
PHYSICAL REVIEW E 103, 012205 (2021)

Dynamics of noise-induced wave-number selection in the stabilized Kuramoto-Sivashinsky equation
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We revisit the question of wave-number selection in pattern-forming systems by studying the one-dimensional
stabilized Kuramoto-Sivashinsky equation with additive noise. In earlier work, we found that a particular periodic
state is more probable than all others at very long times, establishing the critical role of noise in the selection
process. However, the detailed mechanism by which the noise picked out the selected wave number was not
understood. Here, we address this issue by analyzing the noise-averaged time evolution of each unstable mode
from the spatially homogeneous state, with and without noise. We find drastic differences between the nonlinear
dynamics in the two cases. In particular, we find that noise opposes the growth of Eckhaus modes close to the
critical wave number and boosts the growth of Eckhaus modes with wave numbers smaller than the critical
wave number. We then hypothesize that the main factor responsible for this behavior is the excitation of long-
wavelength (q → 0) modes by the noise. This hypothesis is confirmed by extensive numerical simulations. We
also examine the significance of the magnitude of the noise.
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I. INTRODUCTION

Spatiotemporal patterns are ubiquitous in nature. Mathe-
matically, they are represented by nonlinear partial differential
equations that undergo a bifurcation from a spatially uniform
steady state to periodic steady states with a continuous set
of allowed wave numbers [1]. The band of allowed wave
numbers is determined from a linear stability analysis of the
equation of motion, and the wave number of the perturbation
that grows fastest in the linear regime is called the critical
wave number. The periodic steady states may themselves un-
dergo secondary instabilities such as the Eckhaus instability
[2], which occurs when the periodic states are subjected to
long-wavelength perturbations. The states that are stable to
such perturbations are said to be Eckhaus stable. Some well-
known examples of pattern formation are Rayleigh-Bénard
convection, Taylor-Couette flow, and cellular interfaces in
directional solidification and eutectic growth [1,3–5]. Ex-
amples can also be found in chemistry (reaction-diffusion
systems) and biology (chemotaxis-induced patterns in bacte-
rial colonies) [1].

The existence of many apparently equivalent periodic
states naturally leads to the question of wave-number selec-
tion. The two main aspects of the problem are as follows:
(i) What is the wave number of an observed pattern for a
specific set of experimental conditions? (ii) Is there a unique
preferred wave number that is an intrinsic property of the
system and does not depend on the initial state of the system?
Most previous work on the subject has focused on determin-
istic mechanisms such as spatially ramped control parameters
[6–8]. While control parameter ramps can be used to precisely
tune the periodicity of the observed pattern, changing the
ramping protocol leads to a different observed wave number
[7,8]. In other words, the wave number selected by a control

parameter ramp is not unique. In a different direction, Schober
et al. [9] have studied selection in the deterministic Swift-
Hohenberg (SH) equation [10] by sampling over an ensemble
of random initial conditions with the Fourier transform peaked
about a specific wave number q̄. Again, the final state was
found to depend on the value of q̄. These results have been
used to argue that there is no universal selection mechanism.

On the other hand, stochastic wave-number selection, i.e.,
selection in the presence of noise, has historically been a topic
of debate. One of the first studies of stochastic selection was
performed by Kerszberg [11,12]. The author studied the evo-
lution of a periodic cellular interface in a model of directional
solidification with additive noise and found that the noise
induces creation or destruction of cells, driving the interface
toward a unique periodicity. Some qualitative arguments to
explain this effect were given. More detailed studies have
been performed recently in a model known as the stabilized
Kuramoto-Sivashinsky (SKS) equation [13–15]. In Ref. [13],
the authors used the least action principle to calculate the
probability of transitions between the different steady states.
In Ref. [15], the stationary probability of being in a particular
periodic state at long times was calculated. The probability
was found to be greatest for a particular periodic state. This
state was independent of the initial conditions and the noise
strength, as long as the noise was large enough to allow the
system to explore all the available states. This is in stark
contrast to the deterministic mechanisms mentioned above.

Selection of a unique wave number by noise is expected for
dynamics where the deterministic part is the gradient of a free
energy functional: ∂t u(x, t ) = −δF[u]/δu(x, t ) + ζ (x, t ). In
that case, it is known that the most probable configuration is
the one that minimizes the free energy. The primary example
of this is the SH model [10], for which the free energy is
minimized by a periodic configuration with wave number
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qmin, which is very close to the critical wave number of that
model [16]. In the presence of noise, the wave number of the
most probable configuration is found to be very close to qmin

[17], although it is impossible to distinguish between qmin and
the critical wave number for the simulation parameters used
in these studies.

The SKS equation, on the other hand, does not possess
a free energy functional, and a clear understanding of what
makes one steady state preferable compared to others is lack-
ing. Although we have established that there is a unique,
preferred wave number for the SKS problem [15], and identi-
fied it for various parameters, a detailed investigation of the
dynamical processes leading to the selection has not been
performed, to our knowledge. This is the goal of this work.
We shift our focus from the stationary probability distribu-
tions of Ref. [15] to the time evolution of the various Fourier
components of the solution of the SKS equation. By doing
so, we identify the key process responsible for noise-induced
selection in the SKS model. Through a detailed numerical
analysis, we show that the noise fundamentally alters the
nonlinear dynamics of the SKS equation in two ways. First,
it causes the growth of modes with wave numbers close to
zero in the nonlinear regime. Second, it couples these small
wave-number modes with the Eckhaus stable modes in a way
that opposes the growth of modes close to the critical one.
These effects do not occur without noise and highlight the
importance of noise in constraining the periodicity of patterns.

The rest of the paper is organized as follows: In Sec. II,
we introduce the deterministic and stochastic SKS equations
in one dimension, and we review the results of Ref. [15]. In
Sec. III, we study how the amplitudes of the Fourier compo-
nents of the solution evolve in time, and we identify important
differences between the deterministic and stochastic cases. We
also compare the new results with those of Ref. [15], and we
examine the role of the strength of the noise. In Sec. IV, we
provide a qualitative explanation for the findings of Sec. III
followed by a detailed quantitative analysis. Finally, in Sec. V,
we summarize our results and mention potential directions for
future work.

II. BACKGROUND

A. Deterministic dynamics

We review here the dynamics of the deterministic SKS
equation. In one dimension, it reads

∂t u(x, t ) = F [u] = ( − α − ∂2
x − ∂4

x

)
u + (∂xu)2. (1)

Here, α is the control parameter and u(x, t ) is a dimension-
less field of dimensionless space-time variables. This equation
arises in various situations, such as directional solidification
and the Burton-Cabrera-Frank model of terrace edge growth
[18,19]. Applying a periodic perturbation with wave number
q and linearizing Eq. (1) yields the linear dispersion relation
for the growth rate σ (q) = −α + q2 − q4. The growth rate is
positive for a range of wave numbers whenever α � 1/4. The
wave number that maximizes σ (q) is the critical wave number
qc = 1/

√
2. As an example, the linear dispersion relation is

shown in Fig. 1 for α = 0.20. In this case, σ (q) is positive
for 0.53 � q � 0.85. We also show the Eckhaus stable wave
numbers in Fig. 1, which satisfy q−

E � q � q+
E .

FIG. 1. Sketch showing the linear growth rate of periodic per-
turbations σ (q) as a function of wave number q for the stabilized
Kuramoto-Sivashinsky equation, with α = 0.20. The critical wave
number is qc = 1/

√
2 and the noise-selected wave is q�. The bound-

aries of the Eckhaus band are at q−
E and q+

E .

A typical deterministic steady state with wave number q
consists of a fundamental mode, and small terms containing
the second and higher harmonics. It can be written in the
following form [18]:

uq,det(x) =
∞∑

l=−∞
ũlqeilqx, (2)

where the subscript “det” stands for “deterministic.” We show
the position space and Fourier space representations of a state
with wave number q = q̄ = 0.6627 in Figs. 2(a) and 2(b).
In position space, the pattern looks sinusoidal and oscillates
about a nonzero value. In Fourier space, there is a large peak
at q = q̄, a smaller one at q = 2q̄, and a very small one at
q = 3q̄. There is also a peak at q = 0 because of the nonzero
spatial average of u(x, t ). The presence of this peak has no
effect on our results. Henceforth, when we refer to a state with
wave number q, we mean that the Fourier transform of the
state has the largest peak at wave number q.

B. Previous results on selection in the stochastic SKS equation

The stochastic SKS equation reads

∂t u(x, t ) = F [u] + ζ (x, t ), (3)

where ζ (x, t ) is Gaussian uncorrelated noise satisfying
〈ζ (x, t )〉 = 0 and 〈ζ (x, t )ζ (x′, t ′)〉 = 2εδ(x − x′)δ(t − t ′). In
Ref. [15], Eq. (3) was integrated using a Fourier-spectral
method on a lattice consisting of N points, separated by a
distance h [20,21]. The system size is L = Nh. Equations of
evolution for the discrete Fourier transform (DFT) of the field
u(x, t ) were obtained from Eq. (3). The DFT is defined as

ũn(t ) =
N−1∑
m=0

um(t ) exp

[−2π imn

N

]
;

n = 0, 1, . . . , N/2 − 1,−N/2, . . . ,−1,

(4)

where um is the discretized field in position space, i.e., um =
u(x = xm = mh). Each n corresponds to a wave number qn
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(a) (b)

FIG. 2. (a) Steady-state configuration uq̄,det(x) for q = q̄ = 0.6627. (b) The discrete Fourier transform of uq̄,det(x), with peaks at q̄, 2q̄, and
3q̄. Higher harmonics are present but too small to be seen.

given by

qn = 2πn

L
= n
q. (5)

Because of the discreteness of the allowed wave numbers, our
estimate of the selected wave number contains an uncertainty
equal to the quantity 
q [15]. This uncertainty can be reduced
by increasing the system size L, as can be seen from Eq. (5).

The equation of motion for the nth Fourier component ũn

can be shown to be [15,20,21] (see also Appendix B)

dũn

dt
= −αũn + (2πn/L)2ũn − (2πn/L)4ũn

+ ˜̂Nn + ζ̃n,

(6)

where ˜̂Nn is the nth component of the DFT of the nonlinear
term (∂xu)2 defined by

˜̂Nn =
N−1∑
m=0

(∂xu)2
me−2π imn/N (7)

and (∂xu)2
m is the value of the square of the spatial derivative

of u at x = xm = mh. Let v(x) denote the function ∂xu(x).
The nth component of the DFT of v(x) can be shown to be
(Appendix B)

ṽn = 2π iñun/L; −N/2 + 1 < n < N/2 − 1, (8)

where ṽ0 and ṽN/2 are zero and we have assumed that N is
even.

Using the discrete convolution theorem, it can be shown
that the DFT of the term (∂xu)2 is (Appendix B)

˜̂Nn =
(

1

N

)(
2π

L

)2 N/2−1∑
n1=−N/2+1

ṽn1 ṽn−n1 . (9)

The system of Eqs. (6) was solved over very long times
using a semi-implicit integration scheme [22] with time step

t = 0.3. To find the selected wave number, we counted the
number of times a periodic state of wave number qn was
visited over a single long trajectory and plotted a histogram of
all the states visited. Dividing the number of hits in each state

by the total time of integration gave the fraction of time spent
in each state, which approaches the stationary probability
distribution of states if the run time is very long.

To do so, it was necessary to define the state of the system
in the presence of noise. A typical configuration u(x) and the
corresponding power spectrum |̃un| are shown in Figs. 3(a)
and 3(b). The noise broadens the peaks in the power spec-
trum, but one can still discern the fundamental harmonic and
second-harmonic peaks. In position space the field is irregular,
but it retains its cellular nature. Based on these observations,
we adopted the following criterion: the system was considered
to be in a state with wave number qn = 2πn/L at time t if

|̃un(t )| � 2|̃un′ (t )| for all n′ �= n, (10)

where both n and n′ are nonzero. This criterion ensured that
only those states were counted in which one mode was much
larger than all others, and highly disordered configurations
with several wave numbers having roughly the same Fourier
amplitude were disregarded.

With this standard for determining the instantaneous state
of the system, Eqs. (6) were integrated for 0.16 < α < αc.
This range of α was chosen because many complicated config-
urations, such as parity breaking states and breathing modes,
are possible when α is less than 0.16 [18] (see Appendix
B). Taking our computational resources into account, the
run time was fixed at T ≈ 2 × 108
t = 5 × 107 for all the
simulations. To obtain accurate stationary probability distribu-
tions of wave numbers, we defined a threshold noise strength
εmin(α, N, T ) above which the entire set of states could be
sampled and stationary histograms could be attained. The
arguments emphasize that εmin depends not only on α but also
on the run time and the system size. It is thus a practical choice
that is dictated by computational restraints. For example, in-
creasing the run time T while keeping α and N fixed leads
to a smaller value of εmin. On the other hand, increasing N
while keeping T fixed increases εmin. By fixing the system
size N and simulation time T , we determined εmin for each
α. Setting ε � εmin in Eqs. (6), stationary histograms were
obtained and the wave number with the maximum number of
hits was designated as the selected wave number, q�. As long
as the noise strength was above the threshold value, q� was
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(a)

(b)

FIG. 3. (a) Typical field configuration u(x, t ) for α = 0.20 and ε = 0.004. (b) Typical configuration in Fourier space as a function of the
integer n. The corresponding wave number is given by qn = 2πn/L.

found to be independent of initial conditions and the noise
strength.

A variety of initial conditions were tested, for example
by placing the system initially in the qc state, the q� state,
or a superposition of sinusoids with different wave numbers.
We also used some other criteria to define the instantaneous
state, such as the number of extrema (crests and troughs) in
the pattern. The histograms using this criterion yielded the
same selected wave number. Thus, q� was identified as a
characteristic property of the SKS equation. For brevity, we
will refer to the methodology of Ref. [15] as the “histogram
method.”

We tabulate the values of q� in Table I for convenience.

III. ANALYSIS OF DYNAMICS

The histograms of Ref. [15] were obtained by integrating
Eq. (3) once and computing the fraction of time spent in each
state. While this yields a stationary probability distribution of
wave numbers, it does not give any information about how the
stationary distribution is reached and why the selected wave
number is different from the critical one. It is clear that a
careful analysis of the time evolution of Eq. (3) is necessary to
understand how selection occurs.

For this purpose, it is natural to focus on the time evolution
of the structure function Sn(t ) = 〈|̃un(t )|2〉 = 〈̃un(t )̃u−n(t )〉,
where the angular brackets denote an average over indepen-
dent trajectories. Using Eq. (3), we can derive an equation for

TABLE I. Noise-selected wave numbers as found in Ref. [15].

Control parameter α q� (L = 2000)

0.24 0.6974 (n� = 222)
0.22 0.6754 (n� = 215)
0.20 0.6566 (n� = 209)
0.17 0.6377 (n� = 203)

the time derivative of Sn as follows:

Ṡn(t ) = 〈 ˙̃un(t )̃u−n(t )〉 + 〈̃un(t ) ˙̃u−n(t )〉. (11)

The dot denotes the time derivative. Using Eqs. (6) and (9),
we obtain

Ṡn(t ) = 2σnSn(t ) + 〈̃unζ̃−n〉 + 〈̃u−nζ̃n〉

+ 1

N

[
N/2−1∑

n1=−N/2+1

〈̃vn1 ṽ−n−n1 ũn〉

+
N/2−1∑

n1=−N/2+1

〈̃vn1 ṽn−n1 ũ−n〉
]
, (12)

where σn = −α + q2
n − q4

n is the linear operator appearing in
Eq. (3). We can split the sums over n1 as follows:

N/2−1∑
−N/2+1

=
−1∑

−N/2+1

+
N/2−1∑

1

. (13)

The term in square brackets in Eq. (12) then becomes

−1∑
n1=−N/2+1

〈̃vn1 ṽ−n−n1 ũn〉 +
N/2−1∑
n1=1

〈̃vn1 ṽ−n−n1 ũn〉

+
−1∑

n1=−N/2+1

〈̃vn1 ṽn−n1 ũ−n〉 +
N/2−1∑
n1=1

〈̃vn1 ṽn−n1 ũ−n〉.

(14)

The second and third terms of Eq. (14) are complex conju-
gates, as are the first and last terms. Since z + z� = 2 Re(z)
for a given complex number z, the above reduces to

N/2−1∑
n1=1

2 Re〈̃vn1 ṽ−n−n1 ũn〉 + (n → −n).
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TABLE II. List of important symbols and their meanings.

Symbol Meaning

T Time over which the number of hits in each state was measured in Ref. [15]
εmin(α, N, T ) Minimum noise needed to explore all states and obtain stationary

histograms in one trajectory of length T , for fixed α and N
q� = 2πn�/L Selected wave number when (ε � εmin) found in Ref. [15]
TS0 Duration of each trajectory in the ensemble of trajectories over which Sn is calculated

when ε = 0. Fixed at 1.2 × 105 = 4 × 105
t
TS Duration of each trajectory in the ensemble of trajectories over which Sn is calculated

for ε �= 0. Fixed at 1.2 × 106 = 4 × 106
t
qS0 = 2πnS0/L Most probable wave number identified as the maximum of the structure function Sn

at time TS0 for the noiseless case
qS (α, ε, TS ) = 2πnS (α, ε, TS )/L Most probable wave number identified as the maximum of the

structure function Sn at time TS for given noise strength ε

Substituting this expression into Eq. (12), we get the ex-
pression for the time derivative of the structure function,

Ṡn(t ) = 2σnSn(t ) + 2 Re 〈̃unζ̃−n〉

+
N/2−1∑
n1=1

[2 Re〈̃vn1 ṽ−n−n1 ũn〉 + (n → −n)]. (15)

We can make this expression more compact by defining

Sn,n1 = 2 Re〈̃vn1 ṽ−n−n1 ũn〉 (16)

and

Nn = 1

N

N/2−1∑
n1=1

(Sn,n1 + S−n,n1 ). (17)

Equation (15) then reduces to

Ṡn(t ) = 2σnSn(t ) + 2 Re〈̃unζ̃−n〉 + Nn. (18)

Finally, we note that from Novikov’s theorem [23], 〈̃unζ̃−n〉
is simply a constant proportional to ε. Therefore, this term
only contributes a constant to Eq. (18) and will henceforth be
ignored.

From Eq. (18), it is clear that the linear dynamics of the
structure function are identical to those of the deterministic
SKS equation, with twice the linear growth rate. To under-
stand the effects of the noise, we must therefore study the
nonlinear dynamics of Sn(t ) for various values of n. We do
this by integrating Eq. (3) for several independent noise real-
izations over a fixed time interval and averaging over all the
realizations to yield the time evolution of the structure func-
tion. Note that it is also possible to integrate Eq. (18) directly,
but one would require an appropriate truncation scheme to do
so. We do not pursue this method here.

We study two cases of interest. First, we obtain Sn(t ) with
random initial conditions and zero added noise, i.e., ε = 0.
Then we repeat the same procedure, but with ε �= 0. In each
case, we identify a dominant wave number as the one that
maximizes Sn at the end of the simulation, and we compare it
with the results of the histogram method [15]. The difference
in the dynamics of Sn for the two cases will shed light on the
nature of the selection process. The simulations of the struc-
ture function are carried out over time intervals that are shorter
than those of the histogram simulations, for reasons explained

below. These time scales and other important symbols are
given in Table II.

A. Noiseless dynamics with random initial conditions

We set α = 0.20, ε = 0, and use random initial conditions
drawn from a Gaussian distribution. The lattice consists of
N = 4000 points, separated by distance h = 0.5. We use the
same semi-implicit time integration scheme as Ref. [15] with
time step 
t = 0.3, and we integrate Eq. (3) from time t = 0
to time t = TS0 = 1.2 × 105 for 180 independent runs. The
subscript S0 signifies that we are calculating Sn with zero
noise. This calculation is computationally demanding, forcing
us to use a run time that is much shorter than that used in
Ref. [15] (see Table II).

For our parameters, the Eckhaus band is given by n−
E �

n � n+
E , with n−

E = 188 and n+
E = 246. This corresponds

to 0.589 � q � 0.767. The critical wave number is qc =
2πnc/L ≈ 1/

√
2, where nc = 225, and the selected wave

number determined from the histogram method is q� = 2π ×
n�/L = 0.6566, where n� = 209 [15].

In Fig. 4(a), we show the structure function for α = 0.20
and various values of n, including n = n� and n = nc. S221 and
S222 are found to have the largest long-time values, with S222

being slightly larger. Sn� and S210 decay to very small values,
as does Snc . In Figs. 4(b) and 4(c), we take a closer look at
the early and intermediate time dynamics. At very early times
[Fig. 4(b)], Snc grows faster than all the others, followed by
S220, S221, and S222. The growth of Sn� and S210 is much slower.
This is consistent with the fact that the structure function has
the same linear dynamics as the deterministic SKS equation.
Around t ≈ 180, we can see the growth of S220, S221, S222,
and Snc slowing down, marking the beginning of the nonlinear
regime. A short time later, the growth of Snc becomes slower
and slower [Fig. 4(c)]. S220, S221, and S222 overtake Snc , while
Sn� and S210 start decreasing. Qualitatively, this occurs because
the nonlinear terms (which oppose growth) in the equation
of motion for Sn� and S210 exceed the linear terms (which
favor the growth), rendering the time derivatives dSn�/dt and
dS210/dt negative. Thus, Sn� and S210 decay to zero.

We conclude that starting from random initial conditions,
the system is most likely to end up in a periodic state with
wave number 2π × 221/L or 2π × 222/L. In other words,
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(a) (b) (c)

FIG. 4. (a) Time evolution of Sn(t ) with random initial conditions and ε = 0. (b) The early time regime. (c) Intermediate time regime.

these are the states that are most likely to be realized for typ-
ical initial conditions, if the evolution is purely deterministic.
We use the symbol nS0 to refer to the n = 222 state, meaning
that it is the wave number for which Sn is maximum when
ε = 0.

On the other hand, the state with n = n�, which was the
noise-selected state in Ref. [15], has a very small probability,
as seen from the fact that Sn� is negligible at the end of
integration. The same is true for n = 210.

B. Stochastic dynamics

Next, we repeat the above procedure with ε �= 0, using
random initial conditions as in the previous subsection. For
α = 0.20, εmin was found to be approximately equal to 0.003
[15]. Here, we set εmin = 0.004, which is slightly greater than
εmin. To get a sense of how strong this noise is, we show a
scatter plot of the wave number with the maximum power at
each time for a single run. The system initially undergoes tran-
sitions between several disordered states at different Eckhaus
stable wave numbers. The states at the edges of the Eckhaus
band are very unstable. After about 105 time steps, the system
enters a dynamical regime in which only a few states are
visited. This is illustrated in Fig. 5(a) over the time interval
70 000 � t � 205 000. There are rapid transitions among the
n = 209, 210, and 211 states, along with rare transitions
to n = 212. After t ≈ 150 000, the n = 211 state is visited
less frequently, and frequent transitions to n = 208 occur. We
show an enlarged view of the window between t = 168 000
and 182 000 in Fig. 5(b). We also show a spatiotemporal

portrait of u(x) in Fig. 5(c), although the transitions are hard
to see in position space.

We now compute Sn(t ) by averaging over 180 integrations
of Eq. (3). This time, the integration runs from t = 0 to t =
TS = 1.2 × 106. This is an order of magnitude larger than TS0

because the time taken for one dominant mode to emerge from
several competing ones is larger when the noise is nonzero, as
we will see in Fig. 6. We want to determine the state with the
maximum value of the structure function at time TS , denoted
by nS . The results are shown in Fig. 6(a). We now see that Sn�

and S210 attain the largest long-time values, while S220, S221,

and SnS0 decay to small (but nonzero) values. Snc is always
very small.

Figure 6(b) shows the evolution of Sn(t ) at early times.
S220 and S210 are seen to grow fastest even in this early time
regime, followed by Snc . Clearly, our chosen ε is so large
that the linear regime is obscured in our simulation. After
t ≈ 80 [Fig. 6(c)], the growth of S220, S221, SnS0 , and Snc slows
down, while Sn� and S210 keep growing. This suggests that the
nonlinear terms in Eq. (18) for n = 220, 221, 222 (nS0) and
n = nc surpass the linear terms in the presence of the noise.
These modes decrease at intermediate times before attaining
a small steady-state value at t = TS . For wave numbers near
n�, the nonlinear term does not exceed the linear term, and
the structure function simply saturates at a large value at long
times. The n = 209 state is the one that maximizes Sn, and
hence nS = 209. For this noise strength, nS is identical to
n�.

To summarize, for an ensemble of noiseless trajecto-
ries starting from random configurations, the most probable
wave number nS0 is very close to nc. The corresponding

(a) (b) (c)

FIG. 5. (a) Maximum of power spectrum as a function of time, with α = 0.20 and ε = 0.004. (b) Magnified view of the time interval
168 000 � t � 181 000. (c) Temporal evolution of u(x, t ) for 0 � x � 500 over the time interval 168 000 � t � 181 000.
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(a) (b) (c)

FIG. 6. (a) Sn as a function of time t when ε = 0.004. (b) Early time dynamics. (c) Intermediate time dynamics.

component of the structure function grows rapidly in the
nonlinear regime, while the component corresponding to n�

decays in the nonlinear regime. However, when ε � εmin, the
situation is reversed and Sn� grows nonlinearly, while SnS0

decays. This is consistent with the findings of Ref. [15], which
were obtained from long-time averaging of the number of hits
in each state. Before attempting to explain this reversal of
dynamics, however, we investigate how the structure function
dynamics are changed by the magnitude of ε.

C. Effect of varying the noise strength

We vary the noise strength over several orders of magni-
tude and determine nS at time TS = 1.2 × 106, as shown in
Fig. 7. We study the following two cases separately: (i) strong
noise, i.e., ε � εmin; and (ii) weak noise, ε < εmin. Recall that
εmin was determined in Ref. [15] for one run of duration T .

1. High noise strength

This case is represented by the last three points in Fig. 7.
As long as ε � εmin, the most probable wave number obtained
from the structure function approach, i.e., nS , is the same as
selected wave number n� obtained from the histogram method
[15]. It is independent of noise strength and initial conditions.
In a sense, for all ε � εmin, there is an intrinsic wave number

FIG. 7. nS (ε, TS ) obtained from the time evolution of Sn for dif-
ferent ε. For ε � εmin, nS is a constant, equal to n�. For ε < εmin, a
stationary state cannot be reached in time TS . In this case, nS depends
on ε and TS .

unique to the SKS equation, which can be obtained by time
averaging [15] as well as trajectory averaging.

2. Low noise strength

Below εmin, nS increases slowly to values above n�, as ε

is decreased. However, the evolution of Sn(t ) is slow in this
case and does not reach a steady state in time TS . To see this,
we perform a simulation for ε slightly less than εmin using
the histogram method of Ref. [15]. We choose ε = 0.0027 for
which the structure function approach gives a most probable
wave number nS = 211; cf. Fig. 7. The histograms at various
times are shown in Fig. 8. After some initial transients, the
system enters the n = 213 state, and then transitions to the
n = 212 state at time t = 4000, where it remains stuck for a
long time. At t = 1.6 × 107 (stars in Fig. 8), the system makes
frequent jumps to the n = 210 and 211 states, but the peak of
the histogram stays at n = 212. By t = 3.9 × 107, the system
is in the n = 210 state for most of the time, and a prominent
peak appears at this wave number (pluses in Fig. 8). Just
before the end of the integration at t = T , the histogram has
a peak at n = n� = 209, but it is still changing with time. It is
then reasonable to conclude that the histogram is approaching
a stationary form peaked about n = n� for ε = 0.0027. Since
the structure function approach gives a dominant wave num-
ber of nS = 211 > n� for the same ε at t = TS , we infer that
it has not yet reached a stationary state at t = TS . Thus, we
can no longer find a unique “selected wave number” that is

FIG. 8. Histograms at various times during one long run from
t = 0 to t = T , with T = 5 × 107. Here ε = 0.0027 < εmin.
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(a) (b)

FIG. 9. (a) Sn(t ) when the noise is turned off at t = 106. (b) Typical histograms at various times for a single run.

identical for time averages and trajectory averages. Instead,
the structure function approach yields the “most probable” or
“dominant” wave number qS (ε, TS ), which need not be equal
to q�. The arguments in parentheses emphasize that qS is a
function of ε and TS when ε < εmin, and it does not represent
a characteristic property of the SKS equation. As we decrease
ε further, it becomes harder to reach a steady state with either
the histogram method or the structure function method. In par-
ticular, the results of the histogram method become strongly
dependent on initial conditions.

D. Turning off the noise at intermediate times

We have also investigated what happens if the noise is
turned off at some late time. We obtain the time evolution of
Sn for α = 0.20 with ε = 0.004, but set ε to zero at t = 106.
In Fig. 9(a), we can see that after the noise is turned off, the
system settles into one of the deterministic steady states with
n = 208, n� or 210. The n = n� state continues to be more
probable than n = 208 and 210.

On the other hand, if we use the histogram method, turning
off the noise at some time will make the system settle in the
deterministic state that is closest to its configuration at the
instant the noise was turned off. We show this for a typical
trajectory [Fig. 9(b)]. At t = 106, when the noise is just turned
off, the maximum of the histogram is at n = n�. However,
the configuration at that particular instant is closest to the
n = 208 state. Hence, as soon as the noise is turned off, the
system collapses into the n = 208 state. Following this, the
histogram develops a peak at n = 208 that gets progressively
sharper with time. If we were to repeat this simulation again,
the system could settle into a different state, depending on the
configuration when the noise is turned off.

In summary, we have seen that the noise alters the non-
linear behavior of our model in a nontrivial manner. Its main
effect is to make configurations with wave number less than qc

more probable. For ε � εmin, there is a selected wave number
that is an intrinsic property of the SKS equation. For ε < εmin,
neither a stationary histogram nor a stationary structure func-
tion can be obtained, and one can only find a most probable
wave number for a given noise amplitude, time, and averaging
procedure.

Irrespective of whether ε is greater than or less than εmin,
the dominant wave number in Fig. 7 is always less than the
critical wave number. In the following sections, we will focus
on understanding why this is the case.

IV. MECHANISM OF WAVE-NUMBER SELECTION

To understand how the noise shifts the dominant wave
number to values less than qc, it is useful to plot

√
Sn versus n

at t = TS , as shown in Fig. 10.
√

Sn is large for n−
E � n � n+

E
as well as for n values lying slightly outside this interval.
However, the inset of Fig. 10 shows that it is large even
for n � 100, which is far outside the Eckhaus stable band.
Moreover, it increases as n decreases, becoming compara-
ble to the second-harmonic peak. The modes with n < n−

E
quickly decay to zero in purely deterministic evolution (with
the exception of n = 0, which we disregard) and cannot grow
without noise. We hypothesize that this effect is responsible
for the observations of the previous section.

To test this hypothesis, we remove the effect of the small
wave numbers by repeating the stochastic simulations, but
this time setting the modes with n lying between 1 and 50
to zero at each time step. This is equivalent to suppressing
wave numbers between 0.003 and 0.157. We retain the n = 0
mode because it is a feature of the deterministic problem. We

FIG. 10. Long-time noise-averaged power spectrum for α =
0.20 and ε = 0.004. Inset: amplification of modes near n = 0.
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(a) (b)

FIG. 11. (a) Stationary probability distribution of wave numbers for α = 0.20 and ε = 0.004 obtained from one long trajectory, but with
modes between n = 1 and 50 ignored. The new selected wave number corresponds to n = 223 as opposed to n = 209 in the original dynamics.
(b) Time evolution of Sn. The state with n = 209, which was selected in the unmodified dynamics, is now highly improbable at long times.
The most dominant modes are n = 222, 223, and 224. This is clearly evident in spite of the noisiness.

obtain the selected wave number from the histogram method
of Ref. [15] and the time evolution of Sn(t ) as in Sec. III.

We see immediately that the histogram for the “modified”
dynamics is peaked about a different selected wave number
q�′, which is very close to qc [Fig. 11(a)]. On the other hand,
the structure function dynamics in Fig. 11(b) indicate that the
n = n� mode decays to zero, while the n = 222, 223, and
224 modes grow to large values. The dynamics are extremely
noisy in this case, even after averaging over 180 runs, so that
it is impossible to determine a single selected wave number
from the structure function. In spite of this, it is clear that
the suppression of modes near the critical one seen in the
original dynamics (Fig. 6) is a direct consequence of the
large nonlinear excitations at small n. If these excitations are
removed, the most probable wave number is much closer to
the critical wave number.

In the following subsections, we perform a detailed numer-
ical analysis of the nonlinear terms in Eq. (18) for n � n−

E as
well as modes close to the critical mode, for α = 0.20 and
ε = 0.0001. We use a small noise strength so that we are
able to distinguish between the linear and nonlinear regimes.
For this noise strength, the most probable wave number is
nS (0.0001, TS ) = 215. We will show that the critical mode
initially drives the nonlinear growth of the small n modes.
When the small n modes become large, they cause the decay
of the modes near nc. We will then consider the effect of the
small n modes on the n = nS mode and show that the small
n modes drive the growth of this mode (or the n� mode when
ε � εmin).

A. Nonlinear growth of long-wavelength modes and
consequences for Eckhaus modes

We write Eq. (18) for small n, disregarding terms like
〈̃unζ̃−n〉 and 〈̃u−nζ̃n〉. For concreteness, we focus on the case
n = 1. The analysis is similar for all modes with n � n−

E ,

Ṡ1(t ) = 2σ1S1(t ) +
N/2−1∑
n1=1

(S1,n1 + S−1,n1 ) = 2σ1S1(t ) + N1.

(19)

We know from Sec. III that the effect of the noise is sig-
nificant only in the nonlinear regime. The nonlinear term in
Eq. (19) is

N1 =
N/2−1∑
n1=1

(S1,n1 + S−1,n1 )

= S1,1 + S−1,1 + S1,2 + S−1,2 + · · ·
+ S1,n−

E
+ S−1,n−

E
+ · · · + S1,n+

E
+ S−1,n+

E︸ ︷︷ ︸
Eckhaus stable modes

+ · · · . (20)

We expect that the largest terms in Eq. (20) are the ones
with n−

E � n1 � n+
E . These terms represent the interactions

between the n = 1 mode and the Eckhaus stable modes. Out
of these terms, the terms with n1 close to nc have the largest
magnitude at the start of the nonlinear regime. From the def-
inition of S±n,n1 , we see that the n = 1 mode is coupled to
the n = nc mode when n1 = nc − 1, nc or nc + 1. These terms
evaluate to

S1,nc + S−1,nc + S1,nc−1 + S−1,nc+1. (21)

We further note that S1,nc = S−1,nc+1 and S−1,nc = S1,nc−1.
Hence, the nonlinear terms coupling n = 1 with n = nc are

2(S1,nc + S−1,nc ) = 4(2π/L)2[nc(nc + 1)Re〈̃unc ũ−nc−1ũ1〉
+ nc(nc − 1)Re〈̃unc ũ−nc+1ũ−1〉], (22)

where we have used Eqs. (8) and (9) for the nth component of
the DFT of the spatial derivative ∂xu. These terms represent
the net effect of the critical mode on the time evolution of S1.

At the same time, the n = 1 mode contributes to the equa-
tion of motion of Snc , which is the component of the structure
function corresponding to the critical mode. The equation of
motion for Snc is

Ṡnc (t ) = 2σnc Snc (t ) + Nnc . (23)
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(a) (b) (c)

FIG. 12. (a) Terms in N1 that contain ũnc and their sum. (b) Terms in N1 that contain ũnS and their sum. (c) Linear and nonlinear parts of
Eq. (19). The dash-dotted curve is their sum, i.e., the time derivative of S1.

As before, we can write the nonlinear term Nnc as

Nnc =
N/2−1∑
n1=1

(Snc,n1 + S−nc,n1 )

= Snc,1 + S−nc,1 + Snc,2 + S−nc,2︸ ︷︷ ︸
long-wavelength modes

+ · · ·

+ Snc,n
−
E

+ S−nc,n
−
E

+ · · · + Snc,n
+
E

+ S−nc,n
+
E

+ · · · .

(24)

The terms in Eq. (24) depending on ũ1 are

Snc,1 + S−nc,1 + S−nc,nc−1 + S−nc,nc+1. (25)

Again, from the definition of S±n,n1 , it follows that Snc,1 =
S−nc,nc+1 and S−nc,1 = S−nc,nc−1. The nonlinear terms of
Eq. (25) then add up to

2(Snc,1 + S−nc,1) = 4(2π/L)2

×[(nc + 1) × Re〈̃u1ũ−nc−1ũnc〉
− (nc − 1) × Re〈̃unc−1ũ1ũ−nc〉].

(26)

Comparing Eqs. (22) and (26), we see that S1,nc and Snc,1

are both proportional to Re〈̃u1ũ−nc−1ũnc〉, and they have the
same sign. Similarly, S−1,nc and S−nc,1 are both proportional
to Re〈̃unc ũ−nc+1ũ−1〉, but they have opposite signs. We nu-
merically evaluate each of these quantities for α = 0.20 and
ε = 0.0001 < εmin.

First, we plot S1,nc and S−1,nc as well as their sum as a
function of time in Fig. 12(a). After about t = 80, both S1,nc

and S−1,nc (and hence their sum) are positive. Thus, the net
contribution of the critical mode to the equation of motion of
S1 is positive.

A short time later, Eckhaus modes further from nc become
important, and other terms in Eq. (20) become large. As an
example, we show the effect of the n = nS mode on the time
evolution of S1 in Fig. 12(b). We see that S1,nS is positive, but
S−1,nS is negative. However, their sum is almost always posi-
tive, although it is smaller than the corresponding contribution
from the critical mode.

Having studied some of the typical terms arising in
Eq. (20), we plot the full nonlinear term N1 and the linear
term, i.e., 2σ1S1, in Fig. 12(c). In the same plot, we show
the total time derivative of S1, which is simply the sum
2σ1S1 + N1. The linear term 2σ1S1 is always negative because

the growth rate σ1 is negative and S1 is positive by defini-
tion. The total nonlinear term N1 is always positive. Most
importantly, starting at t ≈ 80, the magnitude of the nonlinear
term becomes slightly greater than that of the linear one, and
the sum of the two is positive (green dash-dotted line). Note
that this is around the same time that the nonlinear terms in
dS1/dt arising from the critical mode become nonzero. This
shows that the interaction between the n = 1 mode and the
critical mode is responsible for the initial increase in S1. Later,
other Eckhaus modes become active and sustain the growth of
S1 until t ≈ 100. Shortly after, the linear and nonlinear parts
balance each other and S1 reaches a steady nonzero value.

Let us now return to Eq. (26). We plot each of the terms
Snc,1 and S−nc,1, along with their sum, in Fig. 13(a). We expect
Snc,1 to be positive and S−nc,1 to be negative, as discussed
above. This is indeed what we observe. The sum of the two
is negative, and we conclude that the total contribution of
the n = 1 mode to the time derivative of Snc is negative.
Figures 12(a) and 13(a) and the discussion above have an
important implication: The nonlinear couplings between the
n = 1 and n = nc modes assist the growth of S1, but oppose
the growth of Snc .

The next piece of the puzzle is to understand why the n =
nS mode persists, even though the critical mode and modes
close to it decay. In analogy with Eq. (26), the net effect of the
n = 1 mode on the evolution of the n = nS mode is

2(SnS,1 + S−nS ,1) = 4

(
2π

L

)2

[(nS + 1) × Re〈̃u1ũ−nS−1ũnS 〉

− (nS − 1) × Re〈̃u1ũnS−1ũ−nS 〉]. (27)

The time evolution of SnS,1 and S−nS,1 along with their sum
is shown in Fig. 13(b). This time, S−nS ,1 becomes positive
after t ≈ 230, and the sum SnS ,1 + S−nS ,1 is positive. Thus, the
nonlinear interactions between n = 1 and n = nS contribute
positive terms to the time derivative of SnS and hence assist
the growth of the n = nS mode.

We now evaluate and plot the full right-hand side of
Eq. (12) for different values of n in the Eckhaus band. In gen-
eral, we see that the time derivative of the structure function
becomes more and more negative as n is increased beyond nc.
We illustrate this for n = 232 (solid blue line) in Fig. 13(c).
For n = nc, the total time derivative dSnc

dt dips slightly below
zero around t ≈ 200, and remains negative. Note that this
occurs at about the same time that the contribution of the
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(a) (b) (c)

FIG. 13. (a) Snc,1 and S−nc,1 as a function of time. Their sum represents the total contribution of ũ1 to Ṡnc and is negative after t ≈ 180.
(b) SnS ,1 and S−nS ,1 as a function of time. Their sum represents the total contribution of ũ1 to ṠnS and is always positive. (c) Ṡn = 2σnSn + Nn

as a function of time for various values of n. It is negative for n = nc and n = 232 after a particular time, but positive for nS and n�.

n = 1 mode to dSnc/dt becomes negative [see the green curve
in Fig. 13(a)]. This suggests that the growth of the small n
modes in the nonlinear regime is directly responsible for the
damping of the critical mode.

On the other hand, the time derivative of SnS stays non-
negative throughout. We also show the time derivative of Sn�

(dash-dotted line). dSn�/dt is non-negative for almost all t , but
its magnitude is less than that of dSnS /dt , which explains why
nS = 215 �= n� for ε = 0.0001.

B. Significance of noise strength and control parameter in
exciting small wave-number modes

The extent to which the modes with n < n−
E are excited by

the noise depends on ε. To understand this dependence, we
again focus on S1. We compute S1(t = TS ) for a wide range of
ε and plot it in Fig. 14. The value of S1(t = TS ) increases as
ε is increased. The increasing strength of the n < n−

E modes
as ε increases drives nS (ε, TS ) closer and closer to n�, with nS

becoming equal to n� when ε � εmin. It would be interesting
to examine the dependence of all small n modes on the noise
strength, as well as on the value of α. This is beyond the scope
of the present paper and is saved for future work.

We can also provide a qualitative explanation for why the
selected wave number decreases as we decrease α. We know
that the width of the Eckhaus band increases as α decreases.
Hence, the evolution equation for S1 contains more terms that
mix ũ1 with Eckhaus stable modes. Although we are unable to

FIG. 14. S1(t = TS ) for different noise strengths, and α = 0.20.

give a rigorous mathematical proof, our simulations show that
the larger number of mixing terms causes a larger excitation
of the (n < n−

E ) modes.
We repeat the simulations of Sec. IV A for α = 0.17 and

the same noise strength (ε = 0.0001). We show the linear and
nonlinear terms in Ṡ1, as well as their sum in Fig. 15. The
linear term is negative while the nonlinear term is positive,
as in Fig. 12(a). The sum of the linear and nonlinear terms is
positive at short times. Comparing the scale of the vertical
axis in Fig. 12(c) with that of Fig. 15 shows that Ṡ1 (and
hence S1) is larger for α = 0.17 than for α = 0.20, for the
same noise strength. This in turn, ensures that modes near the
critical mode are damped to a larger extent as α is decreased
below αc. As a result, nS decreases below nc as α is decreased
below αc for fixed noise strength.

V. CONCLUSIONS

In this work, we have identified the mechanism of
noise-induced wave-number selection in a simple model of
pattern formation. We have shown that the noise inhibits the
nonlinear growth of modes near the critical mode, and en-
hances the growth of modes smaller than the critical wave
number. The amplification of very long-wavelength perturba-
tions is responsible for the above effects. We have shown that
if long-wavelength excitations are suppressed, the selected
wave numbers are close to the critical wave number. Together,

FIG. 15. Linear and nonlinear terms in d
dt S1 and their sum for

α = 0.17 and ε = 0.0001.
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these findings indicate that the coupling between modes with
small wave numbers and the Eckhaus stable modes is the most
important factor in determining the selected state.

It is important to address some shortcomings of our numer-
ics. First, we are unable to draw definitive conclusions about
selection in the weak noise regime for reasons explained in
Sec. III C. This is purely due to finite computational resources.
If we somehow increase T , it is possible that a stationary his-
togram peaked at n� could be attained for very small values of
ε. Alternatively, it is possible that the dominant wave number
determined from the structure function, i.e., nS , approaches
n� for small ε as TS → ∞. With our current resources and
algorithms, it is not possible to confirm these hypotheses
numerically, and we have to restrict our attention exclusively
to the strong noise regime.

Secondly, the evolution of the structure function is very
noisy, in spite of averaging over 180 independent trajectories.
On the other hand, the histograms of Ref. [15] are quite
smooth. This is because the histograms were obtained by
determining the state of the system at each time step over
one trajectory of length ∼108
t , which is equivalent to
taking 108 independent measurements of the state of the
system. In contrast, for the structure function approach, one
needs to find the ensemble average of the quantity |̃un(t )|2,
which fluctuates rapidly from one time step to the next. In
addition, computational restrictions prevent us from running
more than 180 independent trajectories. Thus, the temporal
averaging over a long run leads to very smooth statistics,
while averaging over trajectories does not. However, in
spite of the noisiness, one can obtain new insights into the
mechanism of wave-number selection from the structure
function dynamics that cannot be gained solely from the
stationary histograms of our previous work.

Finally, it is worth mentioning that the large noise-induced
nonlinear excitations at small wave numbers seen here may be
related to the existence of chaotic solutions as α → 0. These
chaotic solutions are a distinctive feature of the SKS equation,
and more studies of the stochastic SKS equation are needed
in the α < 0.16 regime. It would be interesting to investigate
noise-driven selection in other nonpotential models that do not
possess chaotic solutions.

Another promising direction is to explore stochastic dy-
namics in higher dimensions and in the more realistic
situations described in the Introduction. We also anticipate
that the large noise strengths used here, which may be unphys-
ical for some systems, will be relevant to biological processes,
where the noise is known to be large [24].

APPENDIX A: SOLVING PARTIAL DIFFERENTIAL
EQUATIONS IN FOURIER SPACE

We derive the appropriate discrete Fourier transforms of
the various derivatives of the field u(x, t ) needed for the SKS
problem. We closely follow the treatment given in Ref. [21] of
the manuscript. The field u(x, t ) is defined for 0 � x � L with
periodic boundary conditions u(x + L, t ) = u(x, t ) so that

u(x, t ) =
∞∑

n=−∞
ũn(t )e

2π inx
L (A1)

with the Fourier coefficients given by

ũn(t ) = 1

L

∫ L

0
e− 2π inx

L u(x, t )dx. (A2)

Now, we approximate u(x, t ) by N discrete samples um(t ) =
u(mL/N, t ) for m = 0, 1, . . . , N − 1, and the ũn(t ) are ap-
proximated using the discrete Fourier transform (DFT),
defined as

ũn(t ) =
N−1∑
m=0

um(t )e− 2π inm
N . (A3)

The values of um(t ) can be obtained from the inverse discrete
Fourier transform (IDFT),

um(t ) = 1

N

N−1∑
n=0

ũn(t )e
2π inm

N . (A4)

(The placement of the prefactor 1/N is a matter of convention,
and we have chosen the convention consistent with NumPy’s
implementation of the DFT.) The ũn’s can be obtained from
the um’s and vice versa in O(N lnN ) operations using the
fast Fourier transform (FFT). In what follows, we will not
explicitly indicate the dependence on t for convenience. It

(a) (b)

FIG. 16. Sn as a function of time for α = 0.24. (a) ε = 0.0. (b) ε = 0.0005.
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(a) (b)

FIG. 17. Sn as a function of time for α = 0.22. (a) ε = 0.0. (b) ε = 0.0025.

should be understood that the um’s and ũn’s are functions of
time.

To compute derivatives such as u′(x), we need more than
just the discrete samples um. We need to obtain a contin-
uous interpolation between sample points and differentiate
this interpolation. We use a technique called trigonometric
interpolation. First, we note that replacing n in Eq. (A14) by
n + lN , where l is an integer, leaves the sample values um un-
changed. However, it changes the values of the derivatives of u
between the sample points, because it causes u(x) to oscillate
between sample points. This is called aliasing. To resolve this
ambiguity, we assume a more general interpolation obtained
by substituting m = Nx/L into Eq. (A14) and allowing an
arbitrary aliasing integer ln for each ũn,

u(x) = 1

N

N−1∑
n=0

ũne
2π i
L (n+lnN )x, (A5)

where the ln’s are integers. We now impose the condition that
the interpolating function undergoes “minimal oscillation”
between sample points. This is equivalent to minimizing the

spatial average of the squared slope 1
L

∫ L
0 |u′(x)|2dx. Substi-

tuting Eq. (A5) into this expression and simplifying gives

1

L

∫ L

0
|u′(x)|2dx =

(
2π

LN

)2 N−1∑
n=0

|̃un|2(n + lnN )2. (A6)

We see that the average squared slope is minimized by those
ln’s that minimize (n + lnN )2 for each n. For 0 � n < N/2,
this quantity is minimum for all ln = 0. For N/2 < n < N ,
the quantity is minimized by setting all the ln’s to −1. The
situation is more complicated when N is even and n = N/2
because now the quantity (n + lnN )2 can be minimized by
either lN/2 = 0 or −1. To overcome this issue, we split
the n = N/2 term between the cases ln = 0 and −1 in the
form ũN/2[veiπNx/L + (1 − v)e−iπNx/L]. The contribution of
this term to the mean-squared slope is

1

N2

(πN

L

)2

|̃uN/2|2
[
v2 + (1 − v)2

]
, (A7)

(a) (b)

FIG. 18. Sn as a function of time for α = 0.17. (a) ε = 0.0. (b) ε = 0.005.
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(a) (b) (c)

FIG. 19. nS (ε, TS ) for (a) α = 0.24. (b) α = 0.22. (c) α = 0.17.

which is minimized by v = 1/2. The minimum oscillation
interpolation of u(x) is then

Nu(x) = ũ0 +
∑

0<n<N/2

ũne2π inx/L

+
∑

N/2+1<n<N

ũne2π i(n−N )x/L + ũN/2

× cos(πNx/L). (A8)

From this expression, the spatial derivatives can be calculated
easily. For example, differentiating Eq. (A8) gives

Nu′(x) =
∑

0<n<N/2

2π in

L
ũne+ 2π inx

L

+
∑

N/2+1<n<N

2π i(n − N )

L
ũne

2π i(n−N )x
L

− πN

L
ũN/2 sin

(πNx

L

)
. (A9)

Evaluating at the sample points x = mL/N , we get

Nu′
m =

∑
0<n<N/2

2π in

L
ũne+ 2π inm

N

+
∑

N/2+1<n<N

2π i(n − N )

L
ũne

2π i(n−N )m
N (A10)

since the derivative of the N/2 term vanishes at the sample
points. Noting that e

2π i(n−N )m
N = e

2πnm
N , we get

Nu′
m =

∑
0<n<N/2

2π in

L
ũne+ 2π inm

N

+
∑

N/2+1<n<N

2π i(n − N )

L
ũne

2π inm
N . (A11)

We set u′
m = vm and let the DFT of u′

m be denoted by ṽn. Then,
comparing with the definition of the IDFT, Eq. (A14), it is
seen that

ṽn = 2π in

L
ũn if 0 < n < N/2

= 2π i(n − N )

L
ũn if N/2 + 1 < n < N

= 0 if n = 0 or n = N/2.

(A12)

This can be written compactly as

ṽn = 2π in

L
ũn; n = 1, . . . , N/2 − 1,−N/2 + 1, . . . ,−1

(A13)
with ṽ0 and ṽN/2 equal to zero as before. To maintain consis-
tency, it is also customary to write Eq. (A14) as

um(t ) = 1

N

N/2−1∑
n=−N/2

ũn(t )e
2π inm

N . (A14)

(a) (b) (c)

FIG. 20.
√

Sn as a function of n for (a) α = 0.24, ε = 0.0005. (b) α = 0.22, ε = 0.0025. (c) α = 0.17, ε = 0.005. Inset: excitation of
small wave-number modes.
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(a) (b)

FIG. 21. (a) Long-time probability distribution of final states for α = 0.24, ε = 0.0005 with the first 50 modes suppressed. (b) Sn as a
function of time.

Similarly, the second and fourth spatial derivatives are

u′′
m = −

N/2−1∑
n=−N/2

(
2πn

L

)2

ũne
2π imn

N (A15)

and

u′′′′
m =

N/2−1∑
n=−N/2

(
2πn

L

)4

ũne
2π imn

N . (A16)

We can now derive the DFT of the nonlinear term in the
SKS equation, i.e., (∂xu)2 = v2

m. From Eq. (7), we have

˜̂Nn =
N−1∑
m=0

(∂xu)2
me−2π imn/N

=
N−1∑
m=0

v2
me−2π imn/N .

(A17)

Using the fact that vm = 1
N

∑N/2−1
n=−N/2 ṽne

2π inm
N , we get

˜̂Nn = 1

N2

N−1∑
m=0

exp [−2π inm/N]

×
N/2−1∑

n1=−N/2

ṽn1 exp [2π in1m/N]

×
N/2−1∑

n2=−N/2

ṽn2 exp [2π in2m/N]. (A18)

Performing the sum over m yields Nδn1+n2−n. The end result
is

˜̂Nn = 1

N

N/2−1∑
n1=−N/2

ṽn1 ṽn−n1 . (A19)

(a) (b)

FIG. 22. (a) Long-time probability distribution of final states for α = 0.22, ε = 0.0025 with the first 50 modes suppressed. (b) Sn as a
function of time.
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(a) (b)

FIG. 23. (a) Long-time probability distribution of final states for α = 0.17, ε = 0.005 with the first 50 modes suppressed. (b) Sn as a
function of time.

APPENDIX B: DETERMINING THE APPROPRIATE
RANGE OF α

As mentioned in the main manuscript, a variety of com-
plicated configurations become possible when the second
harmonic becomes linearly unstable along with the funda-
mental harmonic [18]. To determine the value of α when this
occurs, we set the growth rates for a perturbation with wave
number q and a perturbation with wave number 2q to zero for
α = α2,

σ (q) = −α2 + q2 − q4 = 0 (B1)

and

σ (2q) = −α2 + 4q2 − 16q4 = 0. (B2)

Solving these equations simultaneously gives α2 = 4/25 =
0.16 and q = 1/

√
5. Accordingly, we restrict our study to

0.16 < α < 0.25.

APPENDIX C: SIMULATIONS FOR OTHER VALUES OF α

Here we show our results for other values of the control
parameter α. ε is greater than εmin in all cases and hence
nS = n�. In Figs. 16, 17, and 18, we show the time evolution
of Sn(t ) with and without noise for α = 0.24, 0.22, and
0.17. For α = 0.24 (Fig. 16), nS0 = 224 and n� = 222. For
α = 0.22 (Fig. 17), nS0 = 222 and n� = 215. Similar results
are seen for α = 0.17 (Fig. 18).

In Fig. 19, we show nS (ε, TS ) as a function of ε for α =
0.24, 0.22, and 0.17.

Next we show the square root of the stationary structure
function Sn versus n for the above values of α (Fig. 20). As
shown in the main manuscript, there is a large amplification
of modes near n ≈ 0. The amplification is larger for smaller
values of α.

Finally, we show how the stationary histograms and time
evolution plots are modified when the modes between n = 1
and 50 are suppressed; see Figs. 21, 22, and 23.

APPENDIX D: MORE RESULTS FROM SEC. IV

The nonlinear growth of other small wave-number modes
can be explained using a similar argument. For example, we
also computed the time derivatives of S25 and S50. These are
also positive initially, and approach zero at late times, leading
to a nonzero value of S25 and S50, as seen in Fig. 24.

Finally, we give a heuristic explanation for why Sn de-
creases as n approaches n−

E from the left. According to the
discussion above, initially, the most important nonlinear terms
in the equation for Ṡ25 are the ones involving ũ±nc . These terms
are proportional to Re〈̃u25ũnc ũ−250〉 and Re〈̃u−25ũ−200ũnc〉. In
contrast, the corresponding terms in the equation for Ṡ1 are
proportional to Re〈̃u1ũ224ũ−nc〉 and Re〈̃u−1ũ226ũnc〉. On aver-
age, |̃u224| and |̃u226| are likely to be larger than |̃u200| and
|̃u250| (at the end of the linear regime). This means that the
nonlinear terms in Ṡ1 for a fixed n1 are generally larger than
the corresponding terms in Ṡ25 and Ṡ50. The overall result is
that Ṡ25 and Ṡ50 are always smaller than Ṡ1. In general, we
observe that |Ṡn| decreases as n approaches the Eckhaus band
from the left. For this reason, Sn in Fig. 10 decreases with n
for n < n−

E .

FIG. 24. dSn/dt with n = 25 and 50 for α = 0.20 and ε = 0.0001.
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