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Trapping of particles diffusing in two dimensions by a hidden binding site
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We study trapping of particles diffusing in a two-dimensional rectangular chamber by a binding site located at
the end of a rectangular sleeve. To reach the site a particle first has to enter the sleeve. After that it has two options:
to come back to the chamber or to diffuse to the site where it is trapped. The main result of the present work is
a simple expression for the mean particle lifetime as a function of its starting position and geometric parameters
of the system. This expression is obtained by an approximate reduction of the initial two-dimensional problem
to the effective one-dimensional one which can be solved with relative ease. Our analytical predictions are tested
against the results obtained from Brownian dynamics simulations. The test shows excellent agreement between
the two for a wide range of the geometric parameters of the system.
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I. INTRODUCTION

This paper presents a theoretical study of trapping of dif-
fusing particles by a hidden binding site in two dimensions
in the geometry shown in Fig. 1(a), which is a special case
of diffusion-limited reactions. Theoretical investigations of
such processes were initiated by Smoluchowski [1], who
considered trapping of diffusing particles by a perfectly ab-
sorbing immobile sphere [2,3]. Further development of the
theory involved generalization of the Smoluchowski analysis
in different directions. One of them is trapping by nonuni-
form surfaces pioneered by Hill [4] and Berg and Purcell [5].
In their analysis, to be trapped, a diffusing particle has to
find an absorbing patch on the otherwise reflecting surface.
A more complicated problem arises when a binding site is
hidden in a tunnel. In this case, a particle first has to find
an entrance to the tunnel leading to the site. Entering the
tunnel, the particle either diffuses to the binding site, where
it is trapped, or escapes from the tunnel back to the bulk solu-
tion. Studies of this notoriously complicated problem in three
dimensions were initiated by Samson and Deutch [6]. Their
work was generalized by Zhou [7] who used the constant flux
approximation proposed by Szabo and coauthors [8]. Later
this problem was analyzed in Refs. [9,10], where the constant
flux approximation was abandoned.

Here, we study a two-dimensional version of the problem
in the geometry shown in Fig. 1(a). Specifically, we consider
a point particle diffusing in a rectangular chamber of length L
and width W , which, at the center of its right wall, has a sleeve
of length l and width w � W terminated by a binding site,
where the particle is trapped as soon as it touches the site for
the first time. The quantity of our interest is the mean lifetime

of a particle starting in the chamber, denoted by τl (x0), where
x0 is the distance of the particle starting point from the cham-
ber wall opposite to the side containing the sleeve entrance
[see Fig. 1(a)]. We derive a simple approximate expression
giving τl (x0) as a function of the geometric parameters L, W ,
l , w, and x0,
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where D is the particle diffusivity. Comparison of the mean
particle lifetime predicted by the above expression with τl (x0)
obtained from Brownian dynamics simulations shows good
agreement between the two when the chamber length L satis-
fies L � 0.5W .

Researchers face similar two-dimensional diffusion prob-
lems in studying various natural and technological processes,
for example, transport and reactions on cellular membranes,
among others (see Refs. [11–20] and references therein).
The difficulties in solving such problems are due to inhomo-
geneous boundary conditions and varying geometry of the
system. Indeed, when the widths of the chamber and the
sleeve are equal, w = W , the problem of finding the mean
particle lifetime becomes essentially one dimensional, and the
expression in Eq. (1.1) reduces to the known result [21],

τl (x0)|w=W = (L + l )2 − x2
0

2D
. (1.2)

When deriving Eq. (1.1), we approximately replace the ini-
tial problem by an effective one-dimensional one, which can
be solved with relative ease. This is explained in the following
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FIG. 1. Rectangular chamber of length L and width W with a
sleeve of length l and width w � W terminated by a binding site (a),
and an approximate one-dimensional model of the particle dynamics
in the system (b). The particle starting point is located at distance
x0 from the chamber wall opposite to the wall containing the sleeve
entrance.

Sec. II. Validation of our analytical results by Brownian dy-
namics simulations is discussed in Sec. III. Some concluding
remarks are made in Sec. IV.

II. THEORY

The mean lifetime τl (x0), Eq. (1.1), is the mean first-
passage time of the particle from its starting point in the
chamber to the binding site located at the end of the sleeve
[see Fig. 1(a)]. To be trapped, the particle first has to enter
the sleeve. Therefore, we begin with an approximate one-
dimensional description of the particle search for the sleeve
entrance. Then we discuss a one-dimensional description of
the particle dynamics in the sleeve paying special attention to
its return from the sleeve to the chamber. Finally, these two
one-dimensional descriptions are used to find τl (x0).

A. Search for the sleeve entrance

To analyze the particle search for the sleeve entrance one
has to solve the two-dimensional diffusion problem in a rect-
angle of length L and width W with an absorbing interval
of length w located in the center of its right wall, as shown
in Fig. 2(a). Otherwise, the chamber walls are reflecting. To
solve the problem, we use an approximate description that
treats the search process as one-dimensional diffusion along
the x axis normal to the wall containing the entrance. The
diffusion occurs in the interval of length L terminated by
reflecting and partially absorbing end points at x = 0 and

W

 L

 w

  x0

 L 0
 x

x0

κ

FIG. 2. Rectangular chamber of length L and width W with an
absorbing interval of width w � W located in the center of its right
wall (a), and an approximate one-dimensional model of the particle
dynamics in the system (b).

x = L, respectively, as illustrated in Fig. 2(b), where x0 rep-
resents the particle starting position. As shown in Sec. III,
such a description is justifiable when the chamber length L
exceeds its width W . The reason is that in this case in most
of the chamber, where x is not too close to L (i.e., to the
chamber wall containing the entrance), the two-dimensional
distribution function of the particle position depends only on
its x coordinate and is constant in the direction normal to the
x axis.

Particle trapping by the partially absorbing end point is
characterized by the effective trapping rate κ which is a func-
tion of the sleeve and chamber widths, w and W . It diverges
as w → W (absorbing boundary at x = L) and vanishes as
w → 0 (reflecting boundary at x = L). This function is given
by the Moizhes-Muratov-Shvartsman formula [22,23],

κ = πD

W ln {1/sin [πw/(2W )]} . (2.1)

Muratov and Shvartsman [23] proposed this formula in their
study of boundary homogenization in the problem of trap-
ping of particles diffusing in a semi-infinite space constrained
by a plain boundary periodically, with period W , cov-
ered by identical parallel absorbing strips of width w � W .
These authors adapted the exact solution of the equivalent
electrostatic problem published by Moizhes [22] in 1955.

Naturally, κ in Eq. (2.1) is also an effective trapping rate
in the two-dimensional problem of particles diffusing in a
semi-infinite plane perpendicular to the striped boundary. In
this two-dimensional problem particle motion is restricted
by a linear boundary containing alternating absorbing and
reflecting intervals of lengths w and W −w, respectively.
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Because of the symmetry, the latter problem is equivalent to
that for particles diffusing in a semi-infinite strip of width
W with reflecting side boundaries terminated by a reflecting
interval containing an absorbing window of width w in its
center. Thus κ in Eq. (2.1) is an exact effective trapping rate
for the inhomogeneous boundary constraining such a semi-
infinite strip. We use this expression in the case of a finite
strip of length L. As shown in Sec. III, the expression works
well when L � W .

Having in hand the effective one-dimensional description
of diffusion and trapping discussed above, one can find the
mean time it takes the particle starting from x0 to enter the
sleeve. This mean time, denoted by τ0(x0) = τl (x0)|l=0, is
the sum of the mean first-passage (FP) time from the parti-
cle starting point to the chamber wall containing the sleeve
entrance, τFP(x0 → L), and the mean time required for the
particle uniformly distributed over this wall (including the
entrance) to enter the sleeve, τ0(L):

τ0(x0) = τFP(x0 → L) + τ0(L). (2.2)

These two mean times are given by [21,24]

τFP(x0 → L) = L2 − x2
0

2D
, τ0(L) = L

κ
. (2.3)

Substituting these expressions, with κ given in Eq. (2.1), into
Eq. (2.2), we arrive at τl (x0), Eq. (1.1), with l = 0:

τ0(x0) = τl (x0)|l=0 = L2 − x2
0
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(2.4)

Which of the two terms, τFP(x0 → L) or τ0(L), dominates
depends on both the particle starting distance x0 and the ge-
ometric parameters L, W , and w.

Averaging τ0(x0) over x0 and assuming that all particle ini-
tial positions in the chamber are equally probable, we obtain

〈τ0(x0)〉= 1

L

∫ L

0
τ0(x0)dx0 = L2
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2
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)]
,

(2.5)

where the angular brackets 〈· · · 〉 denote the averaging. A
more accurate approximate expression for the averaged mean
first-passage time to the absorbing window on the wall of a
rectangular chamber is derived in Ref. [15], where it is given
in Eq. (99). In contrast to Eq. (2.5) this expression is an infinite
sum. One can check that both expressions are identical when
the chamber is long enough, and that Eq. (2.5) is simply the
first and last terms of the expression in Eq. (99).

In our further analysis we use the above one-dimensional
description with the trapping rate κ given by the boundary ho-
mogenization, Eq. (2.1), to find the particle mean first-passage
time to the binding site at the sleeve end.

B. Dynamics in the sleeve

The particle entering the sleeve either returns to the cham-
ber or gets trapped by the binding site. We assume that its
dynamics in the sleeve can be described as one-dimensional
diffusion in the interval of length l , L < x < L + l , terminated
by the absorbing and partially absorbing boundaries at x =
L + l and x = L, respectively (see Fig. 1). The latter provides

 L  L+ l

κ ′κ

 0
 x

x0

 j

FIG. 3. One-dimensional model used in our derivation of the
expression for the mean particle lifetime τl (x0) given in Eq. (1.1).
The derivation exploits the steady-state picture, with the steady state
maintained by a constant flux j injected at the particle starting
point x0.

an approximate description of the particle escape from the
sleeve to the chamber. A similar approach has been used in
three dimensions to describe the escape of a particle diffusing
in a membrane channel to the bulk reservoir [10,25]. To find
the trapping rate κ ′ entering the boundary condition at x = L
[see Fig. 1(b)], consider the case where the sleeve boundary
at x = L + l is reflecting and not absorbing. Then the parti-
cle distribution in the system approaches equilibrium at long
times with the equilibrium two-dimensional density given by
ρeq = (LW + lw)−1. The flux entering the sleeve from the
chamber at equilibrium is ρeqW κ . This flux is compensated
by the flux escaping from the sleeve to the chamber, which
we assume is given by ρeqwκ ′. The identity of the two fluxes
allows us to establish the relation between the trapping rates
κ ′ and κ ,

κ ′w = κW. (2.6)

Finally, we find κ ′ using the expression for κ in Eq. (2.1),

κ ′ = κ
W

w
= πD

w ln {1/sin [πw/(2W )]} . (2.7)

Being furnished with the one-dimensional descriptions of the
particle dynamics in the chamber and in the sleeve, we pro-
ceed to the derivation of the expression for τl (x0) in Eq. (1.1).

C. Mean lifetime of the particle

To derive Eq. (1.1) consider the steady-state concentration
c(x) of diffusing particles in the one-dimensional system of
length L + l shown in Fig. 3, where j is a constant flux
injected at point x0, 0 < x0 < L. The system consists of two
parts representing the chamber, 0 < x < L, and the sleeve,
L < x < L + l . The boundary at x = L separating these parts
is partially absorbing and characterized by the trapping rates
κ and κ ′ from the chamber and sleeve sides, respectively.
The boundary at x = 0 is reflecting, whereas the boundary at
x = L + l is absorbing. The relation between τl (x0), the flux
j, and the steady-state one-dimensional concentration c(x) is
given by

τl (x0) = 1

j
N, N =

∫ L+l

0
c(x)dx, (2.8)

where N is the total number of particles in the system in
the steady state. Thus, to find τl (x0) we need to know the
concentration profile c(x).
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In the sleeve part of the system c(x) satisfies

j = −D
dc(x)

dx
, (2.9)

subject to the absorbing boundary condition at x = L + l ,
c(L + l ) = 0. Solving Eq. (2.9), we find

c(x) = j

D
(L + l − x), L < x � L + l. (2.10)

At the boundary separating the two parts of the system, the
concentration c(x) makes a jump from c(L + ε)|ε→0 = jl/D
to c(L−ε)|ε→0. The jump magnitude is determined from the
flux conservation requirement,

j = κc(L − ε)|ε→0 − κ ′c(L + ε)|ε→0. (2.11)

We use this together with Eq. (2.7) to find c(L−ε)|ε→0:

c(L − ε)|ε→0 = 1

κ
( j + κ ′ c(L + ε)|ε→0) = j

D

(
W

w
l + D

κ

)
.

(2.12)

In the chamber part of the system, the concentration satisfies
Eq. (2.9) with c(L−ε)|ε→0 given in Eq. (2.12), when x0 <

x < L, and remains constant, equal to c(x0), when 0 � x < x0.
Solving Eq. (2.9), we obtain

c(x) = j

D

(
W

w
l + D

κ
+ L − x0H (x0 − x) − xH (x − x0)

)
,

0 < x � L, (2.13)

where H (z) is the Heaviside step function.
To find τl (x0) it remains to calculate the total number

of particles N by performing the integration of c(x) over x,
Eq. (2.8), and then find the ratio N/ j. One can check that
this leads to the expression for τl (x0) in Eq. (1.1), which is
one of the main results of this work. Averaging τl (x0) over x0,
assuming that all particle initial positions in the chamber are
equally probable, we arrive at

〈τl (x0)〉 = L2

3D
+ LW

πD
ln

[
1

/
sin

(
π

2

w

W

)]
+ Ll

D

W

w
+ l2

2D
.

(2.14)

This is another main result of the present study.

III. BROWNIAN DYNAMICS SIMULATIONS

In this section we compare our approximate analytical re-
sults for the mean times τ0(x0) and τl (x0) with corresponding
results obtained from two-dimensional Brownian dynamics
simulations for x0 = L. The goal is to test the accuracy of
our theoretical predictions and to establish the range of their
applicability as functions of the geometric parameters L, W ,
l , and w characterizing the system. We begin with the mean
search time τ0(x0) and then proceed to the mean lifetime
τl (x0).

A. Search for the sleeve entrance

The expressions in Eqs. (2.2) and (2.4) present the mean
search time τ0(x0) as the sum of two terms: τFP(x0 → L) and
τ0(L), which are given in Eq. (2.3). It is assumed that the
starting point of the particle is uniformly distributed over the

TABLE I. The relative error in per cents of our approximate
analytical expression for the mean particle lifetime τ0(L), Eq. (3.1),
in a rectangular chamber of length L and width W with an absorbing
window of width from Brownian dynamics simulations for three
values of the window size, w/W = 0.25, 0.5, and 0.75, and six
values of the chamber length, L/W = 0.25, 0.5, 0.75, 1.0, 2.0, and
3.0.

L/W

0.25 0.50 0.75 1.0 2.0 3.0

0.25 8.78 1.75 1.94 1.59 1.55 2.27

w/W 0.50 8.27 2.24 1.51 1.22 0.97 0.56

0.75 5.71 2.27 2.20 2.13 1.98 1.83

channel width as fixed x0. Then the presentation of τ0(x0) as
the sum and the expression for τFP(x0 → L), Eq. (2.3), are
exact results, while the expression for τ0(L) is an approxi-
mation derived by imposing the radiation boundary condition
at x = L with the trapping rate κ , Eq. (2.1), obtained using
boundary homogenization. To test the accuracy of this expres-
sion and to establish the range of its applicability, we compare
τ0(L) predicted by the theory and obtained from Brownian
dynamics simulations. According to Eq. (2.4) we have

τ0(L) = L

κ
= LW

πD
ln

[
1

/
sin

(
π

2

w

W

)]
. (3.1)

This time was compared with its counterpart obtained from
Brownian dynamics simulations. The relative error of our
theoretical predictions is presented in Table I for three values
of the sleeve entrance width, w/W = 0.25, 0.5, and 0.75, and
six values of the chamber length, L/W = 0.25, 0.5, 0.75, 1.0,
2.0, and 3.0.

In our simulations we run N = 200000 trajectories whose
starting points are uniformly distributed over the chamber wall
containing the sleeve entrance. A trajectory is terminated as
soon as it crosses the entrance for the first time. The mean
search time, denoted by τ

(sim)
0 (L), is defined as

τ
(sim)
0 (L) = 1

N

N∑
i=1

ti, (3.2)

where ti is the lifetime of the ith trajectory. For trajectories
starting from the entrance this lifetime is zero. Thus, the num-
ber of trajectories with non-zero lifetime is N (1 − w/W ). The
results presented in Table I show that Eq. (3.1) predicts τ0(L)
with high accuracy (the relative error less than 3%) when
the chamber length exceeds half of its width, L � 0.5W , and
fails for shorter chambers, L < 0.5W . This should be expected
since the derivation of Eq. (3.1) is based on the Moizhes-
Muratov-Shvartsman formula for κ , Eq. (2.1), obtained for the
semi-infinite system as mentioned above.

B. Mean lifetime of the particle

The expression in Eq. (1.1) presents the mean lifetime
τl (x0) as the sum of four terms, which have transparent phys-
ical interpretations. The first two terms give the mean time it
takes the particle to enter the sleeve from the chamber, τ0(x0),
whereas the last two terms give the mean lifetime of a particle
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FIG. 4. Numerical test of the l dependence of the mean particle
lifetime τl (x0 ), Eq. (1.1). To test the l dependence predicted by
Eq. (1.1) we wrote this equation in the form given in Eq. (3.4).
The straight lines in the figure are the linear dependence on l/L
in the right-hand side of Eq. (3.4) for three values of the slope,
w/W = 0.25, 0.5, and 0.75 from bottom to top. Symbols are the
values of the expression on the left-hand side of Eq. (3.4) found for
x0 = L using the mean lifetimes τ

(sim)
l (L) obtained from Brownian

dynamics simulations and τ0(L) given in Eq. (3.1).

entering the sleeve, i.e., starting from the sleeve entrance.
Thus, we have

τl (x0) = τ0(x0) + Ll

D

W

w
+ l2

2D
, (3.3)

The last term in this equation, l2/(2D), is the mean particle
lifetime on condition that the sleeve entrance is a reflecting
boundary, i.e., a particle entering the sleeve never returns to
the chamber. The second term, LlW /(Dw), can be interpreted
as the mean time spent by the particle on those segments of
the trajectories that escape from the sleeve to the chamber and
then come back to the sleeve.

As shown above, our formalism based on the boundary
homogenization provides an accurate description of τ0(x0),
Eq. (2.4), when the chamber length satisfies L � 0.5W . Now
the focus is on the l dependence of the mean lifetime τl (x0)
on condition that the chamber is long enough. To this end, we
rewrite Eq. (3.3) as

2l2

2D(τl (x0) − τ0(x0)) − l2
= w

W

l

L
, (3.4)

and test this relation at L = W using τ0(x0) given in Eq. (2.4)
and τl (x0) obtained from Brownian dynamics simulations.

In simulations we run N = 200000 trajectories whose
starting points are uniformly distributed over the chamber wall
containing the sleeve entrance, x0 = L. The trajectories are
terminated as soon as they touch the absorbing end of the
sleeve located at x = L + l [see Fig. 1(a)] for the first time.
The mean particle lifetime, denoted by τ

(sim)
l (x0), is defined

as

τ
(sim)
l (x0) = 1

N

N∑
i=1

ti, (3.5)

where ti is the lifetime of the ith trajectory. The simulations
were run for three values of the sleeve entrance width, w/W =
0.25, 0.5, and 0.75, and four values of the sleeve length, l/L =
0.5, 1.0, 1.5, and 2.0. According to Eq. (3.3) the difference
τl (x0) − τ0(x0) is independent of x0. Keeping this in mind, for
our simulations we chose x0 = L.

The comparison of the theoretical predictions with the
simulation results is presented in Fig. 4, where the three
straight lines are the linear dependences on the ratio l/L on
the right-hand side of Eq. (3.4) with the slopes w/W = 0.25,
0.5, and 0.75. The symbols are the values of the left-hand side
of this equation found using the mean lifetimes τ

(sim)
l (L) ob-

tained from Brownian dynamics simulations and τ0(L) given
in Eq. (3.1). One can see excellent agreement between the
theoretical predictions and the simulation results.

IV. DISCUSSION AND CONCLUDING REMARKS

Our analysis of trapping of diffusing particles by a hid-
den binding site is based on the reduction of the initial
two-dimensional problem to the effective one-dimensional
one (see Fig. 1). A specific feature of the geometry shown
in Fig. 1(a) is the abrupt change of the channel width.
This makes it impossible to use conventional reduction to a
one-dimensional description in terms of the generalized Fick-
Jacobs equation [26–34]. To bypass this difficulty, we took
advantage of the approximation based on boundary homog-
enization, which treats crossing the point where the channel
width changes abruptly as trapping by a partially absorbing
boundary. This approach has been used earlier in three di-
mensions [35–37]. Here, we apply it for the analysis of a
two-dimensional problem. Kalinay and Percus [38] validated
this approximation in both two and three dimensions by ana-
lytical consideration.

One of the main results of the present work is the expres-
sion in Eq. (1.1) which shows how the mean particle lifetime
τl (x0) depends on the geometric parameters of the system, L,
W , l , and w, as well as the particle initial position x0. Abrupt
change in the system width results in a slowdown of the
trapping kinetics and hence the increase of the mean particle
lifetime. The difference between τl (x0) and its counterpart in
the absence of the abrupt width change τl (x0)|w=W , Eq. (1.2),
is given by

τl (x0) − τl (x0)|w=W = LW

D

{
1

π
ln

[
1

/
sin

(
π

2

w

W

)]

+ l

w

(
1 − w

W

)}
. (4.1)

The two terms in the curly brackets have different origins.
The first term, which is independent of the sleeve length l ,
is associated with the first particle entry into the sleeve. The
second term, proportional to l , is associated with segments
of the particle trajectory returning to the chamber from the
sleeve. Because of the abrupt width change these fragments
stay in the chamber longer than their counterparts in the ab-
sence of the width change. Which of the two terms dominates
is controlled by the two dimensionless parameters, w/W and
l/w. The first term dominates in the case of short sleeves,
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where the sleeve length satisfies

l � w

π
ln

[
1

/
sin

(
π

2

w

W

)]/
sin

(
π

2

w

W

)]/(
1 − w

W

)
.

(4.2)
In the opposite limiting case, the delay time due to the width
jump is determined by the second term.

Another result of this work is a general methodology devel-
oped on the basis of the method of boundary homogenization.
We hope that this methodology will be used in the future to
analyze diffusive transport in two-dimensional systems with
abruptly changing width.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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