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Fractal dimension of diffusion-limited aggregation clusters grown on spherical surfaces
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In this work we study the fractal properties of diffusion-limited aggregation (DLA) clusters grown on spherical
surfaces. Diffusion-limited aggregation clusters, or DLA trees, are highly branched fractal clusters formed by
the adhesion of particles. In two-dimensional media, DLA clusters have a fractal dimension Df = 1.70 in the
continuous limit. In some physical systems, the existence of characteristic lengths leads us to model them as
discrete systems. Such characteristic lengths may result also from limitations in measuring instruments, for
example, the resolution of biomedical imaging systems. We simulate clusters for different particle sizes and
examine the influence of discretization by exploring the systems in terms of the relationship between the particle
size r and the radius of the sphere R. We also study the effect of stereographic projection on the fractal properties
of DLA clusters. Both discretization and projection alter the fractal dimension of DLA clusters grown on curved
surfaces and must be considered in the interpretation of photographic biomedical images.
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I. INTRODUCTION

Fractal geometry can be used to characterize natural ob-
jects [1]. Coastlines are classic examples of fractal objects [2].
Fractal shapes are scale independent and self-similar objects
with a representative fractal dimension D f . This parameter has
been used in some recent studies on biomedical imaging, for
example, for pattern recognition in stained cell images [3] or
for retinal vascular fractal analysis, using digital retina im-
ages [4]. The distribution of biophysical parameters obtained
by reconstructing a phase space can provide a statistically
significant assessment of breast tumor grade, a factor that
indicates the degree of malignancy of the tumor [5]. To un-
derstand the abnormalities in the cerebellum of Chiari type I
malformation patients, the fractal dimension of the region has
been used as a discriminative feature [6]. Fractal dimensions
have also been used to characterize the morphology of carotid
plaque in three-dimensional ultrasound images [7]. Irregular-
ity in the atherosclerotic plaque border has been quantified by
the fractal dimension to be assessed to find its relation to the
risk factor [8].

The fractal dimension of a tree depends primarily on the
dimensionality of the Euclidean space in which it grows but
also on the physical mechanisms that determine its growth.
Different pathologies can alter the fractal dimension; there-
fore, its measurement can have a diagnostic and prognostic
value. Variations in the fractal dimension of cardiac signals
have been reported related to different pathologies [9–12]. A
decrease in the fractal dimension of the eye microvasculature
was reported in patients with diabetic retinopathy [13,14].

The fractal dimension can be modified by several geomet-
rical factors such as the boundary conditions when a fractal
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grows in a limited medium or the existence of a characteristic
length, which leads us to consider discrete models such as
those used in dielectric breakdown in solids [15]. This last
aspect could explain the reported variations in the fractal
dimension of the microvascular network of arterioles and
venules that were attributed to differences in the dimensions
of the vessels [16].

Finally, if a fractal grows on a curved surface (such as
a spherical surface), the fractal dimension determined from
images or photographs will be influenced by the projection
of the surface. Some studies suggest a 3% error in fractal
measurements ascribed to retinal curvature [17]. This value
can be influenced by the size of the fractal tree.

In this work we study the fractal properties of diffusion-
limited aggregation (DLA) clusters generated with particles
of different sizes and grown on spherical surfaces. When the
particle radius is small compared to that of the sphere, the
continuous limit of the model is obtained. Therefore, we study
the influence of discretization through the dependence of D f

on r/R, where r is the radius of the particles and R is the radius
of the sphere.

The transition to the continuous limit of DLA clusters can
be characterized in different forms. Somfai et al. [18] used
the conformal map method introduced by Hastings and Levi-
tov [19] and employed by Davidovitch et al. [20]. The authors
proposed a correction to the scale relationships of these frac-
tals that tends to zero when the number of particles tends to
infinity. The method was also used in the dielectric breakdown
model (DBM), a growth model that can generate clusters with
different fractal dimensions, depending on an internal param-
eter η [21]. The DLA model and the DBM with η = 1 are
equivalent in the continuous limit, because of the relationship
between the random-walk and potential theories [15,22]. In
the fractal analysis of natural objects, the determination of D f

poses challenges that limit the methods to be used. Though the
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structure of fractals grown under well-controlled conditions or
with slow growth can be studied by analyzing the variation of
their characteristics with mass, many times fully developed
clusters must be studied and the measurements cannot be
made as a function of time or the number of particles. This
may be the case when analyzing the structure of the retinal
microvasculature or dielectric breakdown trees in solids that
grow in nanoseconds and are usually detected once gener-
ated [23–27]. For this reason, another way of studying the
limit to the continuum is to correct the value of D f , that is,
to use D f as an effective (or apparent) parameter, affected by
discretization effects. The latter is the method we use in this
work, even though our data can be well described in terms
of the crossover proposed by Somfai et al. As we discussed
above, the usefulness of each description will depend on the
possibilities of application in a specific case. What seems im-
portant is to know that discretization can appear by modifying
the value of D f and to have a form of correcting these effects
knowing that they may not be interpreted as a change in the
scale relationship. The growth of DLA aggregates on curved
surfaces has also been analyzed [28–30]. In [30] the authors
carried out a multifractal analysis in the continuous limit. Our
results compare well with them, although we limit ourselves
to calculating D f , which can be compared with D2 in [30].
A multifractal analysis is beyond the scope of the present
work. The conformal map method was extended to DLA clus-
ters grown on cylindrical surfaces with particles of different
sizes [29]. The influence of the particle size is qualitatively
similar to that reported in this work on spherical surfaces.
We also examine the effect of stereographic projection on the
fractal dimension and find large deviations.

II. DIFFUSION-LIMITED AGGREGATION MODEL

The DLA model was introduced by Witten and Sanders
to describe fractal growth processes dominated by the dif-
fusive transport. It is applicable to many systems such as
electrodeposition, Hele-Shaw flow, and dielectric breakdown.
The model of Witten and Sander [1] is a variant of the Eden
model, whose initial state is a seed particle at the origin of
a lattice. In open-plane geometry, this model has a fractal
dimension of 1.70 in the continuous limit. Discrete models
have to be considered for some physical problems such as the
dielectric breakdown phenomenon in solids systems, where
the length of the breakdown channel imposes a minimum
length. Likewise, the fractal measurement of the circulatory
tree has as a minimum length the width of the blood vessels.
In discrete models, the fractal dimension depends on both the
correlation length and the size of the tree. If the tree grows
on a limited surface, such as a sphere, the possible effects of
discretization must be considered.

Our purpose is to grow a DLA tree on a spherical surface
from the north pole to the south pole. The initial tip is located
at the north pole of a sphere of radius 1. The coordinates
of this point are ri = (0, 0, 1), considering the origin of the
coordinate system at the center of the sphere. The algorithm
follows the following steps.

Step 1. A random walker is launched from the opposite pole
where the tip is located. This particle walks randomly until it
is actually absorbed by the fractal tree and then added to the

FIG. 1. Uniform random distribution of points on a sphere.
(a) Without the transformation given by Eqs. (1) and (2), the points
accumulate near the poles. (b) Using Eqs. (1) and (2), a different
distribution is achieved.

tree. To generate a random walker on a spherical surface, it is
necessary to carry out the transformation

θ = 2πδ1, (1)

φ = 2 arcsin
√

δ2, (2)

where δ1 and δ2 are random numbers evenly distributed be-
tween 0 and 1. In this way a uniform random distribution is
achieved, as shown in Fig. 1.

Step 2. A new random walker is now introduced and it
walks randomly until it adheres to the fractal tree and so forth.

Step 3. All particles have the same size r and a particle
joins the tree if its distance to any other particle belonging to
the structure is equal to or less than 2r.

Step 4. The particles are rigid; by adhering to the structure,
the centers of two joined particles are at a distance equal
to 2r.
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FIG. 2. Fractal generated in this work.

The discretization of the system is determined by the value
of r. In Fig. 2 we show a fractal generated in this work.

III. STEREOGRAPHIC PROJECTION

The stereographic projection is a particular mapping that
projects a sphere onto a plane. The projection is defined on
the entire sphere, except at the projection point. Where it is
defined, the mapping is smooth and bijective. It is conformal,
that is, it preserves angles at which curves meet, but it pre-
serves neither distances nor the areas of figures.

We define below two stereographic projections illustrated
in Fig. 3.

Projection A is from the focus F ≡ (0, 0, f ) (where | f | is
the focal distance) onto the plane z = 1, which is tangent to
the unit sphere at the north pole [see Fig. 3(a)]. Given P ≡
(xp, yp, zp) a point on the unit sphere and A = (xa, ya, 1) its
projection on the plane, the transformations that define this
projection are

xa = 1 − f

zp − f
xp, (3)

ya = 1 − f

zp − f
yp. (4)

Projection B is from the focus F ≡ (0, 0, f ) (where | f | is
the focal distance) onto the plane z = pz, which is tangent to
the unit sphere at the north pole [see Fig. 3(b)]. Given P ≡
(xp, yp, zp) a point on the unit sphere and A = (xa, ya, pz ) its
projection on the plane, the transformations that define this
projection are

xa = pz − f

zp − f
xp, (5)

ya = pz − f

zp − f
yp. (6)

FIG. 3. Stereographic projections: (a) projection A according to
Eqs. (3) and (4) and (b) projection B according to Eqs. (5) and (6).

IV. AVERAGE FRACTAL DIMENSION

The simulated fractal trees are structurally characterized
by measuring their average fractal dimension D f . There are
different methods to estimate D f , of which we use two.

Method 1. For the fractal grown on the spherical surface,
we consider the relationship between the mass of the tree,
M, and its extension, measured as the distance of the furthest
particle of the structure to the north pole, L. We calculate M
as the number of particles belonging to the tree. The fractal
dimension is obtained from the relationship

M ∝ LD f . (7)

From a log-log plot, an average slope over a set of 250–500
trees (depending on the particle size) is obtained.

Method 2. For stereographic projections, we use the well-
known box-counting method. This method counts the number
of boxes of size ρ, N (ρ), necessary to cover the fractal
structure. The fractal dimension D f is obtained from the
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FIG. 4. Plot of M vs L [Eq. (7)] for fractals generated with dif-
ferent particle sizes r with (a) r−1 = 1024, (b) r−1 = 512, (c) r−1 =
256, and (d) r−1 = 128. See also Fig. 5.

relationship

N (ρ) ∝ ρ−D f . (8)

Note that ρ indicates the size of the box, while the trees are
made up of rigid particles of radius r, as indicated in Sec. II.
From a log-log plot, an average slope over a set of 250 trees is
obtained.

V. NUMERICAL RESULTS

We consider two possible aspects that can alter the mea-
surements of the fractal dimension D f : (i) the existence of
characteristic lengths that impose a discrete character on the
fractal growth and (ii) the existence of projections inherent to
the measurement instruments that do not preserve either the
distances or the areas of the figures. Below we present the
dependence of D f on the relevant parameters in each case,
that is, the size of the particles r and the focal length f .

A. Particle-size effect

Fractal trees are generated with particles of size r such that
r−1 ∈ {8196, 2048, 1024, 512, 256, 128, 64, 32}. The fractals
grow on spherical surfaces of radius R = 1, according to the
algorithm in Sec. II. For each value of r, a set of 250–500
trees is generated (depending on the particle size) and the
value of D f is calculated from Eq. (7). Figure 4 shows some
characteristic adjustments to Eq. (7). Figure 5 shows the
dependence of D f on r. The limit value D f = 1.70 is reached
at r = 1

2048 .
This limit value coincides with that reported in [30]. The

authors report that the fractal dimension D f is insensitive to
the surface curvature. This is because the surface is locally
Euclidean if the particle size is small enough. If the size of
the particles increases, the effects of the discretization become
evident with an apparent decrease in D f or in the slope in a
log-log plot of Eq. (7). These results qualitatively agree with
those presented in [29] on a cylindrical surface.

FIG. 5. Plot of the Df dependence on the particle size.

B. Stereographic projection

To study the effect of the projection, we consider the trees
generated with r = 1

8196 . Figure 6 shows the projections of a
tree grown on a spherical surface, according to Eqs. (3) and (4)
(projection A) with different f values. The fractal dimension
D f is determined according to Eq. (8).

The effects of projection A (Sec. III) are studied by deter-
mining the dependence of D f on f, as shown in Fig. 7. The D f

values approach 1.70 as | f | increases, but even with | f | = 4,
the D f values are significantly lower than 1.70.

The effects of projection B are studied qualitatively as a
function of the angle α defined in Fig. 3(b). The fractal dimen-
sion D f decreases as α increases, 2% for α = 45 and 5% for
α = 90. In this projection, a relationship must be established
between the distance to the projection plane and the latitudinal
extension of the fractal.

VI. DISCUSSION AND CONCLUSIONS

In this work we generate and study DLA clusters on
spherical surfaces with particles of different sizes. In two-
dimensional media, DLA fractals have a fractal dimension

FIG. 6. Stereographic projection A of a fractal generated on a
spherical surface using different focal lengths (a) f = −0.2, (b) f =
−0.5, (c) f = −1, and (d) f = −2.
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FIG. 7. Plot of the Df dependence on | f |.

D f = 1.70 in the continuous limit [29,30]. The existence of
characteristic lengths forces us to consider discrete models
for some physical systems. Such lengths can also result from
limitations in measuring instruments, for example, the res-
olution of photographic images. Thus, the finite nature of
the spherical surface leads to exploring discrete models in
terms of the relationship between the characteristic length (or
particle size) and the radius of the sphere R. In this work we
determine that the continuous limit is reached for particles of
size r = R/2048. This result would determine the resolution
of the biomedical images in which discretization is negligible.

The transition to the continuous limit of DLA clusters was
studied by Somfai et al. as a slow crossover towards the
asymptotic scaling behavior for large values of M. They pro-
posed a correction to the scale relationships of these fractals
that tend to zero when the number of particles tends to infinity
and can be written as

L2

M2/D f
= α + βM−φ. (9)

Values of L can be appropriately normalized so that α = 1.
Furthermore D f = 1.70 and φ = 0.3 ± 0.1, as was deter-
mined in [30] in a Euclidean geometry. Our data satisfy Eq. (9)
with the same φ value, as shown in Fig. 8. Now the β values
depend on the particle size as was also observed in [29] on a
cylindrical surface (this effect was not studied on a spherical
surface). The use of Eq. (9) in practical situations can be
difficult. As we explained above, there are situations in which
it is not possible to carry out studies based on M, but it
should still be possible to use fractal features to characterize
irregular objects. In these situations using D f as a parameter
to characterize the effects of discretization, as was done in this
work, is preferable.

Also, the projection of the fractal alters its dimension.
We explored stereographic projection and found that the far-
ther away the projection plane is from the sphere, the better
the estimate of the fractal dimension. For the stereographic
projection A with | f | = 1, the D f values are 6% lower, a
difference greater than those attributed to various pathologies.
In the stereographic projection B, the deviations depend on α,
which should not exceed 45.

FIG. 8. Transition to the continuous limit according to Eq. (9)
for fractals generated with different particle sizes r. Closed circles
represent r−1 = 1024 and β = −0.72 ± 0.05, open circles r−1 =
512 and β = −0.84 ± 0.06, and closed squares r−1 = 256 and β =
−1.0 ± 0.1. Here L is normalized so that α = 1 in Eq. (9).

The effects of the projection must be considered in the
analysis of ophthalmological images of the blood vessels of
the eye. In these cases, the projection plane can be very
close to the eyeball. Furthermore, the type of projection may
change depending on the relative location of the fractal being
analyzed. Many studies have attempted to relate variations
of the fractal dimension to pathological alterations that affect
the growth dynamics of the circulatory network. However, the
effects of finite size and the effects of the projection must be
considered to compare the results with each other and give
them a diagnostic value.

For example, the fractal dimension D f is being used to
characterize the retinal vasculature in patients with diabetic
retinopathy. Fan et al. [17] measured the D f of the retinal
vasculature in both healthy (control) eyes and diabetic retino-
pathic eyes. The authors obtained ultrawide field fluorescence
angiography images of 4000 × 4000 pixels, although the
characteristic length is three to four pixels, corresponding
to the width of the vessels. Therefore, the D f values may
be affected by the discrete nature of the fractal. The authors
reported values of D f = 1.6 ± 0.04 for the healthy (control)
eye. These values are comparable to D f values for a discrete
DLA fractal with r = R/1024 (Fig. 5). Their regional analysis
indicated that diabetic retinopathic eyes had a lower D f in the
far periphery compared to healthy controls. The D f values for
healthy controls decreased by 5% between the posterior re-
gion and the midperiphery, corresponding to values of α < 45
and 45 < α < 90 in a type B stereographic projection, such
as that used in [17]. These results are again comparable to
our calculations on DLA fractals. The retina vasculature of
the healthy eye therefore may have a DLA fractal structure
and the reported variations may be due to factors such as
discretization and projection. Our work provides a theoretical
reference (noise-free) to distinguish these effects.
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