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The time evolution of an occupation number is studied for a fermionic or bosonic oscillator linearly fully
coupled to several fermionic and bosonic heat baths. The influence of the characteristics of thermal reservoirs
of different statistics on the nonstationary population probability is analyzed at large times. Applications of the
absence of equilibrium in such systems for creating a dynamic (nonstationary) memory storage are discussed.
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I. INTRODUCTION

Quantum systems are never completely isolated, and they
interact with a large number of degrees of freedom of the
surrounding environment. The coupling of a quantum system
to a heat bath usually induces its evolution toward asymptotic
equilibrium imposed by the complexity of the heat bath(s).
In practice, a quantum system is often coupled to a few
reservoirs [1–10]. In Refs. [11,12], it has been illustrated that
the system linearly fully coupled to several baths of different
statistics (fermionic and bosonic) might never reach a sta-
tionary asymptotic limit. This absence of equilibrium at large
times can be used in some applications, e.g., in communica-
tion lines, quantum computers, and other modern quantum
devices. In the present paper, we study the time evolution
of occupation numbers of fermionic (two-level system) and
bosonic oscillators embedded in fermionic and bosonic heat
baths. A system fully coupled to two heat baths with the
same or a different quantum nature is described here using
the non-Markovian master-equation and quantum Langevin
approaches [12], and taking into consideration the Ohmic
dissipation with Lorentzian cutoffs [13–17]. The full coupling
contains the resonant (the rotating wave approximation) and
nonresonant terms [17]. The environmental effects on a quan-
tum system could keep this system in a certain state or provide
it with some specific properties.

II. MODEL

A. Hamiltonian

The Hamiltonian of the total system (the quantum system
plus several heat baths “λ,” λ = 1, . . . , Nb) is written as [12]

H = Hc +
Nb∑

λ=1

Hλ +
Nb∑

λ=1

Hc,λ, (1)

where

Hc = h̄ωa†a (2)

is the Hamiltonian of the isolated system being either a
fermionic (two-level system) or bosonic oscillator with fre-
quency ω, and

Hλ =
∑

i

h̄ωλ,ic
†
λ,icλ,i

are the Hamiltonians of the thermal baths. When we write
down the creation/annihilation operators a+/a (c†

λ,i/cλ,i), we
mean the creation/annihilation operators of the transition with
the corresponding energy h̄ω (h̄ωλ,i). So, each fermionic tran-
sition operator a+ or c†

λ,i is the product of operators of the
creation and annihilation of a fermion in the excited and
ground states, respectively. There is only the conversion of
excitation quanta from the fermionic system to the bosonic
ones or vice versa in our formalism. The value of Nb is the
number of heat baths. Each heat bath “λ” is modeled by
the assembly of independent fermionic or bosonic oscillators
labeled in both cases by “i” with frequencies ωλ,i. For the FC
coupling between the system and heat baths, the interaction
Hamiltonians Hc,λ are

Hc,λ =
∑

i

αλ,i(a
† + a)(c†

λ,i + cλ,i ). (3)

The real constants αλ,i determine the coupling strengths. The
interaction Hamiltonian (3) is linear in the system and bath
operators. It has important consequences on the dynamics of
the system by altering the effective collective potential and by
allowing energy to be exchanged with the thermal reservoirs,
thereby allowing the system to attain some equilibrium with
the heat baths.

Here, the system and heat baths have fermionic or bosonic
statistics. So, the creation and annihilation operators of the
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system and heat baths satisfy the commutation or anticommu-
tation relations

aa† − εaa†a = 1, a†a† − εaa†a† = aa − εaaa = 0,

cλ,ic
†
λ,i − ελc†

λ,icλ,i = 1, c†
λ,ic

†
λ,i − ελc†

λ,ic
†
λ,i

= cλ,icλ,i − ελcλ,icλ,i = 0, (4)

where εa and ελ are equal to 1 (−1) for the bosonic
(fermionic) system and bosonic (fermionic) heat baths,
respectively.

B. Master equation for the occupation number
of a quantum system

Employing the Hamiltonian (1) for the fermionic and
bosonic systems, we deduce the equations of motion for the

occupation number,

da†(t )a(t )

dt
= i

h̄

∑
λ,i

αλ,i[a(t ) − a†(t )][c†
λ,i(t ) + cλ,i(t )]

= i

h̄

∑
λ,i

αλ,i[c
†
λ,i(t )a(t ) − a†(t )cλ,i(t )

+ a(t )cλ,i(t ) − a†(t )c†
λ,i(t )]. (5)

For the operators c†
λ,i(t )a(t ) and a(t )cλ,i in Eq. (5), we derive

the following equations:

dc†
λ,ia

dt
= i(ωλ,i − ω)c†

λ,ia + i

h̄
αλ,i[a

†a + aa][1 − (1 − ελ)c†
λ,icλ,i]

− i

h̄

∑
λ′,i′

αλ′,i′ [c
†
λ,ic

†
λ′,i′ + c†

λ,icλ′,i′ ][1 − (1 − εa)a+a], (6)

dacλ,i

dt
= −i(ωλ,i + ω)acλ,i − i

h̄
αλ,i[a

†a + aa][1 − (1 − ελ)c†
λ,icλ,i]

− i

h̄

∑
λ′,i′

αλ′,i′ [cλ,ic
†
λ′,i′ + cλ,icλ′,i′ ][1 − (1 − εa)a+a]. (7)

Substituting the formal solutions

c†
λ,i(t )a(t ) = ei(ωλ,i−ω)t c†

λ,i(0)a(0) + i

h̄
αλ,i

∫ t

0
dτ ei(ωλ,i−ω)[t−τ ][a†(τ )a(τ ) + a(τ )a(τ )][1 − (1 − ελ)c†

λ,i(τ )cλ,i(τ )]

− i

h̄

∑
λ′,i′

αλ′,i′

∫ t

0
dτ ei(ωλ,i−ω)[t−τ ][c†

λ,i(τ )c†
λ′,i′ (τ ) + c†

λ,i(τ )cλ′,i′ (τ )][1 − (1 − εa)a+(τ )a(τ )],

a(t )cλ,i(t ) = e−i(ωλ,i+ω)t a(0)cλ,i(0) − i

h̄
αλ,i

∫ t

0
dτ e−i(ωλ,i+ω)[t−τ ][a†(τ )a(τ ) + a(τ )a(τ )][1 − (1 − ελ)c†

λ,i(τ )cλ,i(τ )]

− i

h̄

∑
λ′,i′

αλ′,i′

∫ t

0
dτ e−i(ωλ,i+ω)[t−τ ][cλ,i(τ )c†

λ′,i′ (τ ) + cλ,i(τ )cλ′,i′ (τ )][1 − (1 − εa)a+(τ )a(τ )] (8)

of Eqs. (6) and (7) [also the solutions of the oper-
ators a†(t )cλ,i(t ) and a†(t )c†

λ,i(t )] in Eq. (5) and tak-

ing the initial conditions 〈c†
λ,i(0)a(0)〉 = 〈a(0)cλ,i(0)〉 =

〈a†(0)cλ,i(0)〉 = 〈a†(0)c†
λ,i(0)〉 = 0 (the symbol 〈· · · 〉 denotes

the averaging over the whole system of heat baths and
oscillator), and assuming that 〈aa〉 = 〈a†a†〉 = 〈c†

λ,ic
†
λ′,i′ 〉 =

〈cλ′,i′cλ,i〉 = 0, 〈c†
λ,icλ′,i′ 〉 = 〈c†

λ,icλ,i〉 = nλ,iδλ,λ′δi,i′ (the heat

baths consist of independent oscillators), and 〈a†ac†
λ,icλ,i〉 =

nanλ,i (the mean-field approximation), we obtain the master-
equation for the occupation number na = 〈a†a〉 of the
oscillator (a = f and a = b for fermionic and bosonic sys-
tems, respectively) [12]:

dna(t )

dt
=

∑
λ,i

∫ t

0
ds{W −

λ,i(t − s)[n̄a(s)nλ,i(s) − na(s)n̄λ,i(s)]

+W +
λ,i(t − s)[n̄a(s)n̄λ,i(s) − na(s)nλ,i(s)]}, (9)

where

W −
λ,i = 2α2

λ,i

h̄2 cos([ω − ωλ,i][t − s]),

W +
λ,i = 2α2

λ,i

h̄2 cos([ω + ωλ,i][t − s]). (10)

Here, n̄a(t ) = 1 + εa〈a†a〉 and n̄λ,i(t ) = 1 + ελ〈c†
λ,icλ,i〉. One

can rewrite Eq. (9) as

dna

dt
=

∫ t

0
dτ {W+(t − τ )n̄a(τ ) − W−(t − τ )na(τ )}

=
∫ t

0
dτ {W+(t − τ ) − W (t − τ )na(τ )}, (11)
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where

W+ =
∑

λ

W (λ)
+

=
∑
λ,i

[W −
λ,i(t − τ )nλ,i(τ ) + W +

λ,i(t − τ )n̄λ,i(τ )],

W− =
∑

λ

W (λ)
−

=
∑
λ,i

[W −
λ,i(t − τ )n̄λ,i(τ )

+W +
λ,i(t − τ )nλ,i(τ )]. (12)

Here, W = W− − εaW+. The coefficient W+ (W−) defines the
rate of occupation (leaving) of the state “a” in the open
quantum system. The ratio between W+ and W− characterizes
the rate of equilibrium. The occupation number reaches the
equilibrium value if the ratio of W+ and W− has asymptotic at
t → ∞.

As shown in Refs. [11,18], for the fermionic (a = f ) or
bosonic (a = b) oscillator (with the renormalized frequency
�) linearly fully coupled to N = Nf + Nb = Nā + Na heat
baths with different statistics (Nā Fermi and Na Bose baths
or vice versa), the master Eqs. (9) or (11) can be mapped to a
simple diffusion equation,

dna(t )

dt
= −2λ(t )na(t ) + 2D(t ), (13)

provided that

W − 2εa

Nā∑
λ=1

W (λ)
+ = 2λ̇(t ) − 4λ(t )λ(t ),

Nā∑
λ=1

W (λ)
+ +

N∑
λ=Nā+1

W (λ)
+ = 2Ḋ(t ) − 4λ(t )D(t ), (14)

λ(t ) = pλā(t ) + (1 − p)λa(t ) − 2εa

Nā∑
λ=1

Dāλ
(t ), (15)

and

D(t ) =
Nā∑
λ=1

Dāλ
(t ) +

N∑
λ=Nā+1

Daλ
(t ). (16)

Here, we have introduced the time-dependent friction λ(t )
and diffusion D(t ) coefficients (see Appendix). If ā = f (ā =
b) and āλ = fλ (āλ = bλ), then a = b (a = f ) and aλ = bλ

(aλ = fλ), respectively. The value of p is defined as p =∑Nā
λ=1 αλ/

∑N
λ=1 αλ, where αλ is the coupling strength be-

tween the system and heat bath labeled by λ (λ = 1, . . . , N).
The time-dependent friction λ f (t ) [λb(t )] and partial diffusion
D f λ

(t ) [Dbλ
(t )] coefficients for the fermionic (bosonic) system

coupled with N fermionic (bosonic) heat baths are given in
Appendix. In the case of the non-Markovian dynamics, the
baths affect the system and vice versa.

Using D f λ
(t ), Dbλ

(t ), λ f (t ), and λb(t ) from Eqs. (A10),
(A11), and the solution

na(t ) = e−2
∫ t

0 dτλ(τ )

{
na(0) + 2

∫ t

0
dτD(τ )e2

∫ τ

0 dτ ′λ(τ ′ )
}

(17)

of Eq. (13), one can calculate the time-dependent occupation
number of the quantum system.

C. Asymptotic occupation number

Because the friction coefficient λb(t ) does not converge to
a stationary value at t → +∞ (Fig. 1) [8,19], an asymptotic
stationary value of occupation number na in Eq. (13) can be
reached if the condition

1

p

Nā∑
λ=1

Iāλ
(∞) =

1
1−p

∑N
λ=Nā+1 Iaλ

(∞)

1 + 2εa
1−p

∑N
λ=Nā+1 Iaλ

(∞)
(18)

is satisfied [11,12]. In other cases, the occupation number
remains oscillating at large time (Fig. 2) because the friction
λb(t ) and, correspondingly, diffusion coefficient oscillate as a
function of time (Fig. 1) [8,19]. To obtain Eq. (18), the relation
Daλ

= λaIaλ
is used at large time (�t � 1).

The physical problem discussed here is considerably sim-
plified when the N baths have the same quantum nature.
Then, the asymptotic occupation number is always stationary
(Fig. 2) and is given by

na(∞) = lim
t→∞

D(t )

λ(t )
= lim

t→∞

∑N
λ=1 Daλ

(t )

λa(t )

=
N∑

λ=1

Iaλ
(∞) = Ia(∞) (19)

in the case when all reservoirs and system oscillators have the
same quantum nature (p = 0, Nā = 0, Na = N), or

na(∞) =
∑Nā

λ=1 Iāλ
(∞)

1 − 2εa
∑Nā

λ=1 Iāλ
(∞)

= Iā(∞)

1 − 2εaIā(∞)
(20)

in the case when all reservoirs have the same quantum nature
(ā = b or f ), which differs from the case of the system os-
cillator (a = f or b) (1 − p = 0, Nā = N , Na = 0). Equations
(19) and (20) generalize the equations given in Ref. [18] for
a single bath. If the baths have the same temperatures, then
the asymptotic occupation number differs in general from
the Fermi-Dirac or Bose-Einstein occupation number. Only
in the Markovian weak-coupling limit and in the case of the
same temperature Tλ = T of all baths, Eqs. (19) and (20) are
reduced to the usual Bose-Einstein and Fermi-Dirac thermal
distributions na(∞) = [exp(h̄ω/kT ) − εa]−1 and the system
has a thermal equilibrium.

III. CALCULATED RESULTS FOR A FERMIONIC OR
BOSONIC OSCILLATOR COUPLED WITH FERMIONIC

AND BOSONIC BATHS IN THE CASE OF OHMIC
DISSIPATION WITH LORENTZIAN CUTOFFS

In all of the figures in this paper presented for the fermionic
or bosonic oscillator with two baths of the same or differ-
ent statistics, we set γ1/� = 10, γ2/� = 15, α1 = 0.1, α2 =
0.05, g0 = α1 + α2 = 0.15, kT1/(h̄�) = 1, and kT2/(h̄�) =
0.1. The values of γ1,2/� are taken to hold the conditions
γ1,2 � �: the non-Markovian quantum Langevin approach
can be applied when the system is slow in comparison to
the relaxation times of the heat baths. The occupation num-
bers and the diffusion and friction coefficients depend on the
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FIG. 1. The calculated dependencies of the friction and diffusion coefficients on time t for the fermionic-fermionic-fermionic ( f - f1- f2,
solid line), bosonic-bosonic-bosonic (b-b1-b2, dashed line), mixed fermionic-bosonic-fermionic ( f -b1- f2, dotted line), and bosonic-fermionic-
bosonic (b- f1-b2, dash-dotted line) systems.

values of oscillator frequency ω, coupling strengths α1, α2, in-
verse memory times γ1,2, and heat bath temperatures T1,2 (see
Appendix). A zero chemical potential is assumed here. The
values of α1 and α2 are chosen to have the realistic values of
friction coefficients, which are known from the microscopic
calculations. Indeed, these coupling strengths provide almost
the same friction coefficient for relative motion of two nuclei
as in Ref. [20]. As an example of a bosonic system, the atomic
or nuclear molecular state can be considered. The bound or
quasibound particle (an electron in the trap or a nucleon in
the isomeric state) can be taken as an example of a fermionic
system. The electromagnetic and temperature fields or the
phonon bath can be treated as the bosonic baths. Free electrons
and inclusion in the compound can act as the fermionic baths.

For the fermionic-fermionic-fermionic ( f - f1- f2),
bosonic-bosonic-bosonic (b-b1-b2), mixed fermionic-bosonic-
fermionic ( f -b1- f2), and bosonic-fermionic-bosonic (b- f1-b2)
systems, the time-dependent friction and diffusion coefficients

FIG. 2. For the fermionic-fermionic-fermionic ( f - f1- f2, solid
line), bosonic-bosonic-bosonic (b-b1-b2, dashed line), mixed
fermionic-bosonic-fermionic ( f -b1- f2, dotted line), and bosonic-
fermionic-bosonic (b- f1-b2, dash-dotted line) systems, the calculated
dependencies of the average occupation numbers on time t . The plots
correspond to the initially unoccupied na(t = 0) = 0 system state.

are shown in Fig. 1. The diffusion and friction coefficients are
equal to zero at initial time. As seen, the time dependencies of
these coefficients are not the same for the different systems.
For the f - f1- f2 system, the friction and diffusion coefficients
reach their asymptotic values relatively quickly (the transient
time for the friction is quite short, �t � 0.5), whereas in
the case of b-b1-b2 and mixed f -b1- f2, b- f1-b2 systems, they
oscillate with the same period of oscillations. The amplitudes
of oscillations for the system with two bosonic baths are larger
than those for the systems with one bosonic bath. For the
b-b1-b2 system, the friction and diffusion coefficients oscillate
in the phase and, as a result, the occupation number has an
asymptotic limit (Fig. 2). In contrast, for the mixed systems
f -b1- f2 and b- f1-b2, the occupation number oscillates around
a certain average value at large times, so it has no asymptotic
limit. For both systems, the periods of oscillations are the
same. The occupation number for the fermionic oscillator
oscillates with a larger amplitude than the one for the bosonic
oscillator (Fig. 2). The absolute value of oscillations depends
mainly on the coupling constants. The times to reach the
asymptotic oscillations are almost the same for these systems.

In the case when a fermionic bath coexists with a bosonic
bath, at large times the influence of the thermostats is minimal
and reversible—it takes energy from the system and gives
the same amount of energy back. As a result, the popula-
tion of the excited state(s) decreases and then increases on
the same level independent of the environment. As shown in
Fig. 3, the period of oscillations of na(t ) at large t depends
on the frequency of the oscillator and, accordingly, carries
information about the system. At �/γ1 > 0.1, the frequency
of asymptotic oscillations is proportional to the oscillator fre-
quency. Since the asymptotic oscillations of the occupation
number depend on the oscillator frequency, this gives a new
opportunity to control these oscillations by changing the os-
cillator frequency. For example, in this way one can control
the amplification or attenuation of signal transmission. Since
the asymptotic oscillations are independent of the medium,
one can unambiguously judge the population of the excited
state of a two-level system, which, for example, is important
in quantum computers. In this case, it is necessary to ensure
a sufficient degree of metastability of the excited states of the
quantum register. These states must have a sufficiently large
lifetime that determines their relaxation to the ground state
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FIG. 3. For the mixed fermionic-bosonic-fermionic ( f -b1- f2)
and bosonic-fermionic-bosonic (b- f1-b2) systems, the calculated de-
pendence of the frequency of oscillations of na(t ) at large t on the
oscillator renormalized frequency �. For two systems, the results of
calculations coincide.

due to dissipative processes. Such a system with nonstationary
asymptotics can be used as a dynamic (nonstationary) mem-
ory system because the information about some properties of
the system [population of excitation state(s) and frequency] is
preserved at large times. So, we suggest to store information
by using nonstationary memory systems. This idea can be
effective, because such systems will be stable under external
conditions.

IV. CONCLUSIONS

In conclusion, for a bosonic or fermionic oscillator fully
coupled with mixed bosonic-fermionic heat baths, the absence
of the equilibrium asymptotic of the occupation number was

predicted. At large times, the period of oscillations of the
occupation number depends on the frequency of the oscillator
and, accordingly, carries information about the system. It is an
example of nonstationary (dynamic) memory storage. Each
frequency corresponds to a certain state and can lead to the
control of these states for recording data in quantum comput-
ers and increasing channels and speeds of communication. As
shown, this behavior is also expected for other systems (not
necessarily an oscillator fully coupled with several fermionic
and bosonic heat baths) in which the asymptotic occupation
number is a periodic function of time.
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APPENDIX: EXPLICIT EXPRESSIONS FOR FRICTION
AND DIFFUSION COEFFICIENTS OF A FERMIONIC

(BOSONIC) OSCILLATOR WITH SEVERAL FERMIONIC
(BOSONIC) HEAT BATHS

Let us consider the case when all N heat baths and sys-
tem oscillators with frequency ω are either all bosonic or all
fermionic. For these systems, the details of the procedure for
obtaining the occupation number of a system are given in
Ref. [8]. Here, we directly write the final expression for the
time dependence of the occupation number:

na(t ) = na(0)|A(t )|2 + [1 + εana(0)]|B(t )|2 + Ia(t ), (A1)

where Ia(t ) = ∑
λ Iaλ

(t ) and

Iaλ
(t ) = αλγ

2
λ

π

∫ ∞

0
dw

w

γ 2
λ + w2

[
n(λ)(w)|M(w, t )|2 + [

1 + ελn(λ)(w)
]|N (w, t )|2], (A2)

A(t ) = 1

2

N0∑
k=1

ξkeskt (sk − s0)

{
2sk − i[� + ω] − 2isk

N∑
λ=1

αλγλ

sk + γλ

}
N∏

μ=1

(sk + γμ)

= i
N∑

λ=1

αλγ
2
λ

N0∑
k=1

ξkeskt (sk − s0)
sk − iω

sk + iω

N∏
μ=1,μ �=λ

(sk + γμ),

B(t ) = i

2

N0∑
k=1

ξkeskt (sk − s0)

{
� − ω + 2sk

N∑
λ=1

αλγλ

sk + γλ

}
N∏

μ=1

(sk + γμ)

= i
N∑

λ=1

αλγ
2
λ

N0∑
k=1

ξkeskt (s0 − sk )
N∏

μ=1,μ �=λ

(sk + γμ),

N (w, t ) =
N0∑

k=0

ξkeskt (isk − ω)
N∏

μ=1

(sk + γμ),

M(w, t ) = −
N0∑

k=0

ξkeskt (isk + ω)
N∏

μ=1

(sk + γμ), (A3)
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where

ξk =
N0∏

i=0, ı �=k

1

sk − si
(A4)

with s0 = −iw and the roots sk , k = 1, . . . , N0, of the N0 =
N + 2 order polynomial:

[
s2 + ω2 − 2ω

N∑
λ=1

αλγ
2
λ

s + γλ

]
N∏

μ=1

(s + γμ) = 0. (A5)

Here,

� = ω − 2
N∑

λ=1

αλγλ (A6)

is the renormalized frequency and ελ is equal to 1 (−1) for the
bosonic (fermionic) heat bath “λ.”

In Eq. (A2), n(λ)(w) = {exp[h̄w/(kTλ)] − ελ}−1 is equi-
librium Fermi-Dirac (Bose-Einstein) distribution of the
fermionic (bosonic) heat bath “λ.” The Tλ is the initial ther-
modynamic temperature of the corresponding heat bath. Here,
we introduce the spectral density ρλ(w) of the heat-bath exci-
tations, which allows us to replace the sum over i by integral
over the frequency w:

∑
i · · · → ∫ ∞

0 dw ρλ(w) · · · . For all
baths, we consider the following spectral function [13]:

α2
λ,i

h̄2wλ,i
→ ρλ(w)α2

λ,w

h̄2w
= 1

π
αλ

γ 2
λ

γ 2
λ + w2

, (A7)

where the memory time γ −1
λ of dissipation is inverse to the

bandwidth of the heat-bath excitations, which are coupled
to the collective system. This is the Ohmic dissipation with
the Lorentzian cutoff (Drude dissipation). The relaxation time
of the heat bath should be much less than the characteristic
collective time. The similarity of expressions for the occupa-
tion numbers for fermionic and bosonic systems results from
the similarity of the equations of motion for creation and
annihilation operators [19,21].

Making a derivative of Eq. (A1) in t and simple but tedious
algebra, we derive the following differential equation for the
occupation number:

dna(t )

dt
= −2λa(t )na(t ) + 2Da(t ), (A8)

where

λa(t ) = −1

2

d

dt
ln[|A(t )| + εa|B(t )|2] (A9)

and

Da(t ) =
N∑

λ=1

Daλ
(t ) = λa(t )[|B(t )|2 + Ia(t )]

+ 1

2

d

dt
[|B(t )|2 + Ia(t )],

Daλ
(t ) = λa(t )[Jλ(t ) + Iaλ

(t )]

+ 1

2

d

dt
[Jλ(t ) + Iaλ

(t )] (A10)

are the time-dependent friction and diffusion coefficients, re-
spectively. The following decomposition |B(t )|2 = ∑

λ Jλ(t )
is used in Eq. (A10). Here, λa(t = 0) = Da(t = 0) = 0.
Therefore, we have obtained the equation for na(t ), which
is local in time. In the case of constant transport coef-
ficients, this equation describes the Markovian dynamics,
i.e., the evolution of na(t ) is independent of the past.
In Eq. (A8), the transport coefficients explicitly depend
on time, and the non-Markovian effects are taken into
consideration through this time dependence [8]. The non-
Markovian feature of Eq. (A8) is well seen at Da = 0. In
this case, na(t ) ∼ exp (−2

∫ t
0 λa(t )dt ), i.e., the occupation

number depends on the time dependence of λa. Because
A(∞) = B(∞) = 0 [8], the appropriate asymptotic equilib-
rium distribution

na(∞) = Da(∞)

λa(∞)
=

∑
λ

Iaλ
(∞) (A11)

is achieved [see Eqs. (A1) and (A8)]. Using Eqs. (A1) and
(A2), the asymptotic values of |M(w, t )|2 and |N (w, t )|2 are
found. With these values, we obtain from (A2)

Iaλ
(t → ∞) = αλγ

2
λ

π

∫ ∞

0
dw

w

γ 2
λ + w2

{
[ω + w]2n(λ)(w)

+ [ω − w]2[1 + ελn(λ)(w)]
}

×
∏Nb

μ=1

(
γ 2

μ + w2
)

∏N0
k=1

(
s2

k + w2
) . (A12)

The specific quantum nature of the baths enters into the
diffusion coefficient through the appearance of occupation
probabilities. The asymptotic diffusion and friction coeffi-
cients are related by the well-known fluctuation-dissipation
relations connecting diffusion and damping constants. Ful-
fillment of the fluctuation-dissipation relations means that
we have correctly defined the dissipative kernels in the non-
Markovian equations of motion. In the Markovian limit (weak
couplings and high temperatures), the asymptotic occupation
number is

na(∞) = 1

g0

∑
λ

αλn(λ)(ω),

where g0 = ∑
λ αλ.
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