
PHYSICAL REVIEW E 103, 012132 (2021)

Phase transitions in a conservative game of life

André P. Vieira ,1 Eric Goles,2 and Hans J. Herrmann3,4

1Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao 1371, 05508-090 Sao Paulo, SP, Brazil
2Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avenida Diagonal las Torres 2640, Peñalolén, Santiago, Chile

3Departamento de Física, Universidade Federal do Ceará, 60451-970 Fortaleza, CE, Brazil
4ESPCI, CNRS UMR 7636 - Laboratoire PMMH, 75005 Paris, France

(Received 22 January 2020; revised 9 January 2021; accepted 12 January 2021; published 26 January 2021)

We investigate the dynamics of a conservative version of Conway’s Game of Life, in which a pair consisting
of a dead and a living cell can switch their states following Conway’s rules but only by swapping their positions,
irrespective of their mutual distance. Our study is based on square-lattice simulations as well as a mean-field
calculation. As the density of dead cells is increased, we identify a discontinuous phase transition between an
inactive phase, in which the dynamics freezes after a finite time, and an active phase, in which the dynamics
persists indefinitely in the thermodynamic limit. Further increasing the density of dead cells leads the system
back to an inactive phase via a second transition, which is continuous on the square lattice but discontinuous in
the mean-field limit.
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I. INTRODUCTION

Since it was proposed by Conway about 50 years ago
[1], the cellular automaton known as the Game of Life has
been investigated by statistical physicists as a paradigm for
emergent complex behavior based on simple, local rules. In its
original version, cells situated on a square lattice can be either
“alive” or “dead,” and switch synchronously from one state to
the other depending on how many of their eight neighboring
cells (a Moore neighborhood) are alive. More precisely, a
dead cell becomes alive if exactly three of its neighbors are
alive, while a living cell becomes dead unless it has two
or three neighboring living cells. Dynamical evolution under
these rules leads to a variety of complex behavior, in which
living cells are able to exhibit a mixture of static (or “still-
life”), oscillatory, and progressive (or “spaceship”) patterns,
depending on the initial conditions. From a computer-science
perspective, these patterns can be used to build a universal
Turing machine [2], which is able to simulate any circuit and
therefore any algorithm.

From the point of view of statistical physics, the automa-
ton gained widespread interest due to discussions [3–6] on
whether it represented an example of self-organized critical-
ity [7] in the absence of conserved quantities. It now seems
that the Game of Life is in a slightly subcritical state, corre-
sponding to a fine-tuned quasicritical nucleation process at the
border of extinction [8–11].

A related topic is the appearance of phase transitions
when some stochastic ingredient is added. Some previous
investigations [12,13] replaced the original deterministic au-
tomaton by a stochastic one, in which Conway’s rules were
obeyed or subverted with various probabilities. By tuning
those probabilities, the long-time behavior associated with
the dynamics can be changed from one in which all cells
are dead to another in which life thrives. Both continuous

[13] and discontinuous [12] phase transitions can be observed,
depending on the choice of probabilities. Another possibility
is to keep the deterministic nature of the automaton, but intro-
duce randomness by changing the nature of the lattice into a
small-world network, obtained by replacing nearest-neighbor
links with long-range ones [14]. Increasing the probability
of such rewiring induces a continuous nonequilibrium phase
transition from an inactive (sparse) state to an active (dense)
one.

A common feature of these previous studies is that they
preserve the nonconservative nature of the dynamical rules.
Here, on the other hand, we modify the dynamical rules in
order to enforce conservation of the number of cells of both
types. We work on the square lattice, treating the system as
asynchronous, and at each time step we randomly select an
“unsatisfied” pair of cells, consisting of a living cell that is to
become dead and a dead cell that is to become alive accord-
ing to Conway’s (local) rules, and we switch their positions,
irrespective of their mutual distance. The evolution freezes
if there are no remaining unsatisfied living or dead cells.
By keeping track of the dependence of the average freezing
time and of the average fractions of unsatisfied cells on the
lattice size, we identify a discontinuous nonequilibrium phase
transition, induced by increasing the density of dead cells,
between a state in which the evolution freezes at a finite time
and another state in which the dynamics persists indefinitely.
Further increasing the density of dead cells leads the system
back to an inactive phase via a second but now continuous
transition.

This paper is organized as follows. In Sec. II, we describe
the details of our simulations, also discussing some peculiar
finite-size effects, as well as the nature of the phase transitions.
In Sec. III, we present a mean-field calculation which is able to
reproduce various features of our simulation results. We close
the paper with a discussion in Sec. IV.
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FIG. 1. Examples of configurations generated by the conserva-
tive Game of Life upon freezing, on a square lattice with L = 32.
Satisfied (unsatisfied) living cells are shown in red (yellow), while
satisfied (unsatisfied) dead cells are shown in blue (cyan). The den-
sity of dead cells is (a) ρd = 0.1, (b) ρd = 0.46, (c) ρd = 0.54, and
(d) ρd = 0.9.

II. SIMULATIONS

Following Conway [1], we consider a square lattice and
assume that each cell in a L × L lattice can be either in state
a (“alive”) or in state d (“dead”), and has eight neighboring
cells, i.e., a Moore neighborhood. We implement periodic
boundary conditions. A living cell is satisfied if either two
or three of its neighbors are also alive, and is otherwise
unsatisfied; a dead cell is satisfied unless exactly three of
its neighbors are alive. In contrast to the original version of
the Game of Life, we assume a conservative, asynchronous,
and nonlocal dynamics: at each time step, we randomly se-
lect an unsatisfied living cell and an unsatisfied dead cell
and we switch their states, also checking for changes in the
satisfaction of any neighboring cell, and then we repeat the
previous steps. When there are no more unsatisfied cells in
either state a or state d , the evolution is frozen, which is
bound to happen eventually for any finite system. Notice that
the nonlocal character of the switching does not imply that
the model has a mean-field character, as the satisfaction rules
are still locally defined. This is analogous to what happens
for the conservative contact process [15], which remains in
the directed-percolation universality class despite nonlocal
switches. Although the conservative and random character of
the dynamics does not allow for the appearance of oscillatory
or spaceship patterns, we do observe familiar static patterns
when the density of dead cells is large enough, as illustrated
in Fig. 1(d). For very small densities of dead cells, most living
cells are unsatisfied upon freezing, as shown in Fig. 1(a),

while for intermediate densities, dead and living cells arrange
themselves in domains consisting of lines of alternating type,
as shown in Figs. 1(b) and 1(c).

We work with lattice sizes ranging from L = 16 to L =
23 000, performing averages over up to 105 random initial
configurations, and for each configuration we fix the densities
ρd and ρa = 1 − ρd of cells in states d and a, respectively.
These densities are kept invariant by the dynamics. Time in-
crements between consecutive simulation steps are measured
in units of the inverse number of unsatisfied cells, being given
by

�t = 1

Nu,a + Nu,d
, (1)

in which Nu,a and Nu,d are the numbers of unsatisfied cells in
states a and d , respectively. We keep track of the fractions of
unsatisfied cells in each state,

nu,a ≡ Nu,a

ρaL2
and nu,d ≡ Nu,d

ρd L2
, (2)

in which ρaL2 and ρd L2 are, respectively, the total number of
living and dead cells. Notice from these definitions that irre-
spective of the density ρd of dead cells, we have 0 � nu,a � 1
and 0 � nu,d � 1. We also register the accumulated time T
until a simulation freezes, as well as the survival probability
Ps(t ), defined as the fraction of simulations reaching time
t . Depending on the density ρd of dead cells, we identify
three dynamical regimes, which we discuss in the paragraphs
below. The resulting phase diagram is summarized in Fig. 2.
In order for the system to be in the active phase, the long-time
averages of both nu,a and nu,d must remain nonzero in the
thermodynamic limit, while in the inactive phases at least one
of these fractions reaches zero after a finite time. We adopt
the long-time limit of nu,a as the order parameter in the active
phase, but we checked that the qualitative behavior of the
corresponding limit of nu,d is essentially the same. We focus
first on the case of sufficiently low densities of dead cells,
ρd < ρ

(1)
d = 0.52223(2). As the system size is increased for

a fixed ρd � ρ
(1)
d , the long-time survival probability first in-

creases and then decreases to zero, as shown in Fig. 3(a). This
is reflected in the time dependence of the average behavior
of the fraction nu,d of unsatisfied dead cells, which, as the
system size is increased for ρd = 0.52216 < ρ

(1)
d , exhibits an

exponential drop that is visible around t � 100, whose depth
increases with the system size; see Fig. 3(b), left panel. We
thus expect that simulations freeze due to the fact that even-
tually there are no unsatisfied dead cells, and this is indeed
verified. In the whole regime ρd < ρ

(1)
d , we observe that the

average freezing time increases with ρd , diverging approxi-
mately as − ln |ρd − ρ

(1)
d |, and that the corresponding average

fraction nu,a of unsatisfied living cells decreases with ρd . For
this last quantity, this is shown in Fig. 2. We emphasize that as
the survival probability first increases and then decreases with
L for a fixed ρd � ρ

(1)
d , it is necessary to be extra cautious

about finite-size effects.
When ρd is slightly larger than ρ

(1)
d , the drop of nu,d (t )

around t � 100 becomes asymptotically independent of L,
as suggested by Fig. 3(b), right panel. On the other hand,
the survival probability tends to 1 as L → ∞; see Fig. 3(a),
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FIG. 2. Phase diagram of the conservative Game of Life with a
density ρd of dead cells, as derived from the average fraction nu,a of
unsatisfied living cells. Results from simulations are shown as black
continuous lines with circles, while mean-field results, discussed
in Sec. III, are shown as blue dashed curves. The shaded region
corresponds to the active phase as determined from simulations.
Inactive phases exist both in the small-ρd and large-ρd limits. The
insets present closer views of the behavior of nu,a around the density
ρ

(1)
d � 0.52223 (simulations) or ρ

(mf )
d � 0.501850 (mean-field) sep-

arating the small-ρd inactive phase from the active phase. Statistical
error bars for the simulation curves are, at most, the size of the
symbols. In the active phase, nu,a is obtained from the t → ∞ limit
of the fraction of unsatisfied living cells, while in the inactive phases,
it represents the value of the same fraction upon freezing, which
happens at a finite time. All simulation values of nu,a correspond
to the largest sizes studied for each value of ρd , and are expected
to be indistinguishable from the infinite-size results at the scale of
the plots. The mean-field approximation predicts an active phase
comprising the region for which nu,a is a constant.

upper plot. Notice from Fig. 3(b) that the t → ∞ limit of
nu,d (t ) is size independent and varies only slightly with ρd ,
although for ρd < ρ

(1)
d that value is never reached for L → ∞,

as the system freezes at a finite time. We therefore expect a
discontinuous behavior for both nu,d and nu,a at ρd = ρ

(1)
d ,

and this is confirmed in the simulations; see Fig. 2, inset. This
discontinuous transition between the small-ρd inactive phase
and the active phase is reproduced by a mean-field treatment
discussed in Sec. III. Inside the active phase, the freezing time
diverges exponentially with the system size L. The long-time
value nu,a(t → ∞) first increases with ρd , reaching a max-
imum around ρd � 0.7, and then decreases, as illustrated in
Figs. 2 and 4 (left panel). When ρd approaches ρ

(2)
d � 0.961,

the decrease of nu,a(t → ∞) is compatible with a power law,

nu,a(t → ∞) ∝ ∣∣ρd − ρ
(2)
d

∣∣β,

as suggested by the finite-size scaling analysis presented in
Fig. 4 (right panel), based on the ansatz

nu,a(t → ∞) = L−β/ν⊥ f (L1/ν⊥ε),

with ε = ρd − ρ
(2)
d . The best data collapse, obtained using

the PYFSSA package [16], corresponds to ρ
(2)
d = 0.961(5),

FIG. 3. (a) Stationary (t → ∞) survival probability as a func-
tion of the linear system size L for values of ρd close to ρ

(1)
d �

0.52223. Here we take t = 107 to mean t → ∞, but we checked that
taking instead t = 106 yields indistinguishable results. Error bars,
not shown, are, at most, the size of the symbols. Within statisti-
cal errors, the stationary survival probability exactly for ρd = ρ

(1)
d

is asymptotically size independent, being approximately equal to
50%. (b) Time dependence of the fraction nu,d of unsatisfied dead
cells for ρd = 0.52216 < ρ

(1)
d and ρd = 0.5224 > ρ

(1)
d , illustrating

the marked distinction in the finite-size behavior. For each time t ,
averages are taken only over simulations reaching t .

ν⊥ = 1.54(5), and β � 0.52(5). The same parameters yield
a collapse of data for nu,d (t → ∞), although with a narrower
scaling region.

At the critical point, nu,a(t ) follows a power law t−θ , with
θ � 0.15; see Fig. 4 (left panel). Close to the critical point and
inside the active phase, we expect this power law to be obeyed
up to a relaxation time τn, which can be estimated by

τ−θ
n ∝ nu,a(t → ∞) ∝ ∣∣ρd − ρ

(2)
d

∣∣β,

implying

τn ∝ ∣∣ρd − ρ
(2)
d

∣∣−ν‖
, ν‖ = β

θ
� 3.5.

We therefore expect a dynamical exponent z = ν‖/ν⊥ govern-
ing the relation between the relaxation time and the system

012132-3



VIEIRA, GOLES, AND HERRMANN PHYSICAL REVIEW E 103, 012132 (2021)

FIG. 4. Left: Time dependence of nu,a for L = 1024 and large
values of ρd inside the active phase. The dashed line has slope
−0.15, the same as that obtained by fitting data for ρd = 0.961 using
a power law in the corresponding range. The stronger downward
slope of the curve for ρd = 0.961 after t = 104 is a finite-size effect.
Right: Finite-size scaling plots of nu,a(t → ∞) for various system
sizes L, illustrating data collapse with ρ

(2)
d � 0.961, ν⊥ � 1.54, and

β � 0.52. The dashed line has slope β in a log-log scale.

size at the critical point,

τn ∝ Lz, z = β

θν⊥
� 2.25. (3)

Finally, we discuss the case of even larger densities of
dead cells, ρd > ρ

(2)
d . Now the fraction of living cells is so

small that starting from a random configuration, most living
cells only have dead neighbors, so that the fraction of unsat-
isfied living cells is very close to unity, while the fraction of
unsatisfied dead cells is very small. As shown in Figs. 5(a)
and 5(b), nu,d (t ) first increases, then reaches a maximum
before starting to decrease with time, whereas nu,a(t ) steeply
decreases as nu,d (t ) increases, and then closely follows the
behavior of nu,d (t ) at later times. These long-time decays
are faster than a power law, but slower than an exponential,
possibly suggesting a power law with logarithmic corrections.
The initial behavior of nu,d (t ) and nu,a(t ) can be understood
by inspection of the relevant local configurations around an
unsatisfied dead cell to be switched. Due to the small num-
ber of living cells, these relevant configurations are those in
which, before the switch, almost all neighboring living cells
are unsatisfied, while all neighboring dead cells are satisfied.
This changes after the switch, as illustrated for some con-
figurations in Fig. 6. As time advances, switches modify the
distribution of configurations, interrupting and then reversing
the increase of nu,d (t ). For sufficiently large L, the dynamics
is eventually frozen due to the disappearance of unsatisfied
living cells, in contrast to what happens for small ρd , a case
in which freezing is due to the disappearance of unsatisfied
dead cells. Nevertheless, both fractions of unsatisfied cells
upon freezing approach zero in the thermodynamic limit, as
shown in Figs. 5(a) and 5(b).

On the other hand, the average freezing time 〈T 〉 grows
with the system size L, at most, with a power law rather than
an exponential form for large L; see Fig. 5(c). Assuming a

(a) (b)

(c) (d)

FIG. 5. Plots of the behavior of various quantities in the large-ρd

inactive phase. (a) Time dependence of the fraction of unsatisfied
dead cells for ρd = 0.98 and various linear system sizes L. (b) Time
dependence of the fraction of unsatisfied living cells for ρd = 0.98
and various system sizes. In both (a) and (b), large fluctuations at
later times are associated with freezing events. (c) Average freezing
time as a function of L, for different values of ρd . The dashed
line is proportional to L2.25. (d) Parametric plots of the fraction of
unsatisfied dead cells upon freezing, nu,d (T ), vs average freezing
time 〈T 〉, for different values of ρd . Each point corresponds to a
different choice of L [those shown in (c)]. As clear from (c), 〈T 〉
increases with L.

linear relation between 〈T 〉 and τn at the critical point, that
power law would be Lz, with z � 2.25, which is compatible
with the behavior observed in Fig. 5(c). We also observe that
the distribution of freezing times (not shown) is quite narrow,

FIG. 6. Examples of four local configurations around an ini-
tially unsatisfied dead cell, relevant in the large-ρd limit, for which
most likely each configuration is surrounded by dead cells. Satisfied
(unsatisfied) dead cells are shown in blue (cyan), while satisfied
(unsatisfied) living cells are shown in red (yellow). The upper (lower)
row indicates situations before (after) the central cell is switched to a
living cell. Notice the increase in the number of unsatisfied dead cells
from 1 to 2 (first column) or 3 (second, third, and fourth column) and
the decrease in the number of unsatisfied living cells from 3 (first
column) or 4 (second, third, and fourth column) to 0 (first and second
columns), 1 (third column), or 3 (fourth column). Take into account
that although not shown in the pictures, the central dead cells in the
upper row become satisfied after switching, while the central living
cells in the lower row were unsatisfied before switching.
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with the survival probability remaining equal to unity up to
approximately the average freezing time for each choice of ρd

and L, after which it decreases to zero exponentially, with a
characteristic time roughly equal to the average freezing time
itself. This is therefore an inactive phase, but with a different
character than the one observed for small values of ρd , in
which characteristic times remain finite in the L → ∞ limit.

Finite-size effects in the large-ρd inactive phase are influ-
enced by the probability of a dead cell being unsatisfied in the
initial random configuration. The system size Ld for which we
expect one unsatisfied dead cell in the initial configuration,
therefore kicking off the dynamics for most configurations, is
given by the solution of

1

ρd L2
d

=
(

8
3

)
ρ5

dρ3
a , (4)

in which we imposed the condition that a dead cell is unsat-
isfied only if it has exactly three living cells among its eight
neighbors. The distinction between the regimes L < Ld and
L > Ld is reflected in the behavior of nu,d (T ), the fraction
of unsatisfied dead cells upon freezing, versus the average
freezing time, shown in Fig. 5(d) for three values of ρd in the
large-ρd inactive phase. When L � Ld , nu,d (T ) takes values
of the order of the right-hand side of Eq. (4), whereas it be-
comes smaller and smaller as L (and therefore 〈T 〉) increases,
leading to the interpretation that this corresponds to an inac-
tive phase with somewhat peculiar properties, resembling a
critical phase.

The set of critical exponents for the transition between
the active phase and the large-ρd inactive phase is therefore
β � 0.52, ν⊥ � 1.54, ν‖ � 3.5, z � 2.25, and θ � 0.15. This
set is quite distinct from both the ones characterizing the
directed-percolation universality class and from the sets ob-
tained for conservative (fixed-energy) sandpile models [17], as
well as the sets corresponding to other (nonconservative) vari-
ants of the Game of Life [13,14]. It is also quite different from
the continuous nonequilibrium phase transitions’ mean-field
exponents β = θ = ν‖ = 1, ν⊥ = 1/2, and z = 2 [18,19].

III. A MEAN-FIELD APPROXIMATION

Features resembling the ones described in the previous
section can be reproduced by a simple mean-field calculation,
which can provide an estimate of the dependence, on the
density of dead cells, of the asymptotic values of nu,a and nu,d .
The calculation proceeds by disregarding spatial correlations,
effectively replacing the Moore-neighborhood square lattice
by a Cayley tree with coordination number 8, which has no
loops. (As a matter of fact, as we are interested in what
happens in the deep interior of the tree, we effectively work
on the Bethe lattice; see, e.g., Ref. [20].)

The relevant variables for the calculation are the average
fractions of cells of both types having k living cells as their
neighbors. We denote these fractions by φd,k for the dead cells
and by φa,k for the living cells. We have

nu,d = φd,3 and nu,a = 1 − φa,2 − φa,3. (5)

We now consider all the possible exchanges that can hap-
pen in the lattice, which involve switching the positions of
a selected unsatisfied dead cell (that always has exactly three

neighboring living cells) and of a selected unsatisfied living
cell (a cell with less than two or more than three neighboring
living cells). We ignore the possibility that the selected un-
satisfied cells are mutual neighbors, a situation which occurs
with negligible probability in the thermodynamic limit.

By analyzing each possible exchange at a time, we can
keep track of the change in the average number of cells of each
type having k neighboring living cells (0 � k � 8). Denoting
these numbers by Na,k and Nd,k , with

Na,k = ρaL2φa,k and Nd,k = ρd L2φd,k, (6)

in which, here, L2 denotes the number of sites in the lattice,
the corresponding changes can be calculated by taking into
account that given a specific movement involving a selected
unsatisfied living cell with 
 living neighbors: (i) the selected
unsatisfied dead cell moves into a neighborhood which con-
tains 
 living cells, thus reducing Nd,3 and increasing Nd,


both by p
, the probability of selecting an unsatisfied living
cell with 
 living neighbors; (ii) the selected unsatisfied living
cell moves into a neighborhood containing three living cells,
thus increasing Na,3 and reducing Na,
 both by p
; (iii) the old
neighbors of the selected dead cell now have one more liv-
ing neighbor, reducing Nd,k and Na,k while increasing Nd,k+1

and Na,k+1 by amounts which depend both on 
 and on the
probabilities of finding a neighbor with k living neighbors
(0 � k � 7); (iv) the old neighbors of the selected living cell
now have one less living neighbor, reducing Nd,k and Na,k

while increasing Nd,k−1 and Na,k−1 by amounts which depend
both on 
 and on the probabilities of finding a neighbor with k
living neighbors (1 � k � 8). In order to properly account for
the various possibilities and their respective probabilities, it
should be kept in mind that φa,k and φd,k , for a given k, com-
bine different local configurations containing k neighboring
living cells.

Going through the above considerations, we can write

�Ns,k =
∑

,k

[
Us,k,
 + Ws,k,
φ

(8)
s,k−1 + Xs,k,
φ

(8)
s,k

+ Ys,k,
φ
(0)
s,k + Zs,k,
φ

(0)
s,k+1

]
p
 (7)

in which s ∈ {a, d} indicates the type of cell, Us,k,
 ∈ {0,±1}
comes from points (i) and (ii) above, Ws,k,
 � 0 and Xs,k,
 � 0
come from the increases and decreases in Ns,k due to point
(iii) above, while Ys,k,
 � 0 and Zs,k,
 � 0 come from the
decreases and increases in Ns,k due to point (iv) above. Ex-
plicitly, we have Us,k,
 = Ws,k,
 = Xs,k,
 = Ys,k,
 = Zs,k,
 = 0
for 
 = 2 or 
 = 3, while, for 
 = 2 and 
 = 3,

Ud,k,
 = δk,
 (k = 3), Ud,3,
 = −1, (8)

Ua,k,
 = −δk,
 (k = 3), Ua,3,
 = 1, (9)

Wd,k,
 = 5(1 − δk,0), Wa,k,
 = 3(1 − δk,0), (10)

Xd,k,
 = −5(1 − δk,8), Xa,k,
 = −3(1 − δk,8), (11)

Yd,k,
 = −(8 − k)(1 − δk,0), Ya,k,
 = −k(1 − δk,0), (12)

Zd,k,
 = (8 − k)(1 − δk,8), Za,k,
 = k(1 − δk,8). (13)
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The factors

φ
(8)
s,k ≡ C(8)

k φs,k∑7
j=0 C(8)

j φs, j

in Eq. (7), with

C(8)
k ≡

(
7

k

)/(
8

k

)
,

represent the conditional probabilities that a type-s old neigh-
bor of the selected dead cell had k living neighbors, given the
allowed range 0 � k � 7, while the analogous factors

φ
(0)
s,k ≡ C(0)

k φs,k∑8
j=1 C(0)

j φs, j

,

with

C(0)
k ≡

(
7

k − 1

)/(
8

k

)
,

represent the conditional probabilities that a type-s old neigh-
bor of the selected living cell had k living neighbors, given the
allowed range 1 � k � 8. The binomial coefficients account
for the number of ways of arranging the seven remaining
neighbors of a site neighboring a central site, out of the various
possibilities for the configurations of those neighbors. Finally,
p
 can be written as

p
 = φ1,


1 − φ1,2 − φ1,3
(
 = 2, 3),

with p2 = p3 = 0.
We can write differential equations for the time evolution

of the fractions φs,k by noting that as stated in the previous
section, a single exchange advances time by �t such that

(�t )−1 = Nu,d + Nu,a = L2[ρdφ0,3 + ρa(1 − φ1,2 − φ1,3)].
(14)

In the limit L → ∞, �t approaches zero and we obtain, by
using Eq. (6),

dφs,k

dt
= [ρdφ0,3 + (1 − ρd )(1 − φ1,2 − φ1,3)]

ρs
�Ns,k, (15)

with �Ns,k given by Eq. (7). We numerically solved the differ-
ential equations (15) starting from random initial conditions,
which correspond to

φs,k (0) =
(

8
k

)
ρ8−k

d ρk
a .

For 0 � ρd � ρ
(mf)
d � 0.501850, φd,3 (equal to the fraction

of unsatisfied dead cells nu,d ) is the only φs,k that eventually
reaches zero at a freezing time 〈T 〉, stopping the dynamics,
with a finite fraction nu,a of unsatisfied living cells which be-
comes smaller as ρ

(mf)
d is approached from below (see Figs. 3

and 7), while the freezing time becomes larger. At the critical
value ρ

(mf)
d , as shown in Fig. 7, the mean-field freezing time

tends to a finite value 〈T 〉(mf) � 3.23148, at which nu,d and
its time derivative both become zero, right before nu,d rises
again, approaching a value 3.4 × 10−4 as t → ∞. For larger
values of ρd , there are no zeros for any φs,k (t ), meaning that
the freezing time is infinite, a signature of the active phase.
Finally, as shown in the left inset of Fig. 3, the fraction

FIG. 7. Time dependence of the fraction of unsatisfied dead cells
nu,d (solid curves) and of unsatisfied living cells nu,a (dashed curves
with the same corresponding color) according to the mean-field
approximation, for various values of the density ρd of dead cells.
Notice that nu,d does not reach zero at a finite time for the largest
densities shown (brown and blue solid curves), ρd = 0.502 > ρ

(mf)
d

and ρd = 0.51 > ρ
(mf)
d , while for ρd = ρ

(mf)
d (thick green curve), nu,d

becomes infinitesimally close to zero (hidden by the logarithmically
vertical scale) before rising again and asymptotically approaching
a value 3.4 × 10−4 as t → ∞. The dashed curves for ρd = ρ

(mf)
d ,

ρd = 0.502, and ρd = 0.51 are almost indistinguishable at this scale.

of unsatisfied living cells nu,a as ρd is increased towards
ρ

(mf)
d approaches a nonzero value n(mf)

u,a � 0.263120, which dif-
fers only slightly from the mean-field result nu,a(t → ∞) �
0.258111 obtained throughout the active phase, as seen in the
blue dashed curve in Fig. 7.

Therefore, in agreement with simulations, the mean-field
approximation predicts a discontinuous transition between a
small-ρd inactive phase and an intermediate-ρd active phase.
As shown in Fig. 3, there is quite good quantitative agree-
ment between simulations and mean-field theory for densities
ρd � 0.2, regarding the fraction of unsatisfied living cells
upon freezing, but also (not shown) the average freezing time.
Notice also the qualitative agreement, in the neighborhood of
the transition, between the behaviors of the curves for nu,d (t )
obtained from the mean-field calculation (continuous red and
brown curves in Fig. 7) and the large-L simulation results
[extrapolation of the curves in Fig. 3(b)].

The freezing time remains infinite for intermediate den-
sities of dead cells, ρ

(mf)
d < ρd < ρ

(mf2)
d � 0.878211, but

becomes finite again for higher densities, ρ
(mf2)
d < ρd < 1,

signaling the onset of a second, large-ρd inactive phase, al-
though simulations predict a critical-like behavior for the
whole region ρ

(2)
d < ρd < 1. This discrepancy between sim-

ulation and mean-field theory comes from the fact that as
discussed towards the end of Sec. II, at higher densities most
exchanges on the square lattice involve isolated unsatisfied
living cells with eight dead neighbors, virtually all of which
remain unsatisfied after the switching, so that new unsatisfied
dead cells mostly appear in the neighborhood of the rare
unsatisfied dead cells generated by the initial condition. Such
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correlations between dead cells cannot be captured by our
mean-field treatment.

IV. CONCLUSIONS

We showed, through simulations and a mean-field cal-
culation, that a conservative version of the Game of Life
exhibits two nonequilibrium phase transitions separating an
active phase from two distinct inactive phases as the density
ρd of dead cells is increased. The long-time fractions nu,a and
nu,d of unsatisfied living and dead cells are both nonzero in
the active phase, while, in the thermodynamic limit, the dy-
namics in the small-ρd (large-ρd ) inactive phase is interrupted
when nu,d (nu,a) becomes zero. The transition between the
small-ρd inactive phase and the active phase is discontinuous,
according to both simulations and mean-field theory. On the
other hand, simulations show that the transition between the
active phase and the large-ρd phase is continuous, with a set
of critical exponents that, to the best of our knowledge, does
not correspond to any of the known universality classes for
multicomponent nonequilibrium systems [21].

Improvements to the mean-field approximation can be
achieved by analyzing all 28 possible local configurations of
neighbors surrounding a given cell in order to identify the
restrictions imposed by the fact that some of the neighbors
of the central cell are also mutual neighbors. This requires
dealing not with the fractions of cells having a given number
of living cells in their neighborhood, but with the fractions of
cells with a specific configuration of neighbors. Thus, instead
of a set of 16 differential equations, one ends up with a set
of 29 differential equations to write and solve. We leave this

improvement for future investigations. The simple mean-field
calculation described in this paper can nevertheless be used to
study phase transitions in other conservative models, such as
the extensions of Schelling’s model recently investigated by
the present authors [22].

Finally, an interesting question arises from the fact that
other nonequilibrium models, such as the contact process, can
be equivalently defined either (i) in terms of fixed transition
rates, with no conserved quantities, and with the densities of
each type of cell being determined by the dynamics, or (ii)
by fixing the densities of each type of cell, with the aver-
age value of the transition rate determined by the dynamics
[15]. One might wonder whether there is a nonconservative
version of the Game of Life discussed here, but defined in
terms of fixed transition rates, and how that would be related
to the original Game of Life. The fact that the dynamical
rules are non-Abelian—in other words, that the order in
which movements are performed does affect the resulting
configurations—suggests that such relation, if it indeed exists,
would not be simple. This is also the reason why we resist the
temptation to associate the large-ρd inactive phase identified
in our work with the quasicritical behavior of the original
automaton [8–11].
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