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Effects of stickiness in the classical and quantum ergodic lemon billiard
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We study the classical and quantum ergodic lemon billiard introduced by Heller and Tomsovic in Phys. Today
46(7), 38 (1993), for the case B = 1/2, which is a classically ergodic system (without a rigorous proof) exhibiting
strong stickiness regions around a zero-measure bouncing ball modes. The structure of the classical stickiness
regions is uncovered in the S-plots introduced by Lozej [Phys. Rev. E 101, 052204 (2020)]. A unique classical
transport or diffusion time cannot be defined. As a consequence the quantum states are characterized by the
following nonuniversal properties: (i) All eigenstates are chaotic but localized as exhibited in the Poincaré-
Husimi (PH) functions. (ii) The entropy localization measure A (also the normalized inverse participation ratio)
has a nonuniversal distribution, typically bimodal, thus deviating from the beta distribution, the latter one being
characteristic of uniformly chaotic systems with no stickiness regions. (iii) The energy-level spacing distribution
is Berry-Robnik-Brody (BRB), capturing two effects: the quantally divided phase space (because most of the
PH functions are either the inner-ones or the outer-ones, dictated by the classical stickiness, with an effective
parameter μ1 measuring the size of the inner region bordered by the sticky invariant object, namely, a cantorus),
and the localization of PH functions characterized by the level repulsion (Brody) parameter β. (iv) In the energy
range considered (between 20 000 states to 400 000 states above the ground state) the picture (the structure of
the eigenstates and the statistics of the energy spectra) is not changing qualitatively, as β fluctuates around 0.8,
while μ1 decreases almost monotonically, with increasing energy.
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I. INTRODUCTION

Quantum chaos, or more generally wave chaos, is an es-
tablished field of research in physics [1–3]. The existence of
dynamical chaos in quantum mechanics is still a subject of
current debates. The sensitive dependence of time evolution
(solution of time dependent Schrödinger equation) as an anal-
ogy of classical chaos certainly does not exist, because the
overlap of two initial states remains rigorously constant due
to the unitary time evolution. Also, of course, the analogy
of classical orbits does not exist in quantum mechanics due
to the Heisenberg uncertainty principle. Usually the quantum
systems have a classical correspondent. If not, then a classical
correspondent can be constructed and studied by means of
introducing the coherent states, as is done—for example—in
the Dicke model (see Ref. [4] and references therein). In the
following we refer to quantum systems that have classical
Hamiltonian correspondents.

The stationary quantum chaos is a well-established analogy
of the classical chaos in Hamiltonian systems [1–3]. Namely,
we find phenomena in the solutions of the time independent
Schrödinger equation which correspond exactly to the classi-
cal structures. Such signatures of classical chaos are found in
the statistical properties of the energy spectra, in the structure
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of corresponding eigenfunctions and of their Wigner func-
tions [5] or Husimi functions [6]. For example, the classically
integrable systems exhibit Poisson statistics of the unfolded
(reduced to unit mean level spacing) energy spectra, their
wave functions have a well-ordered structure of nodal lines or
surfaces, and their Wigner or Husimi functions are localized
near the invariant tori in the classical phase space. However, in
the opposite case of classically fully chaotic (ergodic) systems
the energy spectra obey the statistics of random matrices,
especially—but not only—of the Gaussian random matrices,
the nodal patterns of eigenfunctions are entirely disordered
and their probability amplitude exhibits a Gaussian random
function [7]. Their Wigner or Husimi functions are ergodic, in
the sense that they are on the average uniformly spread over
the energy surface in the classical phase space. For a review
see Refs. [3,8]. If the classical limit does not exist, then the
above criteria can still be used as a definition of quantum
chaos.

The above statements are valid under an important semi-
classical condition, namely, that the dominating classical
diffusion time or transport time tT is sufficiently shorter
than the Heisenberg time tH , which by definition is tH =
2π h̄/�E , where �E is the mean level spacing, or inverse
energy-level density ρ(E ) = 1/�E [9]. In such a case, if
the semiclassical condition is satisfied, then all the above
statements for fully chaotic systems have been proven to
be rigorously true using the semiclassical methods, in par-
ticular, Gutzwiller’s semiclassical theory of expressing the
quantum Green function, and its trace ρ(E ), in terms of
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classical periodic orbits [10–14]. For fully chaotic systems,
satisfying the semiclassical condition, this proof was initi-
ated by Berry [15] in 1985, further developed by Sieber and
Richter [16] in 2001, and completed by the group of Haake
[17–20] in the years 2004–2010 [2]. Therefore, the well-
known Bohigas-Giannoni-Schmit conjecture [21], initiated by
Casati, Valz-Gris, and Guarneri [22], can be considered as
proven.

Let us recall that the Heisenberg time goes to infinity when
h̄ goes to zero, because �E ∝ h̄ f and f is the number of
degrees of freedom, f � 2, as we do not consider the systems
having one degree of freedom. Thus, in the semiclassical limit
h̄ → 0, the Heisenberg time tH ∝ h̄1− f eventually becomes
larger than any classical transport time of the system tT , as
the latter one does not depend on h̄. Their ratio,

α = tH
tT

= 2π h̄

�E tT
, (1)

is the important parameter characterizing the deepness of
the semiclassical regime. Thus, the semiclassical condition
is α � 1. In such case the principle of uniform semiclassical
condensation (PUSC) [8] of Wigner functions applies, saying
that the Wigner functions become uniformly spread over the
classical invariant component in the phase space, based on
works by Percival [23], Berry [7], Shnirelman [24], Voros
[25], and further developed by Veble, Robnik, and Liu [26].
This can be an invariant torus, a chaotic component, or the
entire energy surface, depending on the dynamical properties
and the structure of phase space (integrable, mixed-type or
ergodic). Mixed-type systems have been studied for the first
time in the context of quantum chaos by Berry and Robnik
in 1984 [27]. Meanwhile, the literature on this problem has
become quite extensive—for a recent review see Refs. [3,28].

If the semiclassical condition α � 1 is not satisfied, then
we observe localization properties of the chaotic eigenstates
uncovered in the Wigner functions or Husimi functions in the
phase space: The Wigner or Husimi functions are concen-
trated on a proper subset of the available classically chaotic
region. In fact, the transition from strong localization at α � 1
to strong delocalization at α � 1 is a rather smooth one,
as observed recently in several model systems. The chaotic
regions in the classical Hamilton systems, either ergodic or of
the mixed-type, can have strongly nonuniform “chaoticity”:
there are subregions that are more frequently visited by a
chaotic orbit than the others, and this difference can vary over
orders of magnitude. It can take a very long time to exit such
a sticky region, and symmetrically, a long time to enter, if
coming from outside. Such stickiness regions are bordered by
cantori, which are invariant remnants of destroyed inviariant
tori, with fractal dimension, and the size of their holes controls
their permeability, and therefore the classical transport time.
The quantification of the strength of the stickiness is charac-
terized in Sec. II by the method of Lozej [29] in terms of the
so-called S-plots. For the literature on stickiness, introduced
by Contopoulos in 1971 [30], see the review by Meiss [31]
and the references therein. To study these effects in an ergodic
billiard system with strong stickiness is the main purpose
of the present work, which follows a series of our recent
papers [32–37]. As we shall see, stickiness implies nonuni-

versal behavior of the statistics of the energy spectra and of
the localization measure.

In this paper we study a classically fully chaotic (ergodic)
system, namely, a lemon billiard (B = 1/2) introduced by
Heller and Tomsovic in 1993 [38], which possesses regions
of strong stickiness, around the zero-measure bouncing ball
invariant component, making its chaoticity strongly nonuni-
form. In this sense the system is nongeneric, not of a
mixed-type, but still exhibiting features which in the quantum
mechanics of the system imply nonuniversal, but very inter-
esting behavior. We are facing and studying the consequences
of the stickiness regions in the structure of eigenstates and of
the corresponding energy spectra.

The paper is organized as follows. In Sec. II we define
the family of lemon billiards, and describe its classical dy-
namical properties, showing that due to the strong stickiness
regions the system is a nongeneric ergodic system. In Sec. III
we study the corresponding quantum billiard and define the
Poincaré-Husimi functions, and then explore their structure in
correspondence with the structure of the classical phase space.
In Sec. IV we define the entropy localization measure A and
the normalized inverse participation ratio R = nIPR, showing
that they are approximately linearly related, and then explore
statistical properties of A. In Sec. V we analyze the statistical
properties of the energy spectra, showing that the level spac-
ing distribution is well described by the Berry-Robnik-Brody
distribution (BRB), because due to the classical stickiness
effects there is a region which quantum mechanics “sees”
as an effective regular island whose relative size decreases
almost monotonically with increasing energy. The chaotic
part of the spectrum is subject to the Brody distribution with
the level repulsion parameter β fluctuating around 0.8 with
changing energy. In Sec. VI we present further comments
regarding the interpretation of the results. Section VII presents
the discussion, conclusions, and outlook.

II. THE DEFINITION OF THE LEMON BILLIARD (B = 1/2)
AND ITS CLASSICAL DYNAMICAL PROPERTIES

The family of lemon billiards was introduced by Heller and
Tomsovic in 1993 [38] and has been studied in a number of
works [39–43], most recently by Lozej [29] and Bunimovich
et al. [44]. The lemon billiard boundary is defined by the in-
tersection of two circles of equal unit radius with the distance
between their center 2B being less than their diameters and
B ∈ (0, 1), and is given by the following implicit equations in
Cartesian coordinates:

(x + B)2 + y2 = 1, x > 0,

(x − B)2 + y2 = 1, x < 0. (2)

As usual we use the canonical variables to specify the lo-
cation s and the momentum component p on the boundary
at the collision point. Namely, the arclength s counting in
the mathematical positive sense (counterclockwise) from the
point (x, y) = (0,−√

1 − B2) as the origin, while p is equal
to the sine of the reflection angle θ , thus p = sin θ ∈ [−1, 1],
as θ ∈ [−π/2, π/2]. The bounce map (s, p) ⇒ (s′, p′) is area
preserving as in all billiard systems [45]. Due to the two kinks
the Lazutkin invariant tori (related to the boundary glancing
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orbits) do not exist. The period-2 orbit connecting the cen-
ters of the two circular arcs at the positions (1 − B, 0) and
(−1 + B, 0) is always stable (and therefore surrounded by a
regular island) except for the case B = 1/2, the subject of
our present work, where it is a marginally unstable periodic
orbit (MUPO). One can see from the geometry that in our
case B = 1/2 any orbit starting from middle of the circle will
hit the other circle at the right angle and thus will retrace
itself, because the centers exactly overlap with the arc of
the other circle. This is true for all angles |θ | � π/3 such
that −p0 � p � p0, where p0 = √

3/2 ≈ 0.8660254, and the
particle hits the corner of the lemon billiard. Therefore, we
have a line of MUPO as an one-dimensional invariant object
in the phase space, namely, located at s = L/4 and s = 3L/4
on the intervals p ∈ (−p0, p0), where L is the circumference
of the entire billiard, for a general B equal to

L = 4 arctan
√

B−2 − 1. (3)

and for B = 1/2 it is L = 4 arctan
√

3 = 4π/3 ≈ 4.188790.
The area A of the billiard for a general B is equal to

A = 2 arctan
√

B−2 − 1 − 2B
√

1 − B2, (4)

thus for B = 1/2 it is A = 2π
3 −

√
3

2 ≈ 1.2283697. Of course,
correspondingly, we have also invariant line of MUPO (we
shall call them bouncing ball regions of period-4 orbits) in the
phase space located at p = 0 and all s. It will be demonstrated
that these bouncing ball regions are surrounded by a very
strong stickiness region: even after 1011 bounces of a sin-
gle chaotic orbit, starting at (s = L/2 + 0.0001, p = 0.999),
there is still possibly a tiny unoccupied island around s = L/4
and s = 3L/4 and p = 0. But we believe that the system is
ergodic, lacking a rigorous proof. The structure of the phase
space after 106, 107, 108, 109, 5.109, and 1010 collisions ema-
nating from the above initial condition is shown in Fig. 1.

In Fig. 2 we show the S-plot using the method introduced
in Ref. [29], to quantify the stickiness in the phase space.
In this approach the phase space is divided into a network
of equal cells defined by the uniform grid of size L, in our
case L = 1000, implying L2 = 106 cells, and in each cell
the distribution of the discrete return times τ (number of
iterations/bounces) is observed, by calculating the mean value
of the return time 〈τ 〉 and of the standard deviation σ . Their
ratio is the quantity S = σ/〈τ 〉. If the distribution of τ is
Poissonian (exponential) characteristic of uniform chaoticity
described by the random model [46], then we have S = 1,
while in the case of stickiness we find distribution typically
described by the superposition of several exponential distri-
butions (so-called hyperexponential distribution) and S > 1.
Figure 2 clearly shows extremely strong stickiness in the dia-
mond shaped areas around s = L/4 and s = 3L/4 and p = 0,
which has implications and manifestations in the quantum
domain to be studied in the next sections.

Lemon billiards of other values of B are not considered in
this paper, but have been treated classically in Ref. [29] and
are subject of our forthcoming papers.

FIG. 1. The phase portrait as generated by a single chaotic orbit
emanating from the same initial condition (s = L/2 + 0.0001, p =
0.999) after 106, 107, 108, 109, 5 × 109, and 1010 collisions, from
(a) to (f), respectively. The label on the abscissa is s/L, while on
the ordinate we have p ∈ [−1, 1].

III. THE QUANTUM BILLIARD: THE HELMHOLTZ
EQUATION AND THE POINCARÉ-HUSIMI FUNCTIONS

A. The Helmholtz equation

Quantum mechanically we have to solve the stationary
Schrödinger equation, which in a billiard B is just the
Helmholtz equation,

�ψ + k2ψ = 0, (5)

with the Dirichlet boundary conditions ψ |∂B = 0. The energy
is E = k2. The important quantity is the boundary function

u(s) = n · ∇rψ[r(s)], (6)

FIG. 2. The S-plot on a grid of cells 1000 × 1000, showing the
extremely strong stickiness region around s = L/4 and s = 3L/4
and p = 0.
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which is the normal derivative of the wave function ψ at the
point s (n is the unit outward normal vector). It satisfies the
integral equation

u(s) = −2
∮

dt u(t ) n · ∇rG[r, r(t )], (7)

where G(r, r′) = − i
4 H (1)

0 (k|r − r′|) is the Green function in
terms of the Hankel function H (1)

0 (x). It is important to realize
that the boundary function u(s) contains complete information
about the wave function at any point r inside the billiard by the
equation

ψm(r) = −
∮

dt um(t ) G[r, r(t )]. (8)

Here m is just the index (sequential quantum number) of the
mth eigenstate.

The number of energy levels N (E ) below E = k2 is
determined quite accurately, especially at large energies,
asymptotically exact, by the celebrated Weyl formula (with
perimeter corrections) using the Dirichlet boundary condi-
tions, namely,

N (E ) = A E

4π
− L

√
E

4π
+ c.c., (9)

where c.c. are small constants determined by the corners and
the curvature of the billiard boundary. Thus, the density of
levels ρ(E ) = dN /dE is equal to

ρ(E ) = A
4π

− L
8π

√
E

. (10)

Our numerical solving the Helmholtz equation is based on the
plane wave decomposition method and the Vergini-Saraceno
scaling method [47,48]. The numerical accuracy has been
checked by the Weyl formula, to make sure that we are neither
losing levels nor getting too many due to the double counting
(distinguishing almost degenerate pairs from the numerical
pairs) in the overlapping energy intervals, and also by the
convergence test. The number of missing levels or too many
levels was never larger than 1 per 1000 levels (usually less
than 10 per 10 000 levels).

Our billiard has two reflection symmetries, thus four sym-
metry classes: even-even, even-odd, odd-even, and odd-odd.
For the purpose of analyzing the spectral statistics we have
thus considered only the quarter billiard, while for the wave
functions (and the corresponding PH functions) we have used
the half billiard of odd symmetry.

B. The Poincaré-Husimi functions

Let us define the quantum phase space. One way is to
calculate the Wigner functions [5] based on ψm(r). However,
in billiards it is more natural and convenient to calculate the
Poincaré-Husimi (PH) functions, based on the boundary func-
tion Eq. (6). The Husimi functions [6] are Gaussian smoothed
Wigner functions, which makes them positive definite. We can
treat them as quasiprobability densities. Following Tualle and
Voros [49] and Bäcker et al. [50], we introduce [33,34] the
properly L-periodized coherent states centered at (q, p), as

follows:

c(q,p),k (s) =
∑
m∈Z

exp{i k p (s − q + m L)}

× exp

[
−k

2
(s − q + m L)2

]
. (11)

The Poincaré-Husimi function is defined as the absolute
square of the projection of the boundary function u(s) onto
the coherent state, namely,

Hm(q, p) =
∣∣∣∣
∮

c(q,p),km (s) um(s) ds

∣∣∣∣
2

. (12)

All eigenstates are chaotic in the sense that the entire classi-
cal phase space (s, p) is chaotic, but not uniformly chaotic.
Namely, due to the classical stickiness regions surrounding
the bouncing ball regions (of MUPO) of Figs. 1 and 2 the PH
functions are localized in various regions, as shown in Fig. 3:
Some are strongly localized at the very center of the bouncing
ball region, some are surrounding it inside the virtual bound-
ary between the inner and outer part of the stickiness region,
some are localized on this boundary, some are localized out-
side this boundary in a nonuniform way, and finally some are
rather uniformly spread in the outside region, not penetrat-
ing into the inner region. All eigenstates and PH functions
have been calculated for a half billiard, for the odd parity.
In the following we perform the quantitative analysis of the
degree of localization, by calculating the entropy localization
measure A.

IV. THE LOCALIZATION MEASURES: THE ENTROPY
LOCALIZATION MEASURE A AND THE NORMALIZED

INVERSE PARTICIPATION RATIO NIPR

A. The definition of localization measure

The degree of localization can be quantified in at least three
different ways: entropy localization measure A, correlation
localization measure C, and the normalized inverse participa-
tion ration R = nIPR. We have shown [33,34,37] that they are
linearly related and thus equivalent.

The entropy localization measure of a single eigenstate
Hm(q, p), denoted by Am is defined as

Am = exp Im

Nc
, (13)

where

Im = −
∫

dq d p Hm(q, p) ln[(2π h̄) f Hm(q, p)] (14)

is the information entropy. Here f is the number of degrees of
freedom (for 2D billiards f = 2, and for surface of section
it is f = 1) and Nc is a number of cells on the classical
chaotic domain, Nc = �c/(2π h̄) f , where �c is the classical
phase space volume of the classical chaotic component. In the
case of the uniform distribution (extended eigenstates) H =
1/�C = const. the localization measure is A = 1, while in the
case of the strongest localization I = 0, and A = 1/NC ≈ 0.
The Poincaré-Husimi function H (q, p) (12) (normalized) was
calculated on the grid points (i, j) in the phase space (s, p),
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FIG. 3. Examples of typical Poincaré-Husimi functions at various k: 641.670665, 654.237553, 647.954107, 854.360748, 865.888129, and
858.033634 in (a)–(f), respectively. Their structure is strongly determined by the classical stickiness structures in Figs. 1 and 2. Due to the
reflection and time reversal symmetries we plot only one quarter of the phase space. Higher color intensity corresponds to higher values of the
PH function.

and we express the localization measure in terms of the dis-
cretized function. In our numerical calculations we have put
2π h̄ = 1, and thus we have Hi j = 1/N , where N is the number
of grid points, in case of complete extendedness, while for
maximal localization we have Hi j = 1 at just one point, and
zero elsewhere. In all calculations we have used the grid of
400 × 400 points, thus N = 160 000.

As mentioned in the introduction, the definitions of local-
ization measures can be diverse, and the question arises to
what extent are the results objective and possibly independent
of the definition. Indeed, in Ref. [33], it has been shown that
A and C (based on the correlations) are linearly related and
thus equivalent. Moreover, we have introduced [36,37] also
the normalized inverse participation ratio R = nIPR, defined
as follows:

R = 1

N

1∑
i, j H2

i j

, (15)

for each individual eigenstate m. Here the normalization∑
i j Hi j = 1 has been done. However, because we expect

fluctuations of the localization measures even in the quantum
ergodic regime (due to the scars, etc.), we must perform some
averaging over an ensemble of eigenstates, and for this we
have chosen 20 consecutive eigenstates. The linear relation
of R = nIPR versus 〈A〉 has been clearly demonstrated in
Refs. [36,37] for the stadium billiards and the mixed-type
billiards (Robnik billiard [51,52]), while in the present work
for the lemon billiard we find approximate agreement with the
linear relationship, shown in Fig. 4.

Also, importantly, very recently we have shown that such
a linear relationship is valid in the Dicke model. Its classical

analog based on coherent states is a Hamilton system with
a smooth potential [4]. A similar finding was reported in
Ref. [53] and references therein. Therefore, we believe that
such relationship is generally true, independent of a specific
model system (billiards or smooth potentials).

In the following we shall use exclusively A as the measure
of localization.

0.0 0.5
A

0.0

0.1

0.2

0.3

0.4

0.5

R

(a)

0.0 0.5
A

0.0

0.1

0.2

0.3

0.4

0.5

R

(b)

FIG. 4. The relationship between the normalized inverse par-
ticipation ratio R = nIPR and the entropy localization measure A
averaged over the 20 consecutive Poincaré-Husimi functions, for
the 20 000 consecutive eigenstates with k above k0 = 640 (a) and
k0 = 2880 (b).
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B. The distributions of the localization measures A

One of the main questions addressed in this paper are
the statistical properties of A. In our previous works it has
been shown that in the stadium (Bunimovich billiard) A obeys
the beta distribution [37], while in the mixed-type Robnik
billiard the beta distribution appears at sufficiently uniform
chaoticity and sufficiently large energies [36]. In the case of
the Dicke model it has also been found that A are distributed
according to the beta distribution [4]. Thus, we believe that
beta distribution of A is universally valid, provided that the
stickiness regions and effects do not exist, so that we have
uniform chaoticity (constant value of S in the S-plots intro-
duced by Lozej [29]). Our aim in the present work is to clearly
demonstrate the effects of stickiness in the quantum properties
of classically chaotic Hamilton systems, in our case the lemon
billiard B = 1/2.

The so-called beta distribution is

P(A) = CAa(A0 − A)b, (16)

where A0 is the upper limit of the interval [0, A0] on which
P(A) is defined, and the two exponents a and b are positive
real numbers, while C is the normalization constant such that∫ A0

0 P(A) dA = 1, i.e.,

C−1 = Aa+b+1
0 B(a + 1, b + 1), (17)

where B(x, y) = ∫ 1
0 t x−1(1 − t )y−1dt is the beta function.

Thus, we have for the first moment

〈A〉 = A0
a + 1

a + b + 3
, (18)

and for the second moment

〈A2〉 = A2
0

(a + 2)(a + 1)

(a + b + 4)(a + b + 3)
, (19)

and therefore for the standard deviation σ =
√

〈A2〉 − 〈A〉2

σ 2 = A2
0

(a + 2)(b + 2)

(a + b + 4)(a + b + 3)2
, (20)

such that asymptotically σ ≈ A0

√
b+2
a when a → ∞. In this

limit P(A) becomes Dirac δ function peaked at A = A0.
In Fig. 5 we show a selection of typical distributions

P(A). We clearly see the nonuniversal bimodal distribu-
tion, deviating from the beta distribution, and this ap-
plies to all energies considered E0 = k2

0 , namely, for k0 =
640, 920, 1200, 1480, 1760, 2040, 2320, 2600, 2880.

Therefore, in Fig. 5 we show only the cases k0 = 640
and k0 = 2880, as in between there is no qualitative differ-
ence. The structure is similar to the structure of P(A) in the
mixed-type billiard (Robnik billiard) in the regime of strongly
nonuniform chaoticity [36].

It should be noted that losing a few states, which can
happen, does not affect the result for P(A) in any significant
way. Also, the statistical significance is very high, which has
been carefully checked by using a (factor 2) smaller number
of objects in all histograms, as well as by changing the size of
the bins.

The limiting case a → ∞ in Eqs. (18) and (20) com-
prising the fully extended states in the limit α → ∞ shows
that the distribution tends to the Dirac δ function peaked

0.0 0.2 0.4 0.6
A

0

1

2

3

4

5

6

7
(a)

0.0 0.2 0.4 0.6
A

0

1

2

3

4

5

6

7
(b)

FIG. 5. The histograms of the distribution of the entropy local-
ization measure P(A) for 19 987 eigenstates above k0 = 640 in (a),
and for 19960 eigenstates above k0 = 2 880 in (b). The calculation is
for the half billiard of odd parity.

at A0, thus σ = 0 and P(A) = δ(A0 − A), in agreement with
Shnirelman’s theorem [24], which is not observed in our case,
but would appear at higher energies E = k2

0 . In our case the
characteristic classical transport time tT cannot be uniquely
defined, as it varies widely with the location of the initial
conditions with respect to the stickiness region. Nevertheless,
we predict that for sufficiently high energies k2

0 eventually all
relevant classical transport times become sufficiently small.
The Heisenberg time tH is constant, and the semiclassical
parameter α Eq. (1) for ergodic billiard is [33,34]

α = tH
tT

= L k0

π NT
, (21)

where NT is the number of collisions associated with the
transport time tT . Thus, α → ∞ as k0 → ∞, and we need
even higher energies to see this transition into the universal
regime exhibiting the beta distribution for P(A).

We have analyzed the PH functions of the states taken
from the smaller peak around A ≈ 0.1, and from the larger
peak A ≈ 0.45. In the first case we see strongly localized
inner states, inside the stickiness region (Fig. 6), while in
the second case the states are localized outside the stickiness
region, either uniformly or nonuniformly (Fig. 7).

If we separate the states belonging to the two peaks, using
some overlap criterion (taking only the PH functions that
maximally overlap with the outer chaotic region), and thus
consider only the family of states belonging to the larger peak,
which “live” outside the stickiness region, then we find a uni-
modal distribution which is quite well described by the beta
distribution as demonstrated in Fig. 8, characteristic of the
systems and regimes with no stickiness (uniform chaoticity)
as demonstrated in Refs. [36,37].

V. THE SPECTRAL STATISTICS:
BERRY-ROBNIK-BRODY DISTRIBUTION

Now we turn to the spectral analysis, namely, the analy-
sis of the level spacing distribution. For an introduction see
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FIG. 6. Examples of the inner localized Poincaré-Husimi functions at various k: 643.241487, 646.390631, 657.395766, 699.804421,
714.221189, 718.648216, 754.840525, 764.290106, 803.599980, in (a)–(i), respectively. Their structure is strongly determined by the classical
stickiness structures in Figs. 1 and 2. The calculation is for the half billiard of odd parity. Due to the reflection and time reversal symmetries
we plot only one quarter of the phase space. Higher color intensity corresponds to higher values of the PH function.

Ref. [28]. Since the billiard is ergodic, one would expect the
Brody distribution [54,55],

PB(S) = cSβ exp(−dSβ+1), (22)

where by normalization of the total probability and the first
moment we have

c = (β + 1)d, d =
[
�

(
β + 2

β + 1

)]β+1

, (23)

with �(x) being the � function. It interpolates the exponential
and Wigner distribution as β goes from 0 to 1. The corre-
sponding gap probability is

EB(S) = 1

γ (β + 1)
Q

(
1

β + 1
, (γ S)β+1

)
, (24)

where γ = �( β+2
β+1 ) and Q(a, x) is the incomplete � function,

Q(a, x) =
∫ ∞

x
t a−1e−t dt . (25)

The degree of localization which determines β is controlled
by the parameter α Eq. (1). However, due to the effects of
stickiness the classical transport time cannot be defined unam-
biguously, as it depends strongly on the location of the initial
conditions in the phase space (s, p), and therefore so does α

as well. Due to the strong stickiness around the center of the
bouncing ball region quantum mechanics “sees” effectively
a hole, whose size decreases with energy, and thus this hole
plays a role of a quasiregular region (the complement of the
outer chaotic region) for most of the eigenstates, as has been
demonstrated in the PH functions. The mechanism behind
this phenomenon is the existence of a cantorus, or several
cantori, which present a border between the inner and outer
region. Namely, the holes of a cantorus are nonpermeable for
the quantum mechanics (waves) if the flux is smaller than a
Planck cell, but thus become permeable at higher energies
(or smaller Planck constant 2π h̄) [48,56,57]. Therefore, we
must expect that the level spacing distribution will be well de-
scribed by the Berry-Robnik-Brody (BRB) distribution, with
the two parameters, μ1 measuring the relative size of the
quasiregular region (and the relative density of the corre-
sponding level sequence) and β measuring the strength of the
localization of the chaotic part of the spectrum.

The BRB distribution is calculated as the second derivative
of the gap probability E ,

P(S) = d2E
dS2

, (26)

where the total gap probability is the product of the reg-
ular (Poissonian part) EP = exp(−S) and of the chaotic
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FIG. 7. Examples of the outer localized Poincaré-Husimi functions at various k: 645.621455, 645.653750, 645.989357, 646.691491,
646.835747, 647.615914, 648.527598, 648.609436, 650.435253 in (a)–(i), respectively. Their structure is strongly determined by the classical
stickiness structures in Figs. 1 and 2. The calculation is for the half billiard of even parity. Due to the reflection and time reversal symmetries
we plot only one quarter of the phase space. Higher color intensity corresponds to higher values of the PH function.
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FIG. 8. The histograms of the distribution of the entropy local-
ization measure P(A) for 12 678 eigenstates above k0 = 640 in (a),
and for 15 571 eigenstates above k0 = 2880 in (b). The distributions
are quite well fitted with the β distribution with the parameters
(a, b) = (26.083, 31.531) in (a) and (a, b) = (47.255, 50.399) in
(b). The states have been selected by the criterion of maximal overlap
with the outer chaotic region. The calculation is for the half billiard
of odd parity.

part Eq. (24),

E (S) = EP(μ1S) EB(μ2S) = exp(−μ1S) EB(μ2S), (27)

where μ1 + μ2 = 1. The resulting BRB distribution captures
both effects, the quasidivided quantum phase space, and the
localization on the outer chaotic component.

This expectation is excellently confirmed in our numeri-
cal calculations. It is observed that the value of β fluctuates
around the value 0.8, depending on the symmetry class and
the energy k2

0 , while μ1 decreases almost monotonically with
increasing energy k2

0 . At even higher energies, which we have
not yet reached, β is expected to increase towards 1 and μ1

to zero. In this limit both the division of the phase space and
the localization effects disappear and we would find just GOE
level spacing distribution, well approximated by the Wigner
distribution, which is Brody distribution Eq. (22) at β = 1.

In Fig. 9 we show the level spacing distribu-
tions for nine energy intervals each starting at k0 =
640, 920, 1200, 1480, 1760, 2040, 2320, 2600, 2880
and comprising about 40 000 levels that include all
four symmetry groups (about 10 000 levels of each
symmetry group). They are all very well fitted by the
Berry-Robnik-Brody distribution Eq. (26). Note that the
value of P(S = 0) monotonically decreases with increasing
energy k0, as predicted: At higher energies the quantum
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FIG. 9. The histograms of the level spacing distribution P(S) for nine energy intervals each starting at k0 =
640, 920, 1200, 1480, 1760, 2040, 2320, 2600, 2880 and comprising about 40 000 levels that include all four symmetry groups
(about 10 000 levels of each symmetry group) for each k0. The fitting parameters (β,μ1) are from (a) to (i): (0.827, 0.171), (0.844, 0.147),
(0.806, 0.110), (0.778, 0.083), (0.799, 0.082), (0.813, 0.075), (0.816), 0.074), (0.801, 0.060), (0.789, 0.053). By the thick dot we denote the
value of P(S = 0), which decreases monotonically with increasing k0.

resolution of the classical structures in the phase space
increases, therefore the eigenstates tend towards the ergodic
regime, in which the stickiness plays lesser and lesser role
[μ1 and P(S = 0) tend to zero].

To verify the goodness of the BRB distribution we plot
in Fig. 10 also the cumulative level spacing distribution for
the case k0 = 640, twofold, for the 1 000 consecutive eigen-
states of the odd-odd parity in Fig. 10(b), and for the 39 965
eigenstates of all four parities in Fig. 10(a). We see very good
agreement. It is seen that increasing the energy range and the
number of levels significantly changes the values of β and μ1

and the quality of the theoretical fitting BRB, although two
effects work against each other: Increasing the energy range
makes β less sharply defined while increasing the number of
objects decreases the statistical error. We may conclude that
the agreement is excellent.

In Fig. 11 we show the dependence of β on the energy
k0 for about 10 000 levels of each parity, and the collection
of all four parities. It is seen that β fluctuates around 0.8. At
still higher energies it is predicted to increase toward the value

β = 1 (Wigner distribution, which is 2-dim GOE), in the deep
semiclassical limit.

In Fig. 12 we show the dependence of the parameter μ1 on
the energy k0, for about 10 000 levels of each parity, and the
collection of all four parities, clearly showing that it almost
monotonically decreases with k0. Asymptotically it must tend
to zero, as the system is (practically) ergodic.

VI. ADDITIONAL COMMENTS

In the course of our present work we have widely explored
the PH functions and the level spacing statistics by varying
all possible parameters, like k0, the number of levels n above
k0 from 1000 to 10 000 taken in histograms and cumulative
level spacing distribution, the four parities, the size of the
bins in histograms, etc. Hundreds of PH functions have been
produced and analyzed, as well as hundreds of level spacing
statistics, from plentiful different points of view.

The general conclusion is that the determination of the
Berry-Robnik-Brody distribution is far from trivial and the
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FIG. 10. The cumulative level spacing distribution W (S) for two energy intervals each starting at k0 = 640: in (a) 39 965 levels comprising
all four parities, and in (b), 1000 levels of odd-odd parity. The parameters (β,μ1) are (0.827, 0.171) in (a) and (0.569, 0.092) in (b). To display
small deviation of data from the best fitting BRB distribution we show in the insets magnification: The thick lines (black) are the numerical
data, the best fitting BRB curve is dashed (blue), the dotted (blue) lines designate the ± one standard deviation from the best fitting BRB curve,
and the dash-dotted lines (magenta and green) denote the BRB curves with the same μ1 but different β by the amount ±0.05. One should
observe the significantly different values of β and μ1 compared between (a) and (b), showing that the statistics based on almost 40 000 levels
(a) is better than in the case of only 1000 levels (b).

values of the parameters β and μ1 depend quite sensitively on
the above mentioned parameters. Of course, the most reliable
data are the largest ones, comprising typically 10 000 levels
per k0 and parity, on which our conclusions are based.

Another remark concerns the classical transport time tT
or NT (the number of collisions associated with tT ), which
enters in the general expression for α in Eq. (1), and for a
general ergodic billiard in Eq. (21). This time scale cannot

1000 1500 2000 2500
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0.7

0.8

0.9

1.0

1.1

1.2

β

even-even

even-odd

odd-even

odd-odd

All syms

FIG. 11. The dependence of the β parameter on the energy k0.
For each k0 we have taken about 10 000 states of given parity above
k0, and also show the data for the ensemble of all four parities. The
value of β fluctuates around β ≈ 0.8.

be uniquely defined, as its value depends strongly on the
initial conditions. Nevertheless, a rough estimate has been
done for initial conditions close to p = 0 (remember, the
line (s, p = 0) is invariant) with the result NT ≈ 1000. In our
case L = 4π/3 = 4.188790, therefore α ≈ 4k0/3000, and in
the range k0 ∈ [640, 2880] we have α ∈ [0.853, 3.84]. This
means that we are just in the middle of the localization tran-
sition region from α � 1 to α � 1, indicating that we should
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FIG. 12. The dependence of the μ1 parameter on the energy k0.
For each k0 we have taken about 10 000 states of given parity above
k0, and also show the data for the ensemble of all four parities. The
value of μ1 decreases almost monotonically with k0.
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see quite strongly expressed localization of PH functions,
which is indeed the case. However, our energy interval E = k2

0
with k0 ∈ [640, 2880] is too narrow to observe the variation of
β with k0, that is why β fluctuates around 0.8.

More precise estimates must be done by analyzing in detail
the structure of the strong stickiness region, which implies at
least two quite different time scales: One inside the sticky
region, and the other outside. Quantum mechanically the
boundary between them depends on the energy k2

0 . Such a
more detailed analysis is left for the future.

VII. DISCUSSION AND CONCLUSIONS

We have presented the semiempirical analysis of the
chaotic ergodic lemon billiard (B = 1/2), classically and
quantally. The existence of strong stickiness regions around
the invariant zero-measure bouncing ball lines as quantified by
the phase portraits (density plots) and Lozej’s S-plots has im-
portant consequences for the quantum mechanics of the same
billiard. The Poincaré-Husimi (PH) functions are strongly lo-
calized and their entropy localization measure A has a bimodal
distribution, qualitatively due to the existence of basically two
PH functions populations, namely, the inside ones and the
outside ones. If we eliminate the inner eigenstates, then we
find that A obeys quite well the beta distribution characteristic
for the uniform chaoticity (no stickiness in chaotic region
and S = 1). The existence of such a strong stickiness region
is manifested also in the energy spectral statistics. As the
quantum mechanics “sees” the inner region, at given energy
k2

0 , effectively as a separate regular region as the complement
of the outer chaotic region, the level spacing distribution is
Berry-Robnik-Brody (BRB) with two parameters: β measures
the degree of localization and the level repulsion effect, and

μ1 measures effectively the size of the inner sticky region.
The agreement of data with BRB is excellent. As α is roughly
within the interval α ∈ [0.853, 3.84], we see that β is hardly
changing with the energy k2

0 , and fluctuates around 0.8, while
the parameter μ1 decreases almost monotonically with k0, as
predicted: The quantum resolution of the classical phase space
structures increases with increasing energy. Asymptotically,
when k0 → ∞ we predict β → 1 and μ1 → 0. However, to
reach these higher energies, a major computational effort is
necessary. A more detailed analysis of the structure of the
stickiness region, the associated transport time scales and their
quantum implications are left for the future, which requires
calculation of eigenstates and PH functions at much higher
energies.

Another still open problem is the theoretical explanation
of the Brody level spacing distribution even in the case of
uniformly chaotic (no stickiness) regime with localized PH
functions. This includes the distribution of the entropy local-
ization measure A as beta distribution.

These aspects have been explored and demonstrated in
Refs. [33–37] in other billiards, and very recently by Wang
and Robnik [4] also for the Dicke model, whose classical
counterpart based on the coherent states is a Hamilton system
with a smooth potential, which corroborates our findings. It
seems that a semiclassical method based on Gutzwiller’s pe-
riodic orbit theory [10–14] might be an appropriate approach
[1,2] to solve this problem.
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