, but
dynamics of the former is invariant with respect to the simul-
taneous shift of all phases by an arbitrary constant, whereas
the latter ensemble lacks this invariance. This may contribute
to the absence of persistent heteroclinic networks, charac-
teristic for phase oscillators with higher order Fourier terms
[19,31,32], in our numerical simulations of the ensembles of
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active rotators. Instead, as demonstrated below, introduction
of the higher order harmonics leads to the expected destruc-
tion of the WS continuum of periodic orbits and to the birth
of collective oscillations via the formation of structurally un-
stable saddle connections.

B. Destabilization of the synchronous equilibrium

In the absence of coupling, the ensemble of active rota-
tors (1) possesses a unique simple attractor: the synchronous
steady state �s, with every unit at its stable state of rest
φs. The value φs, entirely prescribed by on-site dynamics, is
independent of the coupling κ . Growth of the repulsion inten-
sity gradually weakens stability of this collective equilibrium,
until, at a threshold negative value of κ , its destabilization
occurs. Permutation symmetry of the units turns the latter
into the global event: a transcritical heteroclinic bifurcation
[8,33,34]. For the on-site dynamics of the type (3a), the criti-
cal values of the parameters κ, ω, ε are interrelated2 by

κ2 + ω2 + 12ε2 − 48ε4 + 64ε6 + 4ε2κ2

− 32ε4κ2 − 4εκ3 + 4ε2κ4 − 80ε2ω2

+ 64ε2ω4 − 128ε4ω2 + 32ε2κ2ω2 = 1. (4)

At small values of |ε| this translates to the explicit expression
for the critical coupling intensity:

κ0 = −
√

1 − ω2 + 2ε(1 − ω2) + 2ε2ω2 4ω2 − 5√
1 − ω2

+ O(ε3).

(5)
As described in Ref. [8], destabilization of the synchronous
equilibrium is a highly degenerate event: N − 1 Jacobian
eigenvalues simultaneously vanish. At the moment of bifur-
cation, ∼2N−1 steady states coalesce with the synchronous
equilibrium. For the overwhelming majority of them, the bi-
furcation is transcritical. There is, however, one important
exception: The clustered steady states in which the ensemble
splits into two equal groups, branching off the synchronous
steady state via a pitchfork bifurcation. Depending on the
values of ω and ε, this pitchfork can be super- or subcritical;
see Fig. 1. As derived in Appendix B, for the local dynamics
of the kind (3a) at not too big |ε|, the pitchfork is subcritical
if the quantity

c = (sin φs − 4ε sin 2φs)2

cos φs(cos φs − 2ε cos 2φs)

exceeds 1. If c < 1, the pitchfork is supercritical.
Change of the pitchfork character is a codimension-2 bi-

furcation that in the space, spanned by ε, ω, κ , happens on a
one-dimensional set. It is convenient to parametrize it, e.g., in
terms of ε: The corresponding value of ω(ε) is found from

4(1 − 2ω2)2 − ε2(48 − 545ω2 + 1924ω4 − 1796ω6)

+ 4ε4(48 − 1393ω2 + 9390ω4 − 22272ω6 + 16384ω8)

− 4ε6(64 − 273ω2 + 256ω4) = 0. (6)

2Derivation of Eqs. (4) and (6) and similar expressions is briefly
explained in Appendix A.

κ0

φ
A

Σ1

Σ2

Φs

(a)

κ1 κ0

Σ1

Σ2

Λ1

Λ2

Φs

(b)

FIG. 1. Variants of the pitchfork bifurcation involving the syn-
chronous state of rest �s and steady states, built by two equal
clusters. Solid curves, stable steady states; dashed curves, unstable
ones. Left panel: subcritical pitchfork at κ0. Global bifurcations in-
volving the saddles �i (i = 1, 2; cf. Sec. II D) can only occur for
κ � κ0 (blue disks). Right panel: supercritical pitchfork at κ0. New
stable steady states i branch off �s at κ0 and vanish at κ1 in
simultaneous saddle-node bifurcations with �i. Here, the periodic
two-cluster orbit is born in either of two possible ways. In the first
scenario, it is created in the double heteroclinic bifurcation for some
κhet � κ1. There is a hysteresis: at κhet � κ0 (blue disks) with the
stable �s, and at κ1 < κhet � κ0 (orange triangles) with the stable
i. Basins of attraction are separated by separatrices of the saddles
�i. In the second scenario, the periodic orbit comes into existence at
κ1 via a double SNIC (red squares).

[Equally, one can parametrize the curve by ω and solve the
same equation for ε(ω).] Finally, the value of κ (ε, ω(ε)) on
the curve is recovered from Eq. (4). Along this curve in the
parameter space, the two-dimensional surface of saddle-node
bifurcation branches off the two-dimensional surface (4) of
the pitchfork bifurcation.

C. Reduced description

Since identical units group as a cluster in finite time only
if they are initialized as one, it is reasonable to consider a
reduced (i.e., two-dimensional) model. We order the ensemble
in such a way that the first pN units have equal phase, as have
the remaining (1 − p)N ones; here p ∈ {0, 1/N, 2/N, . . . , 1}
is the proportion of cluster A and (1 − p) is the proportion
of cluster B. We introduce the cluster coordinates φA(t ) and
φB(t ) that obey

φ̇A = f (φA) + (1 − p) κ sin(φB − φA),

φ̇B = f (φB) − pκ sin(φB − φA),
(7)

since units within the same cluster do not interact. If the
ensemble forms two clusters of unequal size (i.e., p 	= 1

2 ), we
deal thus with a system of two nonidentical units that both
repel each other; this setup close to a SNIC bifurcation was
investigated in a more general setting under the assumption of
weak coupling in Ref. [35]. The phase space of the reduced
system (7) is a 2-torus.

It is noteworthy that each value of p defines a different
invariant subspace in the phase space of the full system. Every
value of p prescribes how many units belong to each cluster
so that any two subspaces with different values of p intersect
only along the line of complete synchrony (one-cluster state),

012206-4



EMERGENCE AND STABILITY OF PERIODIC … PHYSICAL REVIEW E 103, 012206 (2021)

−2 −1 0
κ

0.0
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1.0
p
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−2 −1 0
κ
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FIG. 2. Existence of periodic two-cluster solutions of (1) in de-
pendence on κ and p at fixed ω = 0.8 and ε = 0.1 for two choices of
f . (a) On-site dynamics of the type (3a). (b) On-site dynamics of the
type (3b). Dark shading: existence of the periodic two-cluster state
with the cluster A of size pN and the cluster B of size (1 − p)N . In the
white region, no periodic two-cluster solutions exist. Black curves:
approximate bounds on p for the existence of periodic two-cluster
states of size ratio p

1−p , given by Eqs. (10) and (11).

φA = φB. This observation becomes useful in the discussion
of bifurcation scenarios in Sec. II D.

Two-cluster states of rest of Eq. (1) are solutions of Eq. (7)
with vanishing time derivatives. For each of them, N p coordi-
nates assume the value φA whereas N (1 − p) coordinates are
equal to φB. Due to coincidence of the values, the spectrum
of the Jacobian matrix at these states is highly degenerate
[36]. Along with two simple eigenvalues λ+ > 0 and λ− < 0,
obtained from the linearization of (7) at the point (φA, φB),
there is the eigenvalue

λA = f ′(φA) − κ (p + (1 − p) cos(φA − φB)) (8)

with multiplicity N p − 1, as well as the eigenvalue

λB = f ′(φB) − κ (1 − p + p cos(φA − φB)) (9)

with multiplicity N (1 − p) − 1.
In the eigenspaces corresponding to λA and λB, we

choose a basis {e j} j=2,...,N p of the form e j
i = δ j,i − δ1,i and

{e j} j=N p+2,...,N with e j
i = δ j,i − δN p+1,i (δi, j being the Kro-

necker delta). Thereby, a perturbation along each vector in
these eigenspaces leaves one cluster intact but kicks units off
from the other cluster.

On the other hand, one-dimensional eigenspaces for λ± are
of the form e± = (a, . . . , a, b, . . . , b) with a 	= b, so that the
first N p entries are equal, as are the last N (1 − p) ones. Hence,
along these eigenspaces the clusters stay whole. Therefore,
we call the eigenspaces either splitting (for λA and λB) or
nonsplitting (for λ+ and λ−). Splitting of clusters can be
a source of highly nontrivial dynamical effects; see, e.g.,
Refs. [19,31,37].

Proceeding from steady to oscillatory states, a natural
question is which choices of parameters (ω, ε, κ, p) enable
existence of periodic two-cluster solutions. Since ω and ε only
decide whether the units are active rotators or not, we fix them
and determine the existence of two-cluster states in depen-
dence on κ and p; this is equivalent to the existence of periodic
solutions in the parameter space of the reduced system (7).
Figure 2 shows the existence regions for ω = 0.8, ε = 0.1,
and two kinds of f . Other choices for ω, ε, or the perturbation
type lead to similar results.

Depending on the coupling strength κ , only those periodic
two-cluster orbits can exist that are sufficiently balanced in
size. In general, the more repulsive the coupling (i.e., the
larger |κ|), the more the two oscillating clusters can differ in
size. This is reasonable: For weaker coupling, the influence
of the smaller cluster A on the larger one B wanes so that
the latter, as if isolated, converges approximately to its single
unit state of rest. Unable to overpass B, A cannot perform
a large-scale oscillation either. This observation prompts a
rough estimate on the lower and upper bounds for the values of
p that, at |ε| 
 1, enable periodic states. Consider the general
case of f (φ j, ε) = ω − sin φ j + εh(φ j ) and p < 1

2 , which im-
plies that cluster B is the larger one. Without loss of generality,
let ω � 0. We view the smaller cluster φA as a time-dependent
perturbation of the isolated dynamics in the large cluster:
φ̇B = f (φb, ε) + pκ g(t ). The strongest repulsion between the
clusters occurs at φA − φB = ±π/2 so that the influence of φA

upon φB is bounded by ±pκ , which yields

φ̇B � ω − sin φB + εh(φB) − pκ.

Hence, the flow of φB must possess a stable fixed point φ∗
B

if the right-hand side of this equation has a zero in φB. For
small |ε|, this implies a lower boundary at ω − pκ ≈ 1. From
this, we conclude that for the existence of periodic two-cluster
states with size ratio p

1−p

pmin ≈ −1 − ω

κ
(10)

is a lower bound in p. Similarly, the upper bound is

pmax ≈ 1 + 1 − ω

κ
. (11)

In Fig. 2, these bounds are plotted as black curves, along with
the actual domain of existence of the periodic states.

D. Heteroclinic bifurcation scenarios

1. General considerations

We begin with the case p = 1/2 (and therefore implic-
itly assume N to be even3) not only while this choice is
the simplest, but also due to the empirical observation: In
our numerical simulations, two-cluster states with p far off
the value 1/2 have been rarely encountered as asymptotic
attractors for random initial conditions. As discussed in the
next section, for p 	= 1/2 the scenarios are not much different,
because every invariant two-cluster subspace offers the same
types of saddles. We start at κ = 0 where the interaction is
formally absent and the ensemble consists of uncoupled units.
On denoting the stable and unstable equilibrium of a single
active rotator by φs and φu, respectively, the ensemble has
altogether 2N collective equilibria with each coordinate being
either φs or φu. Fixing, without loss of generality, the ordering
of phases φ1 � · · · � φN < φ1 + 2π , leaves two symmetric
two-cluster steady states �1 = (φs, . . . , φs, φu, . . . , φu) and

3At the values of ω, ε, κ ensuring two stable equal clusters for even
N , simulations with close odd values of N mostly end up with two
equal oscillating clusters and a solitary element.
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FIG. 3. Scenario of double heteroclinic bifurcation, creating a periodic two-cluster state (φA, φB ) at p = 1/2, ω = 0.8, and ε = −0.2 for
on-site dynamics of the type (3a). Here and in further figures, black arrows delimit domain of periodicity for the unfolding of the toroidal
two-cluster subspace on the plane. In panel (a), at small |κ|, two synchronous steady states �s (green disk) and �u (red disk) coexist with two
saddles �1,2 (black disks). Each saddle is connected to �s via two components of its unstable manifold U (�1,2 ) (orange curves). Components
of the stable manifolds of �1,2 (blue curves) start at �u. Invariant diagonal together with local invariant manifolds of �s and �u are marked
in gray. (b) Decreasing κ lets U (�1,2 ), on their way from �1,2 to �s, approach the opposite saddle �2,1. (c) The incoming and outgoing
separatrices of counterpart saddles merge in a simultaneous heteroclinic bifurcation. (d) The resulting invariant curve detaches from the
saddles and becomes a periodic two-cluster state, stable with respect to non-splitting perturbations. (e) Finally, both saddles disappear in the
course of a subcritical pitchfork bifurcation with �s.

�2 = (φu, . . . , φu, φs, . . . , φs), where the first N/2 phases
and the last N/2 ones form distinct clusters A and B.

Since the periodic two-cluster orbits must emerge through
a global bifurcation and form by definition cluster states, it
is reasonable to inspect dynamics in the reduced system (7).
Reminiscent of a single excitable unit, observed bifurcation
scenarios always involve a set of two-cluster equilibria on an
invariant curve.

At κ = 0, the reduced system possesses four equilibria:
a stable and an unstable synchronous points �s = (φs, φs)
and �u = (φu, φu), as well as two saddles �1 = (φs, φu)
and �2 = (φu, φs) (which we may, in an abuse of notation,
identify with the steady states of the full system). Since in
this uncoupled case each coordinate of the state φ = (φA, φB)
represents a class I excitable unit, the toroidal phase space
contains a contour C: the union of one-dimensional unsta-
ble manifolds U (�1) and U (�2) of the saddles �1 and �2.
Naturally, �s lies in C at the intersection of U (�1) with
U (�2) so that C is shaped like a figure eight. This contour
is robust under sufficiently small changes in κ since for κ = 0
is forms a normally hyperbolic invariant manifold [38] and so
is preserved in the case of (weakly) coupled clusters A and
B. In fact, numerical results confirm its persistence for fairly
large |κ|. The contour C is a natural building block for the
emergence of periodic two-cluster states.

For the synchronous state of rest �s, stable for sufficiently
small |κ|, the invariant diagonal φA = φB is tangent to the
stable eigenvector (1,1) of the Jacobian at �s. In the normal
direction, �s eventually undergoes a pitchfork bifurcation,
discussed above. Whether the latter is sub- or supercritical can
have implications on how a periodic state forms from C since a
supercritical pitchfork creates new equilibria that may interact
with C (Fig. 1).

2. Birth of periodic orbit from double heteroclinic connection

For a detailed discussion of the bifurcation scenarios, we
restrict ourselves to the local dynamics governed by Eq. (3a).
Figure 3 shows, from left to right, a typical bifurcation sce-

nario for the case when the pitchfork bifurcation of �s is
subcritical. On-site parameters are ω = 0.8 and ε = −0.2. On
the torus, at moderate repulsive coupling κ [Fig. 3(a)], the
unstable manifolds U (�1,2) of the saddles, shown by orange
curves, lead from �1,2 to �s. Additionally, the unstable node
�u is connected to the saddles �1,2 by the components of
their stable manifolds (blue curves). As repulsion increases,
the curves U (�1,2) come closer to the stable manifolds of the
counterpart saddles [Fig. 3(b)], and merge with them, simul-
taneously forming two heteroclinic connections between �1,2

[Fig. 3(c)]. Their subsequent breakup leaves the global smooth
invariant curve: the periodic two-cluster state [Fig. 3(d)]. Its
stability within the reduced subspace is decided in the com-
petition between expansion and contraction near the saddles:
by the ratio |λ−/λ+| at the bifurcation [12]. According to
our numerics, |λ−| > λ+: Contraction prevails, and hence the
orbit is stable. We note that in terms of the reduced system
of two cluster coordinates, this double heteroclinic bifurca-
tion corresponds to the T point in Fig. 16 of Ref. [35]. At
this stage of the scenario, the system is bistable; basins of
attraction of the newborn periodic orbit and the still stable
synchronous state of rest �s are separated by separatrices of
the saddles �1,2. Finally, the saddles merge with �s in the
subcritical pitchfork bifurcation [Fig. 3(e)], and the periodic
orbit remains the only attractor.

3. The double SNIC bifurcation

As seen in the panels of Fig. 1, the locus of the double
heteroclinic bifurcation can, depending on the values of ω

and ε, wander along the saddle branches of the bifurcation
diagram. In the case of the subcritical pitchfork bifurcation,
this wandering may end on the turning points of the diagram
in Fig. 1(b): at the saddle-node bifurcation of steady states
in the reduced system. This codimension-2 event is known
as the orbit flip [12]: change of the direction from which a
separatrix approaches the saddle. In terms of global dynam-
ics, birth of the clustered periodic solution from the double
heteroclinic bifurcation gets replaced by its birth from the
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FIG. 4. Double SNIC bifurcation, producing a periodic two-cluster state (φA, φB ) at p = 1/2, ω = 0.6, and ε = 0.2 for on-site dynamics
of the type (3a). (a) At small |κ|, two synchronous steady states �s (green disk) and �u (red disk) coexist with two saddles �1,2 (black disks).
Each saddle is connected with �s via two components of its unstable manifold (orange curves). Components of the stable manifolds of �1,2

start at �u (blue curves). Invariant diagonal together with local invariant manifolds of �s and �u are marked in gray. (b) Decreasing κ leads to
the supercritical pitchfork bifurcation of �s in which two new stable equilibria 1,2 (black disks) appear. �1,2 are connected with 1,2 by their
unstable manifolds. (c) In the course of the further decrease of κ , 1,2 approach �1,2. (d) Four states of rest undergo a simultaneous SNIC,
leaving (e) in the phase space a periodic orbit as the only attractor.

double SNIC bifurcation. The latter bifurcation scenario, to
our knowledge, has not been so far discussed in the con-
text of collective oscillations of repulsively coupled excitable
units.

Figure 4 sketches how, at fixed ω = 0.6 and ε = 0.2,
the periodic two-cluster orbit forms after the supercritical
pitchfork of �s. Initially, in Fig. 4(a), two saddles �1,2

are connected with their respective stable manifolds (blue
curves) to the unstable synchronous steady state �u and with
their unstable manifolds (orange curves) to the stable �s.
At κ ≈ −0.712, two new stable equilibria 1,2 branch off
�s in the supercritical pitchfork bifurcation. Unstable man-
ifolds of the saddles detach from �s and instead connect
both saddles to each of the newborn steady states [Fig. 4(b)].
Close to the pitchfork, the contour C features two cusps at
the steady states, eventually smoothed by further growth of
|κ| [Fig. 4(c)]. In the next stage, the pair (�1,1) comes
closer, merges and disappears, undergoing a SNIC [Fig. 4(d)];
the same happens to (�2,2). As a consequence, C forms
the orbit of a periodic two-cluster state. Since, in terms of the
decrease of κ , the double SNIC occurs after the pitchfork, the
periodic orbit in this case is born when �s is already unstable.

Note that whether the pitchfork bifurcation of �s is sub- or
supercritical is not a strict indicator for the kind of bifurcation
that creates the periodic orbit. While a supercritical pitchfork
is necessary for the double SNIC to occur as long as no
other steady states (besides �s, �u, �1,2, and 1,2) exist, it
is not sufficient. For example, for decreasing κ at ω = 0.6, the
orbit flip—transition from double heteroclinic to the double
SNIC—occurs at εflip ≈ −0.0245 when the pitchfork of �s is
still supercritical. Only for ε < ε1 ≈ −0.1342 does the pitch-
fork of �s become subcritical so that for ε1 < ε < εflip there
is a double heteroclinic bifurcation, followed by two simulta-
neous saddle-node bifurcations of �1,2 with 1,2. At ε = εflip,
both bifurcations coincide, and for ε > εflip, the periodic orbit
emerges through the double SNIC.

Both discussed scenarios, via the double heteroclinic con-
nection and via the double SNIC, have been confirmed for the
type of on-site dynamics (3b) as well.

Permutation symmetry, graphically recognizable in Figs. 3
and 4 as reflection invariance of phase portraits with respect to

the main diagonal, is inherited by the new periodic trajectory.
Symmetry in the phase space translates into the spatiotempo-
ral one: During the oscillation, instantaneous cluster positions
are shifted, with respect to each other, by half of the pe-
riod. Thereby, in the reduced system the oscillation is a
splay.

E. Scenarios for unequal cluster sizes

The fact that both discussed bifurcation scenarios involve
two simultaneous bifurcations (either heteroclinic or SNIC)
clearly is due to the equal sizes of the clusters. The answer
to the question what happens for two unequal clusters is, at
least for moderate difference in cluster size, that the scenarios
are largely similar: Periodic orbits emerge from trajectories,
biasymptotic to the equilibria. The pitchfork bifurcation of
the synchronous steady state �s is replaced by a transcritical
bifurcation [8]; this, however, does not affect the onset of
oscillations. There, the main difference is that in the first
scenario, there are two global bifurcations, and in the second
one, the two SNIC occur one after another; see Figs. 5 and 6
for a system of two clusters of size ratio p = 2/5. For the case
in Fig. 5, at first the contour C detaches from the saddle �2

via the formation of heteroclinic connection from �1 to �2,
and then, after forming the homoclinic loop to �1, it turns
into the attracting smooth closed curve. In the unfolding of
the double SNIC in Fig. 6, the pair �2 and 2 first vanishes
in a SNIC before the same happens to �1 and 1. Note that
in both cases the periodic orbit is born at stronger repulsion
than under p = 1/2, especially in the latter case, while the for-
mation of heteroclinics or SNIC happen at weaker repulsion
compared to the symmetric case. This matches the observa-
tion from Sec. II C that stronger asymmetry (deviation from
p = 1/2) requires larger repulsion for periodic orbits to form;
see Fig. 2.

F. Stability of two-cluster periodic orbits against splitting

1. General remarks

The reduced system (7) offers full information on whether
periodic two-cluster solutions of (1) exist and how they
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FIG. 5. Stages of bifurcation scenario, creating a periodic two-cluster state (φA, φB) with p = 2/5 (e.g., in an ensemble of N = 4 + 6
units), at ω = 0.8 and ε = −0.2 for on-site dynamics of the type (3a). In panel (b), the heteroclinic connection from �1 to �2 is formed. In
panel (d), a homoclinic trajectory to �1 is present; its breakup leaves the smooth attracting trajectory [panel (e)].

emerge, but it is of limited use for the question of the
asymptotic stability of these states: It characterizes only the
perturbations that leave both clusters whole. Perturbations that
split one or both of the clusters should be considered in the
frame of the full original system.

Periods of oscillatory states, born in the heteroclinic or
SNIC bifurcations, are infinite at the bifurcation parameter
values. At small deviations from these values, the periods are
large, with the dominating portion spent in a slow passage
across the immediate vicinity of the saddle point. Hence,
right after the bifurcation, stability against splitting is in-
herited from the parent saddle point: A clustered periodic
orbit, branching off the separatrices of the nonsplittable sad-
dle, is stable against splitting perturbations as well. If, on
the contrary, the saddle is unstable toward cluster splitting,
the newborn periodic orbit is also unstable. Further into the
domain of its existence, the orbit spends less time near the
saddle and the picture may change; as we will see, this indeed
happens.

Asymptotic stability of a periodic solution is determined by
its Floquet multipliers: eigenvalues of the monodromy matrix
of the orbit. Since instantaneous coordinates inside clusters
coincide, this matrix is highly degenerate, its spectrum fea-
turing similar characteristics to the Jacobian of a two-cluster
state of rest. Two simple “nonsplitting” multipliers (one being
the trivial value 1) determine stability inside the two-cluster
subspace. At cluster sizes pN and N (1 − p), there are just
two “splitting” Floquet multipliers, with multiplicities pN − 1
and N (1 − p) − 1 respectively. On naming these degenerate
multipliers after the clusters, affected by the corresponding

perturbations, |μA| and |μB|, the stability condition becomes
|μA| < 1, |μB| < 1.

For a clustered T -periodic orbit (φ0
A(t ), φ0

B(t )), these split-
ting Floquet multipliers are given by

μA = exp

(∫ T

0
λA(t ) dt

)
,

μB = exp

(∫ T

0
λB(t ) dt

)
,

(12)

with the time-dependent versions of (8) and (9):

λA(t ) = f ′(φ0
A

) − κ
(
p + (1 − p) cos

(
φ0

B − φ0
A

))
,

λB(t ) = f ′(φ0
B

) − κ
(
(1 − p) + p cos

(
φ0

A − φ0
B

))
.

If the sizes of clusters A and B coincide, the oscillation, as
noted above, is invariant against permutation of A and B.
Hence, in that case μA and μB coincide as well, and all N − 2
splitting Floquet multipliers are equal.

2. Stability of equal oscillatory clusters

We start the discussion of stability of clustered oscillatory
states with the case of equal clusters (p = 1/2). Exemplary
diagrams in Figs. 7 and 8 refer to on-site dynamics of the type
(3a); Fig. 9 characterizes the type (3b). There, blue shaded
regions indicate presence of a stable periodic two-cluster state
whereas red shading means the existence of an unstable pe-
riodic two-cluster state. In the white regions, there are no
periodic two-cluster states whatsoever. In each diagram, the
green curve marks the transcritical heteroclinic bifurcation
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FIG. 6. Stages of SNIC bifurcation scenario, creating a periodic two-cluster state (φA, φB ) with p = 2/5 at ω = 0.6 and ε = 0.2 for on-site
dynamics of the type (3a). Two SNIC bifurcations of the respective pairs of steady states �1,2 and 1,2 happen at noncoinciding values of κ

[panels (c) and (d)].
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FIG. 7. Existence and stability of periodic oscillations for two
equal clusters (p = 1/2) with on-site dynamics of the type (3a) at
ω = 0.6, in dependence on κ and ε. White shading: no periodic
two-cluster states exist. Blue (red) shading: asymptotic stability (in-
stability) of the two-cluster periodic state. A switch in stability occurs
at ε = 0 via WS integrability. At ω = 0.6, periodic solutions are born
for ε < εflip ≈ −0.0245 in a double heteroclinic bifurcation (dashed
black curve), and for ε > εflip in a double SNIC (solid black curve).
Solid green curve: pitchfork bifurcation of the synchronous state
of rest �s, subcritical for ε < ε1 ≈ −0.13429 and supercritical for
ε > ε1. The inset shows that for negative ε the new oscillatory state
is unstable as well; it gets stabilized only at some distance from its
creation.

(THB) of the synchronous equilibrium �s [8], that involves
the pitchfork bifurcation, discussed in Sec. II D. Solid black
curves denote the double SNIC while dashed black curves
mark the double heteroclinic bifurcation.

In the diagrams, the right border of the existence domain
of the two-cluster periodic orbits distinctly does not coincide
with the THB which destabilizes �s. This puts two-cluster
oscillations in contrast to the splay states which, as we show
elsewhere [18], are created in the THB.

The intersection, close to ε ≈ −0.09 and κ ≈ −0.91 in
Fig. 7, of the solid green curve of the pitchfork bifurcation
with the dashed curve of the double heteroclinic connection
between the saddles �1,2 is merely a projection artifact, not a
bifurcation point of higher codimension: in the phase space,
the pitchfork and the double heteroclinic connection occur at
distant positions.

The diagrams include regions of bistability: The stable
periodic oscillation of two equal clusters can coexist either
with the attracting synchronous state of rest �s (if the double
heteroclinic bifurcation precedes the pitchfork of �s, and
the newborn periodic orbit is stable, like in Figs. 7–9 for
ε < 0) or, in case of the supercritical pitchfork of �s, with
the stable equilibria 1,2 (e.g., for ω = 0.6, ε = −0.95, and
κ = −0.96).

A common property of all three diagrams is the change of
stability exactly at ε = 0: Clustered oscillations are unstable
at positive values of ε and stable in the large part of the
region ε < 0. The only exception at negative ε is an addi-
tional narrow instability region in the immediate vicinity of

−1.3 −1.2 −1.1 −1.0 −0.9 −0.8 −0.7 −0.6
κ

−0.4

−0.2

0.0

0.2

0.4

0.6

FIG. 8. Existence and stability of periodic oscillations for two
equal clusters (p = 1/2) with on-site dynamics of the type (3a) at
ω = 0.8 in dependence on κ and ε. White shading: no periodic
two-cluster states exist. Blue (red) shading: asymptotic stability (in-
stability) of the two-cluster periodic state. A switch in stability occurs
at ε = 0 via WS integrability of the system. The green curve marks
the pitchfork bifurcation of �s. When periodic solutions are born in
the double heteroclinic bifurcation (dashed line), the state of rest �s

is still stable.

the heteroclinic bifurcation at κhet: At ω = 0.6, this region,
whose width shrinks to zero for ε → 0, is shown in the inset of
Fig. 7; at ω = 0.8, it is too narrow to be resolved graphically.
A further decrease of κ brings stabilization with respect to
splitting perturbations.

The periodic splay states, as well as the clustered splay
states, are not shown in these diagrams; they exist to the left

−1.2 −1.0 −0.8 −0.6 −0.4
κ

−3
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FIG. 9. Existence and stability of periodic oscillations for two
equal clusters (p = 1/2) with on-site dynamics of the type (3b) at
ω = 0.6 in dependence on κ and ε. White shading: no periodic
two-cluster states exist. Blue (red) shading: asymptotic stability (in-
stability) of the two-cluster periodic state. Periodic solutions are
born either in double heteroclinic bifurcations for ε < εflip ≈ −0.245
(dashed black curve) or in a double SNIC for ε > εflip (solid black
curve). A switch in stability via WS integrability occurs at ε = 0.
Green curve: the pitchfork bifurcation of �s.
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of the green lines of the pitchfork bifurcation. In contrast to
the periodic two-clusters, the splay formations, according to
numerics, are unstable for negative values of ε, whereas some
of them are stable at positive ε. Therefore, the line ε = 0
marks the transfer of stability between two kinds of collective
oscillations: Two equal clusters versus the splay or clustered
splay. Stability exchange is nonlocal: In the phase space two-
cluster states and the splay formations stay separated by finite
distances.

Unusual nonlocality of the stability switch owes to the
fact that at ε = 0 and κ < κ0 (that is, after the transcritical
heteroclinic bifurcation of �s) the families (3a) and (3b)
belong to the WS class. The phase space of a system from
this class contains a continuum of trajectories with N − 3
zero Lyapunov exponents [16]; for every periodic orbit this
implies N − 3 Floquet multipliers equal to 1. For each of
these orbits, N − 3 constants of motion are cross ratios be-
tween the complex numbers z j = exp(iφ j ) [16,17]. In fact,
a periodic solution with two equal clusters possesses N − 2
unit multipliers: half of them ensures neutrality with respect to
splitting of one cluster, whereas another half refers to splitting
of another one. Globally, at ε = 0 both the periodic states
with equal clusters and the splay formations are embedded
in the continuum of neutrally stable solutions, and stability is
“instantaneously transferred” along this continuum from the
latter to the former.

Remarkably, the periodic two-cluster state at ε = 0 can
also exist when the repulsion is weaker than the critical
threshold, that is, at κ > κ0: before the destabilization of the
synchronous state of rest �s in the course of the THB. In
that range of κ , seen, e.g., in Fig. 8 for ω = 0.8, this is the
only (up to permutations of the units) periodic solution: There
are no further periodic states yet. Therefore, the presence of
N − 2 unit Floquet multipliers for the two-cluster state does
not imply existence of the SW continuum of periodic orbits.
Within the linearized description, perturbations of the two-
cluster oscillatory state stay neutral; nonlinear evolution lets
them tend to the equilibrium �s.

For the two-cluster state, the change of stability can be un-
derstood by the following argument. Let the cluster A contain,
among others, the phases φ1 and φ2 and cluster B contain the
phases φN−1 and φN . Since φA 	= φB ∀t , the cross ratio (CR)

CR1,2,N−1,N = (z1 − z2)(zN−1 − zN )

(z1 − zN )(zN−1 − z2)
(13)

is well defined in an open neighborhood of the periodic state
and additionally is a constant of motion for ε = 0 due to WS
integrability. Take an initial state on the clustered orbit, with
instantaneous cluster coordinates (φA, φB). For a perturbation
(δ,−δ, 0, . . . , 0, δ,−δ), the cross ratio (13) equals

2 sin2 δ

cos(φA − φB) − cos 2δ
.

For a small |δ|, after the period T , the lin-
earized evolution transforms the perturbation into
(μAδ,−μAδ, 0, . . . , 0, μBδ,−μBδ), whereas the cross ratio
of the perturbed orbit becomes

2 sin(μAδ) sin(μBδ)

cos(φA − φB) − cos(μAδ + μBδ)
.

Coincidence, regardless of (φA, φB), of both values of the
cross ratio at zero ε and small |δ| yields the condition μAμB =
1. Due to the permutation invariance of the clusters, both mul-
tipliers are equal, rendering (μA)2 = 1. The multipliers are
positive (otherwise the perturbation must vanish somewhere
on the orbit), and therefore μA = 1.

For systems governed by (2), the monodromy matrix (and
hence its eigenvalues) depends continuously on the system
parameters, in particular on ε. According to numerical evi-
dence, at ε = 0 the Floquet multipliers cross the critical value
1 transversely: There seems to be no mechanism for additional
degeneracies like nontransversality. As a result, at ε = 0 there
is a compulsory change of stability for periodic solutions
with two equal clusters. For clustered states, N − 2 Floquet
multipliers cross the value 1 from above; for the splay states,
the multipliers move in the opposite direction. This stability
reversal at ε = 0 is common in one-parameter families cross-
ing the WS class.

For small nonzero values of ε, the cross ratios turn from
constants of motion into slowly evolving variables. Locally,
velocity of the slow motion in the phase space depends on the
sign of ε. In particular, near the two-clustered periodic orbit,
the motion is directed toward this orbit for ε < 0 and away
from it for ε > 0.

At ε > 0, when the periodic two-cluster state is unstable, a
perturbation slowly explores the landscape near the invariant
manifold that formerly comprised the continuum of periodic
orbits, until reaching a new attractor, which is usually a (clus-
tered) splay state. Sometimes simulations disclose attractors
that are not perfect clustered splay states: Clusters may vary
in size. As an example, a small perturbation of the periodic
two-cluster state in the ensemble of 200 active rotators may,
depending on its initial configuration, evolve, toward a clus-
tered splay state of four clusters with 50 units in each of them,
or toward a state of four clusters with 49, 49, 51, and 51
units. Numerics confirms that at larger N dispersion of cluster
sizes in these (almost) clustered splay states wanes: the larger
N , the closer to each other in size are the single clusters.
Notably, while clustered splay states with high numbers of
clusters formally exist for large N , numerical tests for weakly
perturbed two-cluster states mostly end up at those with � 10
clusters.

3. Stability for nonequal oscillatory clusters

When the sizes of the oscillating clusters differ, the argu-
ment about the invariance, at ε = 0, of the cross section for the
perturbed clustered periodic orbit remains valid and implies
that the product of two splitting Floquet multipliers equals 1.
This notable identity holds for all WS-integrable systems with
periodic two-cluster states4 and matches a similar finding for
a system of Kuramoto-Sakaguchi oscillators under common
multiplicative noise [39]. However, without the permutation
symmetry between the clusters, the Floquet multipliers are not

4This does not imply, however, conservation of the phase volume
near the periodic orbit: For nonequal clusters, the Floquet multipliers
have different multiplicities.

012206-10



EMERGENCE AND STABILITY OF PERIODIC … PHYSICAL REVIEW E 103, 012206 (2021)

-0.75

-0.5

-0.25

 0

-2 -1.5 -1 -0.5

ε

κ

p=51/100

p=52/100

p=53/100

N=100,   ω=0.8

FIG. 10. Existence and stability of periodic oscillations for two
unequal clusters with on-site dynamics of the type (3a) at ω =
0.8. Ensemble size N = 100. White shading: no oscillating un-
equal clusters exist. Red shading: oscillating unequal clusters exist
but are unstable toward splitting. Blue shading: stable oscillation
of two unequal clusters with p = 51/100. Yellow shading: coexis-
tence of stable oscillations for clusters with p = 51/100 and p =
52/100. Magenta shading: coexistence of three stable oscillatory
states with, respectively, p = 51/100, p = 52/100, and p = 53/100.
Green curve: transcritical bifurcation of �s.

equal. The multiplier governing the stability of the larger clus-
ter exceeds 1; the multiplier responsible for the integrity of the
smaller cluster is, on the contrary, smaller than 1: Distant units
from the larger cluster hold the smaller one together by their
repelling force.

As a result, periodic solutions with two clusters of
nonequal sizes feature in the WS case ε = 0 a remarkable
distinction: Unlike the other periodic orbits, they are not em-
bedded in the (N − 3)-dimensional continuum of neutrally
stable orbits, but are robust isolated phase trajectories. These
solutions are unstable toward perturbations splitting the larger
cluster [39]. Since the corresponding Floquet multipliers are
separated from 1, this effectively rules out a possibility of
such states as eventual attractors for sufficiently small |ε|.
However, at small negative values of ε, the larger Floquet
multiplier decreases, opening possibilities for stabilization, so
that the stronger deviations from the WS case enable stable
oscillations of two unequal clusters.

Figure 10 shows on the parameter plane the domains of
stability for an ensemble of N = 100 units with slight mis-
matches in the sizes of two clusters. A nested pattern of
the stability regions ensures multistability: Regions for larger
deviations of p from 1/2 lie inside similar regions for smaller
deviations. Besides, these stable states coexist with periodic
oscillations of two equal clusters (cf. Fig. 8) and (below the
green curve) with the stable state of rest. Here, we again
observe the tendency, noted while discussing the existence
domains of unequal clusters in the parameter space: the further
the value of p from 1/2 (i.e., the larger the relative mismatch
between the cluster sizes), the stronger should be the repulsion
and the bigger the deviation from the WS case ε = 0, in order
to stabilize the clustered oscillation.

TABLE I. Chosen parameters for Eq. (14), yielding class I ex-
citability, according to Refs. [25] and [26].a

Parameter Ermentrout and Kopell Tsumoto et al.

C 1 1
λ0 0.33 1/3
gCa 1 4
VCa 1 1
gL 0.5 2
VL 0.4 0.5
gK 2 8
VK 0.7 2/3
Va −0.01 −0.01
Vb 0.15 0.15
Vc 0.1 0.1
Vd 0.145 0.145
Iapp

b 0.0332 395/1200

aFor the values in Ref. [26], we rescale V in such a way that VCa = 1,
and C and t so that C = 1 and λ0 = 1/3.
bThe parameter I is free in Ref. [26] and fixed in Ref. [25]. We choose
the shown values to bring the single neuron closer to its SNIC.

III. COUPLED MORRIS-LECAR NEURONS

For a look at existence and stability of periodic two-cluster
states in ensembles of class-I excitable units with individual
dynamics of dimension higher than 1, we take a set of coupled
Morris-Lecar neurons [24]. This conductance-based neuron
model was originally designed to describe the neurophys-
iological properties of the barnacle giant muscle fiber. Its
variables are the membrane voltage V of a neuron and the slow
recovery variable w that mimics the normalized conductance
through the cell membrane for K+ ions and instantaneous
normalized conductance for Ca2+ ions. In a region of its
parameter space, the model displays class I excitability. A
typical setting in this context (see, e.g., Refs. [6,7]) involves a
group of N such neurons and assumes that they are all-to-all
coupled via their mutual voltage differences:

C V̇i = gCa n∞(Vi)(VCa − Vi ) − gK wi(VK + Vi)

− gL(VL + Vi ) + Iapp + κ

N

N∑
j=1

(Vj − Vi ), (14a)

ẇi = λ(Vi)[w∞(Vi) − wi], (14b)

where j denotes the jth neuron, the functions n∞(V ) =
1
2 (1 + tanh V −Va

Vb
) and w∞(V ) = 1

2 (1 + tanh V −Vc
Vd

) character-

ize the proportion of open ion channels for the Ca2+ and
K+ ions, and λ(V ) = λ0 cosh V −Vc

Vd
is the V -dependent in-

verse recovery time for the K+ channels.5 The coefficients
(gCa, gK, gL) and (VCa,VK,VL) denote, respectively, the con-
ductances and the reversal potentials, Va,...,d are auxiliary
constants, and, finally, Iapp is the external current. The original
model (uncoupled single unit) features a variety of intrinsic
dynamics, depending on the choice of system parameters. On

5In Ref. [26], λ(V ) = λ0 cosh V −Vc
2Vd

. We use this function for pa-
rameters from that reference.
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FIG. 11. Bifurcation scenarios for an ensemble of Morris-Lecar
neurons that lead to two equally sized oscillating clusters. �s,u, syn-
chronous states of rest; �1,2, saddle equilibria. In the top row, system
parameters are chosen according to Ref. [26] but with Iapp = 7/30 for
a better resolution of the depicted orbits. From panels (a) to (c), cou-
pling κ gradually becomes more repulsive, resulting at κ ≈ −1.23 in
onset of time dependence via the double heteroclinic bifurcation, like
in the phase model. In the bottom row, system parameters are chosen
according to Ref. [25], but with Iapp = 0 for better optics. Since Iapp

is chosen sufficiently far from the SNIC of the single neurons, the
transition from (a′) to (c′) involves two simultaneous homoclinic
bifurcations at κ ≈ −0.33, leaving two periodic two-cluster orbits;
for each orbit one cluster is spiking while the other performs weak
subthreshold oscillations.

taking the parameter values from Table I, the system gets close
to the SNIC [25,26]. Note that the two choices of parameters
differ essentially in the scaling of the conductances: The con-
ductances in Ref. [26] are four times higher than in Ref. [25].
Although the current Iapp is significantly different for the two
cases, an expansion of (14a) in powers of Vi renders very simi-
lar ratios of the zeroth- to first-order terms, since those depend
on the conductances as well. A suitable rescaling of the Vi

then eliminates Iapp and leads to the form V̇i = −c + Vi + · · · ,
where the constant c > 0 is roughly the same for both choices
of parameters. Since Iapp only enters the zeroth-order term
and thus c, the two choices of parameters indeed only differ
significantly in their respective conductances. In analogy to
our phase equations, varying the scaling of gCa, gL, and gK

thus acts in the same way as changing the parameter ε in (2)
while keeping ω approximately constant. The sign of κ again
determines whether coupling is attractive (κ > 0) or repulsive
(κ < 0), the difference to the phase model being that it acts in
the voltage variables and is linear.

Again, we focus on existence and stability of periodic two-
cluster solutions of (14) for repulsive coupling.

Like in the ensemble of active rotators, there is a
synchronous state of rest that undergoes the transcritical bi-
furcation at a critical value of κ . Here, as well, periodic
two-cluster states can emerge not via this transcritical bifur-
cation but through double heteroclinic bifurcations of two
two-cluster saddle points; see, for example, the top row in
Fig. 11. Again, we choose clusters of equal size: p = 1/2.
The top row shows the creation of a periodic orbit from the
heteroclinic contour, similar to the one found for the ensem-

ble of phase variables. Starting in Fig. 11(a) with κ above
the bifurcation value κ0 ≈ −1.23, two pairs of separatrices
connect the saddle equilibria with the stable state of rest. At
κ = κ0, the separatrices form two heteroclinic connections
between the saddles [Fig. 11(b)]. Finally, for κ < κ0 there is a
single periodic two-cluster state where both clusters perform
large-scale oscillations in antiphase [Fig. 11(c)].

Remarkably, taking the parameters from Ref. [26] but
choosing the current Iapp below the critical value I0 ≈ 0.03264
leads to a different scenario, where not the unique periodic
two-cluster state, but two distinct periodic states emerge: See
the bottom row of Fig. 11. There, the separatrices, shown in
Fig. 11(a′), form in Fig. 11(b′) not heteroclinic connections
but two simultaneous homoclinic loops from which two sepa-
rate periodic orbits emerge [Fig. 11(c′)]. On each of the latter,
one of the clusters performs a large scale “spiking” oscillation
while the other cluster displays only weak “subthreshold”
vacillation near the state of rest. Compared to the phase model
described above, this “chimera-like” splitting in two popula-
tions with different spiking properties is a different kind of
dynamics.

Regarding the stability of the periodic two-cluster states
with respect to splitting, we find that, e.g., for an ensemble of
N = 20 neurons with the parameters from Ref. [26], the orbit
is stable close to the bifurcation (κ0 ≈ −0.2) while for the
parameters from Ref. [25] (κ0 ≈ −0.024) it is unstable. This
further justifies the interpretation of the conductance scaling
as an analog of the parameter ε. In the second case, small per-
turbations of the unstable orbit grow and eventually converge
either to the still stable �s or, if |κ| is sufficiently large to
destabilize �s, toward a (pure) splay state. This notable simi-
larity to the picture of stability for two-cluster and splay states
found in the phase model hints that the interplay between the
stability of splay and two-cluster states may be a more general
feature for systems of (identical) class I excitable units.

IV. CONCLUSIONS

Ensembles of identical one-dimensional class I excitable
units feature nontrivial dynamics only for repulsive coupling.
Two widespread modes of collective oscillations occurring in
this context are splay states and two-cluster states. We have
investigated how the latter emerge through two different types
of global bifurcation scenarios, focusing on states with two
clusters of equal size. One type is a double SNIC where, on an
invariant curve, two pairs of two-cluster saddle steady states
simultaneously vanish, transforming thereby the curve into a
periodic orbit. The second type is a bifurcation in which a
periodic solution is born from the pair of heteroclinic trajecto-
ries that connect two-cluster saddles. According to Ref. [35],
this scenario should be typical in situations where each of the
single units, if decoupled, is sufficiently close to the SNIC.

For a system of active rotators, stability of periodic states
with two clusters of equal size is directly linked to the higher
Fourier modes of on-site dynamics. In the presented case, a
change of the sign of all higher order Fourier terms in the
equations of motion results in the stability reversal.

In general, two stable oscillating clusters may differ in their
sizes. For a given ensemble size, the stability regions in the
parameter space for solutions with larger difference between
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the cluster sizes are nested inside the analogous regions for
solutions with smaller size mismatch.

To view our findings in a more general context, we
have also briefly discussed an ensemble of coupled two-
dimensional class I excitable units: the Morris-Lecar neurons.
For them, the double heteroclinic connection has been verified
as a mechanism for the creation of two-cluster oscillations.
Stability of the resulting states with respect to perturbations
splitting the clusters depends on the values of the system
parameters. Notably, in the case where the oscillatory two-
cluster states are unstable, we, like in the phase model,
find instead a stable splay state. This looks intriguing since
the splay states and the two-cluster states have their origin
in quite different bifurcation scenarios. Interconnections be-
tween splay states and two-cluster oscillatory states will be a
subject of a future work.

Of course, ensembles of completely identical units are ide-
alizations, and the effect of introducing slight heterogeneity
into the ensemble is of legitimate interest. Outside of bifur-
cations, the described periodic states are structurally stable,
and a sufficiently weak heterogeneity can neither destroy nor
destabilize them. Exact coincidence of coordinates inside each
cluster will be replaced by formation of “imperfect clusters”:
tightly grouped sets of coordinate values. Transformation of
bifurcation scenarios is less straightforward: robustness of
heteroclinic orbits often relies heavily on the permutation
symmetry among the units [40]. Since weak heterogeneity
would not change the dimension of invariant manifolds of
the saddle steady states, similar sequences of nonsimultane-
ous global bifurcations like in Sec. II E should be expected.
The same arguments should ensure persistence of bifurcation
scenarios in the case when sufficiently small higher order
terms are included into the coupling function. Yet another
possibility to lower the degree of symmetry in the system is to
diversify the contributions of different units into the common
global field, e.g., to replace in the coupling term of Eq. (1) the
uniform coupling strength κ by summation over the individual
coupling strengths κ j of the units. Preservation, at ε = 0, of
the WS character of dynamics does not demand all units to
be repelling (with all κ j < 0); what matters is the sign of the
overall sum

∑N
j=1 κ j [8]. Accordingly, at ε 	= 0 the evolution

of collective oscillations, including the two-clustered states,
should involve bifurcation scenarios, described in the preced-
ing sections.

The discussed periodic solutions are not necessarily the
only possible states, let alone attractors. In numerical simu-
lations of the phase model, we encountered examples when
perturbations of unstable two-cluster states converged not to
a perfect (clustered) splay state but instead to a state that
might be called an imperfect clustered splay, where differ-
ent clusters, while still roughly stacked equally in time, are
of different sizes. In models of higher dimension, like the
Morris-Lecar model, certain stable periodic states are hardly
compatible with the phase model; in an example, two single
neurons are spiking in antiphase while the remaining ensem-
ble stays relatively close to the unstable synchronous state
of rest, so that the two spiking neurons act as “shepherds”
that keep the flock of other neurons in place. For larger
N , however, such intricate periodic states seem to become

increasingly rare to reach from generic initial conditions. In
this sense, two-clusters and (clustered) splay states appear to
be most common asymptotic states.
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APPENDIX A: EXPRESSIONS FOR THE BIFURCATION
CURVES OF THE SYNCHRONOUS EQUILIBRIUM �s

To derive explicit expressions that interrelate parameters
at the bifurcations of the synchronous state of rest �s in the
reduced system, Eqs. (7), along with bifurcation conditions,
are transformed with the help of the Weierstrass (tangent half-
angle) substitution

ψ ≡ tan
φ

2
, sin φ = 2ψ

1 + ψ2
, cos φ = 1 − ψ2

1 + ψ2

to the form, polynomial in ψ . Bifurcational relations like
(4) and (6) are then obtained from the resultants of the cor-
responding polynomials. Their counterparts for the on-site
dynamics of the type (3b) have been derived as well, but are
far too long to be cited here explicitly.

APPENDIX B: CRITERION OF CRITICALITY FOR THE
PITCHFORK BIFURCATION OF �s

Whether the pitchfork bifurcation of �s at κ0 for the re-
duced system

φ̇A = ω − sin φA + ε sin 2φA + κ

2
sin(φB − φA),

φ̇B = ω − sin φB + ε sin 2φB + κ

2
sin(φA − φB) (B1)

is sub- or supercritical depends on the values of parameters
ω and ε. In the coordinates x = (φA − φB)/2 and y = (φA +
φB)/2, permutation invariance of (B1) translates to mirror
symmetry along the y axis:

ẋ = f (x, y),

ẏ = g(x, y),

with

f (x, y) = − 1

2
[sin(x + y) + sin(x − y)]

+ ε

2
[sin 2(x + y) + sin 2(x − y)]

− κ

2
sin 2x,

g(x, y) = ω − 1

2
[sin(x + y) − sin(x − y)]

+ ε

2
[sin 2(x + y) − sin 2(x − y)].

The x-nullcline yx(x) and y-nullcline yy(x) are defined by
0 = f (x, yx(x)) and 0 = g(x, yy(x)), respectively. The trivial
branch x = 0 of the x-nullcline corresponds to the invariance
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of the diagonal φA = φB under the flow of (B1) and can be
factored out by considering the solution of 0 = f (x, yx(x))/x.
Mirror symmetry implies that the nullclines are even functions
of x:

yx(x) = ax + 1
2 bxx2 + O(x4),

yy(x) = ay + 1
2 byx2 + O(x4). (B2)

Equilibria of the system correspond to intersections of the
nullclines. To determine whether the pitchfork is sub- or
supercritical, we make use of the simple geometric considera-
tion: Two parabolas y1(x) = a1 + b1x2 and y2(x) = a2 + b2x2

with (i) b1 > b2 > 0 or (ii) 0 > b1 > b2 intersect if and only
if a1 < a2.

With this observation in mind, we determine criticality of
the pitchfork bifurcation. The bifurcation itself is, in these
terms, given by the condition ax = ay = φs, where φs, as
above, denotes the position of the stable steady equilibrium
for the single rotator.

Substituting (B2) into the nullcline equations and expand-
ing them to the second order in x, we arrive at

by = sin φs − 4ε sin 2φs

cos φs − 2ε cos 2φs
(B3)

and

bx = cos φs

sin φs − 4ε sin 2φs
. (B4)

The bifurcation type is determined by the ratio

c(ω, ε) ≡ by

bx
= (sin φs − 4ε sin 2φs)2

cos φs(cos φs − 2ε cos 2φs)
. (B5)

The pitchfork is subcritical if c(ω, ε) > 1 and supercritical if
c(ω, ε) < 1. Change of the character of the pitchfork bifurca-
tion occurs at bx = by, i.e., c(ω, ε) = 1.
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