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Realistic nonlocal refrigeration engine based on Coulomb-coupled systems
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We investigate, in detail, a triple quantum dot system that exploits Coulomb coupling to achieve nonlocal
refrigeration. The system under investigation is a derivative of the nonlocal thermodynamic engine, originally
proposed by Sánchez and Büttiker [Phys. Rev. B 83, 085428 (2011)], that employs quadruple quantum dots to
attain efficient nonlocal heat harvesting. Investigating the cooling performance and operating regime using the
quantum master equation approach, we point out some crucial aspects of the refrigeration engine. In particular,
we demonstrate that the maximum cooling power for the setup is limited to about 70% of the optimal design.
Proceeding further, we point out that to achieve a target reservoir temperature lower than the average temperature
of the current path, the applied voltage must be greater than a given threshold voltage VTH that increases with the
decrease in the target reservoir temperature. In addition, we demonstrate that the maximum cooling power, as
well as the coefficient of performance, deteriorates as one approaches a lower target reservoir temperature. The
triple quantum dot system, investigated in this paper, combines fabrication simplicity along with descent cooling
power and may pave the way towards the practical realization of efficient nonlocal cryogenic refrigeration
systems.
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I. INTRODUCTION

With scaling technology rapidly invading the nanodomain,
the tremendous rise in dissipated heat density and hence oper-
ating temperature has drawn significant attention to electrical
refrigeration in nanoscale dimensions [1–29]. In addition,
sophisticated experiments on exploratory technologies, such
as quantum computation, spin and optics based computation,
etc., occasionally call for electrical refrigeration at cryogenic
temperatures in the nanometer range length scale. However,
the refrigeration performance in such nanoscale systems is
often affected drastically by the large lattice heat flux, particu-
larly when both the region of refrigeration and heat dissipation
lie along the path of current flow and are separated by a few
nanometers in space. Despite lots of effort to reduce lattice
thermal conductance [30–41], the performance of refrigera-
tion nanosystems is still affected by rapid reverse heat flux.
This effect poses a threat to the refrigeration performance
as device channels are gradually invading the nanodomain.
An attempt to improve the refrigeration performance by en-
gineering lattice thermal conductance generally deteriorates
the electronic conductivity and hence the cooling power. As
an alternative, one of the major research foci, concerning
a nanoscale refrigeration engine, is to facilitate independent
manipulation of the electron transport path and lattice heat
conduction path by introducing spatial separation between the
current path and the target reservoir [2,3,6–8,42–44]. This
phenomenon of refrigerating a remote target reservoir, which
is spatially separated from the current track, is known as
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nonlocal refrigeration [2,3,6–8,42–44]. Thus, nonlocal refrig-
eration systems are three-terminal systems in which input
power is delivered between two terminals to extract heat from
a remote target reservoir through the third terminal. In this
case, optimizing the lattice heat transport path, in an attempt
to improve refrigeration performance, can be accomplished
without modifying the current conduction path. These kinds
of systems thus enable independent optimization of the lat-
tice thermal conductance and the current conductivity [2,3,6–
8,42–44]. In addition, due to the nonlocality of the electronic
transport path, the refrigerated region is significantly shielded
from reverse heat flux owing to the Joule dissipation.

Sánchez and Büttiker proposed and demonstrated the
optimal nonlocal thermodynamic engine based on Coulomb-
coupled systems in the literature [1]. Subsequently, Zhang
et al. analyzed the effect of suboptimal conditions on the
refrigeration performance of the nonlocal thermodynamic
engine in detail [2]. Soon, various proposals for realistic
construction and implementation of suitable conditions for
optimal operation of the nonlocal refrigeration engine were
put forth. Such proposals include exploitation of reservoirs
with a gapped density of states, superconducting reservoirs,
and quantum dot filters to achieve efficient refrigeration [3–5].
Subsequent analysis of heat engine driven nonlocal refrig-
eration and the effect of cotunneling on the refrigeration
performance was carried out in Refs. [6–8]. Recently, exper-
imental demonstration of a nonlocal heat and refrigeration
engine was also carried out in Refs. [45–47].

As stated above, the system configuration for the opti-
mal operation of the nonlocal heat and refrigeration engine
was elaborated in the literature by Sánchez and Büttiker [1].
In addition, Sánchez and Büttiker also conceived the idea
and considered the practical possibility of achieving efficient
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FIG. 1. (a) Schematic of the triple quantum dot refrigeration engine under consideration in this paper. The system consists of triple dots
S1, S2, and G1, which are electrically coupled to the macroscopic electron reservoirs L, R, and G, respectively. S1 is tunnel coupled to S2 and
capacitively coupled to G1. The tunnel-coupled quantum dots S1 and S2 share a staircase ground state configuration with ε2

s = ε1
s + �ε. We

will designate this setup as system I. (b) Schematic of the recently proposed optimal refrigerator using Coulomb-coupled systems [1]. This
refrigeration engine consists of two Coulomb-coupled quantum dots, S1 and G1. S1 is coupled to reservoirs L and R with coupling energy γl

and γr , respectively. Dot G1 is electrically connected to the remote reservoir G via coupling energy γg and capacitively coupled to S1 with
Coulomb coupling energy Um. We will call this system II.

nonlocal heat harvesting, and hence refrigeration, by employ-
ing a quadruple quantum dot setup, where two additional
quantum dots serve as energy filters. However, a compact and
detailed investigation on the performance of such proposed
strategies has not been conducted to date. In this paper, we
investigate, in detail, a Coulomb-coupled system based setup
[depicted in Fig. 1(a) as system I] that employs triple quantum
dots to achieve efficient nonlocal refrigeration. Although a
derivative of the quadruple quantum dot refrigeration engine
originally conceived and proposed by Sánchez and Büttiker
[1], the triple quantum dot system ensures fabrication simplic-
ity by employing only a single quantum dot filter instead of
dual filters. The refrigeration engine is theoretically analyzed
using the quantum master equation approach for such systems
in the sequential tunneling limit [48]. It is demonstrated that
the maximum cooling power (heat extracted per unit time)
for the investigated triple quantum dot refrigeration engine
(system I) is limited to about 70% of that for the optimal
design [depicted in Fig. 1(b) as system II] [1]. We note that
the triple quantum dot setup (system I) integrates fabrication
simplicity along with decent cooling power, making such a
design suitable for practical implementation and applications.
At the end, the sequential transport phenomena leading to
performance deterioration of the setup are investigated.

This paper is organized as follows. In Sec. II, we briefly
describe the configuration of system I along with the transport
formulation employed to analyze the performance of the re-
frigeration engine. In Sec. III, we investigate the performance
and region of operation of the refrigeration engine for two
different cases: (i) TG = TL(R) and (ii) TG < TL(R). This section
also presents a performance comparison of the demonstrated
refrigeration engine (system I) with the optimal setup pro-
posed in the literature [1] in addition to an investigation of

the sequential processes leading to performance deterioration
of system I. Finally, we conclude this paper briefly in Sec. IV.

II. DESIGN AND TRANSPORT FORMULATION

The nonlocal refrigeration engine, which will be investi-
gated in this paper, is schematically illustrated in Fig. 1(a)
as system I. Here, three quantum dots, S1, S2, and G1, are
electrically coupled with electronic reservoirs L, R, and G,
respectively, with G being the target reservoir to be refriger-
ated. S1 and S2 are tunnel coupled to each other, while G1 is
capacitively coupled to S1 by suitable fabrication techniques.
The capacitive coupling between S1 and G1 permits energy
exchange while obstructing any particle swap between the
dots. The electrically coupled dots S1 and S2 may be suitably
fabricated or gated to retain a staircase ground state configu-
ration with ε2

s = ε1
s + �ε. We will demonstrate via numerical

calculations and theoretical arguments that in the system de-
tailed above, refrigeration of the target reservoir G can be
achieved by forcing a net electronic flow from L to R; that is,
refrigeration can be achieved at a terminal nonlocal to the cur-
rent path. The excess energy �ε = ε2

s − ε1
s , required for the

electrons to tunnel from S1 to S2, is extracted from reservoir
G via Coulomb coupling. Coming to the fabrication feasibility
of such a system, due to the recent progress in nanofabrication
techniques, coupled systems employing multiple (more than
two) quantum dots, with and without Coulomb coupling, have
already been experimentally realized [49–54]. In addition, it
has been experimentally demonstrated that spatially and elec-
trically isolated quantum dots may be bridged to obtain strong
Coulomb coupling, in addition to excellent thermal insula-
tion [55–58]. Also, the bridge may be constructed between
two specific dots to radically increase their mutual Coulomb
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coupling, without affecting the electrostatic potential of the
other quantum dots [55–58]. Thus, the fluctuation in electron
number nS1 (nG1 ) of dot S1 (G1) alters the electrostatic energy
of dot G1 (S1). The total increase in electrostatic energy U of
the configuration, consisting of three dots, due to fluctuation
in electron number can be given by [48,59]

U (nS1 , nG1 , nS2 ) =
∑

x

U self
x

(
ntot

x − neq
x

)2

+
x1 �=x2∑
(x1,x2 )

U m
x1,x2

(
ntot

x1
− neq

x1

)(
ntot

x2
− neq

x2

)
,

where ntot
x is the total electron number at finite temperature and

neq
x is the total electron number under equilibrium conditions

at 0 K in dot x (satisfying the condition that the system equi-
librates at the minimum possible value of electrostatic energy
at 0 K). U self

x = q2

Cself
x

is the electrostatic energy due to self-

capacitance Cself
x (with the adjacent terminals) of quantum dot

x, and U m
x1,x2

is the mutual electrostatic energy between two
spatially separated quantum dots, x1 and x2. nx = ntot

x − neq
x

is the number of excess electrons in the ground state of
dot x due to thermal fluctuations (kicks) from the reservoirs
at finite temperature. To investigate the performance of the
refrigeration engine, we consider a minimal physics based
model to simplify our calculations. We assume that the elec-
trostatic energy due to self-capacitance is much greater than
V or kT/q, i.e., U self

x � (kT, qV ), where T = TL(R)+TG

2 , such
that electron occupancy probability or transfer rate across
the Coulomb blocked energy level due to self-capacitance

is negligibly small. Hence, the ground state of a particu-
lar dot can be occupied by, at most, one electron, and the
behavior of the entire system can be analyzed via 23 = 8
different multielectron states. These states may be denoted
|nS1 , nG1 , nS2〉 = |nS1〉 ⊗ |nG1〉 ⊗ |nS2〉, where nS1 , nG1 , nS2 ∈
(0, 1) indicate the number of electrons in the ground state of
S1, G1, and S2, respectively. We consider that the Coulomb
coupling between S1-S2 and S2-G1 is negligible compared to
the relevant energy scales of the system; that is, electrostatic
coupling between S1 and S2 and S2 and G1 is negligible with
respect to U m

S1,G1
, kT , and qV . Thus, for all practical purposes

related to electron transport U m
S1,S2

≈ 0, and U m
G1,S2

≈ 0. Due
to capacitive coupling, the electronic transports through S1

and G1 are interdependent, and hence, the pair of dots S1 and
G1 is treated as a subsystem (ς1) of the entire system, with
S2 being the complementary subsystem labeled ς2 [48]. The
probability of the subsystem ς1 to be in a particular state is
denoted by Pς1

i, j , where i and j are the number of electrons in
the ground state of dots S1 and G1, respectively. On the other
hand, Pς2

k denotes the steady-state occupancy probability of
dot S2 (subsystem ς2). Under the condition that �ε is much
higher than the ground state broadening due to reservoir cou-
pling, the optimal interdot tunneling between S1 and S2 occurs
when �ε = U m

S1,G1
, such that ε2

s = (ε1
s + U m

S1,G1
) [48]. Hence,

for the optimal performance investigation of the demonstrated
system I, we assume �ε = U m

S1,G1
. In what follows, we refer to

U m
S1,G1

as simply Um to make the notations compact. Under the
assumption that interdot electron transport between S1 and S2

can occur only when the ground state of G1 is occupied [59],
the equations dictating the steady state subsystem probabili-
ties can be obtained as follows [48]:

− Pς1
0,0

{
fL

(
ε1

s

) + fG
(
ε1

g

)} + Pς1
0,1

{
1 − fG

(
ε1

g

)} + Pς1
1,0

{
1 − fL

(
ε1

s

)} = 0,

− Pς1
1,0

{
1 − fL

(
ε1

s

) + fG
(
ε1

g + Um
)} + Pς1

1,1

{
1 − fG

(
ε1

g + Um
)} + Pς1

0,0 fL
(
ε1

s

) = 0,

− Pς1
0,1

{
1 − fG

(
ε1

g

) + fL
(
ε1

s + Um
) + γ

γc
Pς2

1

}
+ Pς1

0,0 fG
(
ε1

g

) + Pς1
1,1

{
1 − fL

(
ε1

s + Um
) + γ

γc
Pς2

0

}
= 0,

− Pς1
1,1

{[
1 − fG

(
ε1

g + Um
)] + [

1 − fL
(
ε1

s + Um
)] + γ

γC
Pς2

0

}
+ Pς1

1,0 fG
(
ε1

g + Um
) + Pς1

0,1

{
fL

(
ε1

s + Um
) + γ

γc
Pς2

1

}
= 0, (1)

−Pς2
0

{
fR

(
ε2

s

) + γ

γc
Pς1

1,1

}
+ Pς2

1

{
1 − fR

(
ε2

s

) + γ

γc
Pς1

0,1

}
= 0,

−Pς2
1

{
1 − fR

(
ε2

s

) + γ

γc
Pς1

0,1

}
+ Pς2

0

{
fR

(
ε2

s

) + γ

γc
Pς1

1,1

}
= 0, (2)

where γ and γc are the associated magnitudes of the interdot
and system-to-reservoir coupling, respectively [48,59,60], and
fζ (ε) is the statistical occupancy probability of the reservoir
ζ at energy ε. For the purposes of our present calculations,
we assume quasiequilibrium electron statistics at the reservoir,
and hence, the function fζ (ε) is the Fermi-Dirac function for
the corresponding quasi-Fermi level at reservoir ζ :

fζ (ε) =
{

1 + exp

(
ε − μζ

kTζ

)}−1

, (3)

where Tζ and μζ are the temperature and quasi-Fermi en-
ergy of the reservoir ζ , respectively. Both (1) and (2) form
dependent sets of equations, which can be broken by em-
ploying the probability conservation rules

∑
i, j=0,1 Pς1

i, j = 1
and

∑
k=0,1 Pς2

k = 1. The sets of equations (1) and (2) form
a nonlinear set of equations and should be solved using any
iterative numerical method. For the purposes of our present
calculation, the Newton-Raphson scheme was used to cal-
culate the system steady-state probabilities Pς1

i, j and Pς2
k . On

calculation of steady-state probabilities the charge current
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between the system and the reservoirs IL(R) and the heat cur-
rent IQe (extracted from reservoir G) can be calculated as

IL = q2

h
γc

{
Pς1

0,0 fL
(
ε1

s

) + Pς1
0,1 fL

(
ε1

s + Um
)}

− q2

h
γc

{
Pς1

1,0

{
1 − fL

(
ε1

s

)} − Pς1
s

1,1

{
1 − fL

(
ε1

s + Um
)}}

,

(4)

IR = − q2

h
γc

{
Pς2

0 fR
(
ε1

s

) − Pς2
1

{
1 − fR

(
ε1

s

)}}
, (5)

IQe = Um
qγc

h

{
Pς1

1,0 fG(εg + Um) − Pς1
1,1{1 − fG(εg + Um)}},

(6)

where q is the electronic change and h designates Plank’s con-
stant. In Eq. (6), we have also neglected the reverse heat flux
due to lattice thermal conductivity, assuming ideal thermal
insulation of reservoir G with its surroundings. It should be
noted that the heat extracted per unit time from reservoir G,
given in Eq. (6), is not directly dependent on the ground state
εg of G1 due to the fact that the net current into (or out of)
reservoir G is zero. As described, to achieve refrigeration in
reservoir G, a net electronic flow has to be injected from L to
R. To achieve such electron flow, a voltage bias can be applied
between L and R with the negative and positive terminals of
the bias connected to terminals L and R, respectively.

We now briefly discuss the electronic transport processes
resulting in the refrigeration of reservoir G. Let us con-
sider that the system is in the initial state |0, 0, 0〉, which
we also call the vacuum state. A sequence of electronic
transport that extracts a heat packet Um from reservoir G
is as follows: |0, 0, 0〉 → |1, 0, 0〉 → |1, 1, 0〉 → |0, 1, 1〉 →
|0, 1, 0〉 → |0, 0, 0〉. In this sequence, the system starts with
the vacuum state. Next, an electron is injected into S1 with
an energy ε1

s followed by an electron injection in G1 with an
energy εg + Um. Next, the electron in S1 gets transferred to S2

via interdot tunneling and subsequently flows out of terminal
R. The system returns to the initial vacuum state when the
electron in G1 tunnels out to G with an energy εg. Note that in
this cycle, the electron is injected into G1 from G with energy
εg + Um and extracted back into G with energy εg. Thus,
reservoir G loses a packet of heat energy Um. Such a trans-
port process and other equivalent sequential processes lead to
refrigeration of reservoir G. Thus, to achieve refrigeration, a
net electronic flow needs to be injected from reservoir L to R,
which calls for application of bias voltage with polarity shown
in Fig. 1(a). Application of an external bias configuration,
as demonstrated in Fig. 1(a), shifts the reservoir quasi-Fermi
energy as μL = μ0 + qV/2, μR = μ0 − qV/2, and μG = μ0,
where μL, μR, and μG denote the quasi-Fermi energy of reser-
voirs L, R, and G, respectively, while μ0 denotes the Fermi
energy of the entire setup in the equilibrium condition.

When analyzing the refrigeration performance, two param-
eters of prime importance constitute the cooling power or the
heat extracted per unit time IQe [defined in Eq. (6)] and the rate
of heat extracted per unit input power, which is also known as
the coefficient of performance (COP) of the refrigerator. The
total input power P is dependent on the bias voltage as well as

the injected current and can be defined as

P = IL(R) × V, (7)

where V is the applied bias voltage across reservoirs L and
R. As stated above, the efficiency of a refrigerator is normally
characterized by its COP:

CP = IQe

P
, (8)

where the heat extracted per unit time from G can be calcu-
lated using Eq. (6).

III. RESULTS

In this section, we describe the performance and opera-
tion regime of the demonstrated refrigeration engine (system
I). Without loss of generality, we assume that γc = 10−6 eV
and γ = 10−5 eV. Such values of γ and γc imply the weak
coupling limit and thus suppress any coherent oscillations
and restrict the electronic transport in the sequential tunneling
regime where the effects of cotunneling and higher-order tun-
neling can be neglected [61,62]. In addition, we also compare
the performance of our design (system I) with the optimal
nonlocal refrigeration engine (system II) discussed in the lit-
erature [1] and elaborate the transport processes affecting the
refrigeration performance of system I. The optimal refrigera-
tion engine, depicted in Fig. 1(b) as system II, consists of two
quantum dots, S1 and G1 [1]. S1 is electrically coupled to reser-
voirs L and R with coupling strengths γl and γr , respectively,
while G1 is electrically coupled to reservoir G with coupling
strength γg. To compare the refrigeration performance of sys-
tem I with system II, the reservoir-to-dot interfaces of system
II are assumed to have the optimal filtering properties [1] with
γl = γcθ (ε1

s + δε − ε), γr = γcθ (ε − ε1
s − δε), and γg = γc,

where ε indicates the independent energy variable, θ is the
Heaviside step function, and δε < Um.

Analysis of performance and regime of operation. Figures 2
and 3 demonstrate the operation regime of the refrigeration
engine for low bias (V = 0.2 kT

q ) and high bias (V = 10 kT
q )

conditions, respectively, for Coulomb coupling energy Um =
3 kT

q and TL(R) = TG = T = 10 K. In particular, Figs. 2(a) and
2(b) demonstrate the cooling power IQe and the COP, respec-
tively, over a range of ground state positions for ε1

s and εg. It
can be noted from Fig. 2(a) that the regime of refrigeration
corresponds to ε1

s lying within a few kT around μ0. Such a
trend occurs since the rate of electron transport through the
system, under low bias conditions, peaks when the ground
states of the quantum dots lie within a few kT of the equi-
librium Fermi energy μ0. We also note that the refrigeration
power is finite and large when εg lies within a few kT of the
equilibrium Fermi energy μ0. Such behavior occurs due to
the fact that for extraction of heat energy from G, an electron
must be able to tunnel into and out of G1 with energy εg + Um

and εg, respectively. Hence, both functions fG(εg + Um) and
1 − fG(εg) must have finite values, which is possible only if
εg lies within a few kT of the equilibrium Fermi energy μ0.
In fact, the product fG(εg + Um){1 − fG(εg)} is maximized
when εg − μ0 = −Um

2 . Since Um ≈ 3kT
q in this case, we note

the maximum cooling power occurs around εg − μ0 = − 3kT
2q .

012131-4



REALISTIC NONLOCAL REFRIGERATION ENGINE BASED … PHYSICAL REVIEW E 103, 012131 (2021)

FIG. 2. Regime of refrigeration of the demonstrated design (sys-
tem I) for the low bias condition (V = 0.2 kT

q ) with TL = TR = TG =
T = 10 K. Color plots showing the variation of (a) cooling power IQe

and (b) the COP with the position of the ground states εg and ε1
s for

V = 0.2 kT
q (≈0.17 meV) and Um = 3 kT

q (≈2.5 meV).

Figure 2(b) demonstrates the variation in the COP for
the low bias condition. We note a monotonic increase in
the COP with εg and ε1

s . Figures 3(a) and 3(b) demonstrate
the cooling power and the COP for the high bias condition
with V = 10 kT

q . We note that with an increase in bias voltage
V , the refrigeration engine now operates over a wide range
of ε1

s , mainly due to an increase in the energy range over
which net electron transport can occur between reservoirs L
and R. The operation regime, in terms of εg, however, remains
almost identical to the low bias case. The COP shows a similar
trend with the low bias case; that is, the COP increases with
εg and ε1

s . By comparing Figs. 2 and 3 we note a drastic
increase (about 10 times) in the maximum cooling power.
This is due to the fact that an increase in bias voltage causes
more electrons to flow between L and R, which increases the
rate of heat absorption from G. The COP, on the other hand,
decreases drastically with an applied bias voltage. This can
be explained by the fact that an increase in the bias voltage
causes a higher power dissipation per unit electron flow qV
or per unit heat packet Um absorption from G, which results
in a decrease in the COP. To get more physical insights into
the phenomena, the variation in current flow through the setup
against variation in ε1

s and εg is plotted in Appendix A for low
and high bias conditions. It should be noted that an equivalent
trend of increase in refrigeration power and decrease in the
overall COP with an increase in bias voltage can also be noted
for lower-dimensional and bulk Peltier refrigerators [27,28].

The variation in maximum cooling power of the refriger-
ation engine with variation in the Coulomb coupling energy

FIG. 3. Regime of refrigeration of the demonstrated design (sys-
tem I) for the high bias condition (V = 10 kT

q ) with TL = TR = TG =
T = 10 K. Color plots showing the variation of (a) cooling power IQe

and (b) the COP with the position of the ground states εg and ε1
s for

V = 10 kT
q (≈8.5 meV) and Um = 3 kT

q (≈2.5 meV).

Um and applied bias voltage is demonstrated in Fig. 4. In par-
ticular, Figs. 4(a) and 4(b) demonstrate the maximum cooling
power IM

Qe for a range of values of the applied bias voltage
V and the Coulomb coupling energy Um for (i) TG = TL(R)

and (ii) TG < TL(R), respectively. To achieve the maximum
cooling power the ground states of the dots are adjusted to the
optimal position with respect to the equilibrium Fermi energy
for each value of applied bias V and Coulomb coupling energy
Um. In Fig. 4(a), the maximum cooling power is low for low
values of Um. Despite a high current for lower values of Um

[48], the total cooling power is low due to a low value of the
average heat extracted per unit electron flow. As Um increases,
the net rate of electron flow decreases for the same value of
bias voltage V [48]. However, the average heat extracted per
unit electron flow increases with Um. These two competing
processes result in an initial increase in cooling power with an
increase in Um. With a further increase in Um beyond a certain
limit, the cooling power finally decreases due to a decrease
in the total current flowing through the system. From the
perspective of the dot G1, it can be stated that the net cooling
power decreases with an increase in Um beyond a certain limit
due to a lower probability of electrons tunneling into gate G1

with energy εg + Um when the ground state of S1 is already
occupied. Comparing Figs. 4(a) and 4(b), we indicate certain
noteworthy points in the refrigeration performance for the
case TG < TL(R). First of all, the cooling power is nonzero only
when the voltage exceeds a certain minimum value, which we
call the threshold voltage VTH. The origin of such a threshold
bias for refrigeration lies in the appearance of an open-circuit
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FIG. 4. Variation in maximum cooling power IM
Qe with applied

bias V and Coulomb coupling energy Um for (a) TL(R) = TG = 10 K
and (b) TL(R) = 10 K and TG = 5 K. To find out the maximum cooling
power for a given value of V and Um, the ground states of the
dots are tuned to their optimal position. T = TL(R)+TG

2 is the average
temperature between the hot and cold reservoirs. In (a), the lower
limit or starting value of Um has been chosen to be 0.5 meV to ensure
the validity of the quantum master equations illustrated in Eqs. (1)
and (2) [48,59].

voltage (due to nonlocal thermoelectric action [59]) with op-
posite polarity for TG < TL(R) which tends to drive electrons
from R towards L while dumping heat packets into reservoir
G [59]. Second, the voltage beyond which nonzero cooling
power is achieved increases with the increase in Coulomb
coupling energy Um. This again is due to the increase in
the opposite open-circuit voltage in such a setup with an
increase in Um [59]. The applied bias must overcome the
open-circuit voltage to effectively cool the reservoir G. Third,
the maximum saturation cooling power becomes much lower
compared to the case of TG = TL(R). An exhaustive discussion
and analysis of the case of TG < TL(R) is presented later.

Performance comparison with optimal nonlocal refrig-
eration engine. Figure 5 demonstrates the performance
comparison between the illustrated design and optimal non-
local refrigeration engine [2,3,6–8] for two different cases:
(i) TG = TL(R) (top row) and (ii) TG < TL(R) (bottom row).
The maximum cooling power IM

Qe and COP (in log scale) as
a function of bias voltage V are plotted, respectively, in the
left and right columns of Fig. 5 for 5 K = TG < TL(R) = 10 K
(top row) and TG = TL(R) = 10 K (bottom row) for different
values of Um. Figures 5(a) and 5(c) depict the maximum
cooling power for system I (solid lines) and system II (dashed
lines) for the cases TG = TL(R) and TG < TL(R), respectively.
For TG = TL(R) = 10 K, the overall maximum cooling powers

FIG. 5. Comparison of the performance of system I (solid lines)
with the optimal setup, that is, system II (dashed lines), for dif-
ferent values of Coulomb coupling energy Um. (a) Cooling power
and (b) the COP (log scale) as a function of bias voltage V at
TL(R) = TG = 10 K. (c) Cooling power and (d) the COP (log scale)
as a function of bias voltage V at TL(R) = 10 K and TG = 5 K.

for system I and system II are 3 and 4.6 fW, respectively. The
overall maximum cooling power in both the setups is achieved
at Um = 2 meV (≈2.3 kTG

q ). Similarly, for 5 K = TG < TL(R) =
10 K, the overall maximum cooling powers for system I and
system II are 1.45 and 2.1 fW, respectively. In this case,
the maximum cooling power for both setups occurs at Um =
0.75 meV (≈1.75 kTG

q ). Thus, in both cases, the overall maxi-
mum cooling power of system I hovers around 65%–70% of
that of that for system II. Figures 5(b) and 5(d) depict the COP
(log scale) for system I (solid lines) and system II (dashed
lines) for the cases TG = TL(R) and TG < TL(R), respectively.
We note that the COP for system I is much lower than that of
system II. This is because in the case of system I a fraction
of the total number of electrons flows from L to R without
absorbing heat from reservoir G (explained in the next part).

Sequential tunneling mechanism leading to a performance
degradation. Now, we discuss the sequential transport mech-
anisms leading to a performance degradation of system I.
Let us consider the sequence of electron transport from L
to R that results in absorbing a heat packet Um from reser-
voir G. For example, in the sequence |0, 0, 0〉 → |1, 0, 0〉 →
|1, 1, 0〉 → |0, 1, 1〉 → |0, 1, 0〉 → |0, 0, 0〉, the system ini-
tially starts with the vacuum state |0, 0, 0〉. An electron is
injected from reservoir L into S1 at energy ε1

s , followed by
another electron injected into G1 from G with an energy
εg + Um. This is followed by the electron in S1 tunneling into
S2, after which the electron present in G1 tunnels out into
reservoir G with an energy εg. At the end of the cycle, the
system returns to the vacuum state when the electron present
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FIG. 6. Schematic diagram demonstrating the different elec-
tronic current components from the reservoir L to the system through
the energy level ε1

s and the Coulomb blockaded level ε1
s + Um for an

applied bias V with TG < TL(R). Four current components are shown.
(1) Electron current flows due to voltage bias from reservoir L to R
while absorbing a heat packet Um (per electron) from G. (2) Electron
current, due to applied bias, flows directly from L to R without any
heat absorption. (3) and (4) Electron current flows due to the reverse
open-circuit voltage for TG < TL(R). This voltage component appears
due to �T = TL(R) − TG and tends to drive electrons while dumping
the heat packet Um into reservoir G.

in S2 tunnels out, with energy ε2
s = ε1

s + Um, into R. Thus, in
the entire process illustrated above an electron is transmitted
from reservoir L to R while absorbing a heat packet Um from
G. These types of transport processes contribute to refrigera-
tion of the target reservoir G and are illustrated as component
1 in Fig. 6. The second electron transport component, depicted
in Fig. 6 as component 2, results in direct transmission of
electrons between L and R without absorption of heat packets
from G. This component flows due to bias voltage. Hence,
this component results in wastage of power, thereby causing
degradation of the COP. Next, let us consider the follow-
ing sequence of electron transport: |0, 0, 0〉 → |0, 1, 0〉 →
|1, 1, 0〉 → |1, 0, 0〉 → |0, 0, 0〉. In the above sequence, an
electron tunnels, with an energy εg, into G1 from reservoir G.
This is followed by an electron entering S1, from reservoir L,
with an energy ε1

s + Um. At the next step, the electron present
in G1 tunnels out into reservoir G with energy εg + Um. At
the end of the sequence, the electron in S1 exits into reservoir
L with energy ε1

s . It is evident that in this process, a packet of
heat energy Um is transmitted from reservoir L to G. Thus, this
kind of sequence results in heating up of the target reservoir
G and is positive and finite only for TG < TL(R) [59]. This
current component, depicted in Fig. 6 as component 3, flows
due to the positive temperature difference �T = TL(R) − TG

and affects the refrigeration performance by transmitting heat
packets into G. Another current component, which flows for
positive �T = TL(R) − TG while dumping heat packets into G,
is shown as component 4 in Fig. 6. From Fig. 6 and the above
discussion, it is clear that electron flow components 2 and 3
from L into the Coulomb blockaded level ε1

s + Um result in
degradation of the refrigeration performance.

To further elaborate on the above discussion, we separate
out the current flow into the system from reservoir L as

IL = I1 + I2,

where

I1 = qγc
{
Pς1

0,0 fL
(
ε1

s

) − Pς1
1,0

[
1 − fL

(
ε1

s

)]}
,

I2 = qγc
{
Pς1

0,1 fL
(
ε1

s + Um
) − Pς1

1,1

[
1 − fL

(
ε1

s + Um
)]}

. (9)

In the above equation, I1 and I2 denote the total electron cur-
rent from reservoir L to the energy level ε1

s and the Coulomb
blockaded level ε1

s + Um, respectively. Particularly, Figs. 7(a)
and 7(b) depict the electron current flow into the system from
reservoir L via the energy level ε1

s (I1) and the Coulomb
blockaded level ε1

s + Um (I2), respectively. Figure 7(c), on the
other hand, depicts the overall electronic flow IL = I1 + I2

from reservoir L into the system.
We find that the electron current flow I1 through ε1

s into the
system from L is positive over a certain regime and negative
over the rest. The positive regime corresponds to refrigera-
tion of the target reservoir G. Electronic current flow in this
regime, via the energy level ε1

s , is dominated by component
1 (demonstrated in Fig. 6). The negative regime, on the other
hand, has the potential for nonlocal thermoelectric generation
where the flux of electrons flows against the voltage bias due
to positive �T = TL(R) − TG [59]. The regime with a negative
value of I1 is dominated by components 3 and 4 through the
energy level ε1

s and corresponds to no net cooling of the target
reservoir G. Interestingly, we also find that the current compo-
nent I2 through the Coulomb blockaded energy level ε1

s + Um

is positive, as already shown in Fig. 7(b). This electron current
constitutes components 2 and 3 through the Coulomb blocked
level εs + Um. As already discussed, these current components
result only in deterioration of the net cooling power as well as
the COP. Thus, they negatively affect the refrigeration perfor-
mance. The deterioration in performance of the refrigeration
engine due to current components 2 and 3 can be reduced
by adding an extra quantum dot filter [1] between L and
S1. However, doing so neutralizes the uniqueness of system
I in terms of fabrication simplicity and areal density due to
construction of an extra dot and additional gates. In Fig. 7(c),
we show the total electronic current flow from L to S1. It
is clear that a very large portion of the total electron flow
actually consists of component 2, which results in a lower
COP in system I compared to the optimal design (system
II). In Fig. 7(d), we demonstrate the heat current flowing
out of reservoir G. The positive and negative values of heat
current correspond, respectively, to refrigeration and heating
of the target reservoir G. Comparing Figs. 7(a) and 7(d), we
note that the regimes with positive and negative values of I1

correspond to refrigeration and generation, respectively, as
discussed earlier.

Performance analysis for TG < TL(R). For a practical elec-
tronic refrigeration engine, the target temperature of the
reservoir G should generally be less than the environmental
temperature or the average temperature of the current path.
We have already noted that for positive �T = TL(R) − TG, the
applied bias voltage needs to be greater than a certain thresh-
old voltage VTH [59]. Figure 8 demonstrates the refrigeration
performance of system I as the temperature of reservoir G is
gradually reduced below TL(R). Specifically, Fig. 8(a) depicts
the variation in the required threshold voltage VTH to achieve
refrigeration. We note from Fig. 8(a) that the threshold voltage
VTH is zero for TG = TL(R) and increases with a decrease in
TG. This is because the open-circuit voltage, which acts oppo-
site to the bias voltage, increases with an increase in �T =
TL(R) − TG. Hence, even under ideal conditions of zero lattice
thermal conductivity, to achieve a lower target temperature TG
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FIG. 7. Plots demonstrating the electronic current flow into the system from reservoir L with variation in the ground states εg and ε1
s .

Electronic current flow through (a) the ground state ε1
s and (b) the Coulomb blockaded level ε1

s + Um. (c) Total average electron current
between the system and reservoir L and (d) heat current flowing out of reservoir G. The regime with positive and negative values of heat
current respectively correspond to refrigeration and heating of the target reservoir G. The parameters chosen are Um = 0.75 meV (≈1.16 kT

q )

and V = 1.3 meV (≈2 kT
q ), TL(R) = 10 K, and TG = 5 K. T = TL(R)+TG

2 denotes the average temperature between the hot and cold reservoirs.

we need to apply a higher voltage bias V . We also note that
the threshold voltage VTH increases with an increase in Um.
This behavior may be attributed to an increase in the reverse
open-circuit voltage with an increase in Um [59]. Figure 8(b)
demonstrates the variation in the saturation cooling power
(high bias voltage limit) with a decrease in the target tempera-
ture TG for various values of Um. With a decrease in the target
temperature, the saturation cooling power decreases mono-
tonically. In particular, we note that beyond TG � 2 K, the
saturation cooling power for Um � 1.5 meV is approximately
zero. This is due to the fact that at very low temperature, the
smearing of the Fermi function fG around μ0 decreases signif-
icantly, making the product fG(εg + Um){1 − fG(εg)} ≈ 0 for
any εg at higher values of Um. We hence conclude that even
under ideal conditions, depending on the Coulomb coupling
energy Um, there is a minimum limit beyond which the target
temperature TG cannot be reduced. Figure 8(c) demonstrates
the variation of the COP with the target reservoir temperature
at the maximum cooling power for V = 10kT

q . We note that
there is a decrease in the COP as one approaches a lower
target reservoir temperature, the decrease being more sharper
for higher values of Um. Although not demonstrated in this
paper, in the case of TG > TL(R), the target reservoir G is au-

tomatically cooled (due to the nonlocal thermoelectric effect),
with TG gradually approaching TL(R) [59].

IV. CONCLUSION

In this paper, we have investigated a triple quantum
dot design for nonlocal refrigeration engine that employs
Coulomb coupling to achieve refrigeration. The performance
of the demonstrated refrigeration engine was then theoret-
ically investigated employing the quantum master equation
formalism. It was demonstrated that the maximum cooling
power of the setup hovers around 65%–70% of the opti-
mal design proposed in the literature [2,3,6–8]. Despite a
lower cooling power, the key edge of the demonstrated triple
quantum dot setup over the optimal design is the integra-
tion of fabrication simplicity along with decent refrigeration
performance. In our discussion, we have restricted transport
phenomena in the weak coupling regime, so that cotunnel-
ing processes can be neglected. The refrigeration power in
the demonstrated setup can be enhanced by a few orders by
tuning electronic transport in the regime of strong coupling,
that is, by enhancing the system-to-reservoir and the interdot
tunnel coupling. An analysis of the effects of cotunneling
and higher order processes on the refrigeration performance
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FIG. 8. Performance variation of the demonstrated refrigeration
engine (system I) as the target temperature of reservoir G (TG) gradu-
ally decreases below TL(R) = 10 K. Variation in (a) threshold voltage
VTH, (b) overall maximum cooling power IMAX

Qe , and (c) the COP at

the maximum cooling power (for V = 10 kTL(R)
q ) with the decrease in

the target temperature TG of reservoir G. To compute the maximum
cooling power for each value of TG and Um, the ground states εL(R)

and εG are tuned to their optimal positions.

of the demonstrated system constitutes an interesting aspect
of investigation. Furthermore, an analysis of the impact of
electron-phonon scattering [30–41] on the performance of the
demonstrated refrigeration engine also constitutes an interest-
ing aspect of future research. The various possible designs for
nonlocal refrigeration systems are left for future investigation.
Nevertheless, the triple quantum dot design discussed here

FIG. 9. Variation in current flow through the setup with the posi-
tion of the ground states εg and ε1

s for Um = 3 kT
q (≈2.5 meV) under

the condition of (a) low bias V = 0.2 kT
q (≈0.17 meV) and (b) high

bias V = 10 kT
q (≈8.5 meV)

can be used to realize high performance nonlocal cryogenic
refrigeration engines employing Coulomb-coupled systems.
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APPENDIX A: CURRENT FLOW THROUGH THE SETUP
UNDER LOW AND HIGH BIAS CONDITIONS

Figures 9(a) and 9(b) demonstrate the variation in current
flow through the system with variation in ε1

s and εg for the
low bias and high bias conditions corresponding to Figs. 2
and 3, respectively. We note from Fig. 9(a) that the current
is maximum when εg − μ0 is a few kT below the Fermi
energy and ε1

s − μ0 ≈ 3 kT
q , that is when the, ground state εg

is always occupied and the Coulomb blocked energy level
ε1

s + Um coincides with the Fermi energy. However, we note
[from Fig. 2(a)] that the cooling power is low under such
conditions because the ground state εg is always occupied, and
hence, current flows between L and R without absorbing heat
from reservoir G. With an increase in εg and ε1

s , the current
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FIG. 10. Performance variation of the refrigeration engine as the
ratio r = γ /γc is tuned, keeping the system-to-reservoir coupling
constant at γc = 10−6 eV. Plot of (a) maximum cooling power IM

Qe

and (b) the COP at the maximum cooling power for various values
of r, with variation in the applied voltage for TG = TL(R) = 10 K and
Um = 2 meV (≈2.5kT/q).

flow through the system decreases, but the refrigeration power
increases due to the increase in the stochastic fluctuation in the
ground states ε1

s and εg. A further increase in εg and ε1
s causes

the cooling power to deteriorate due to the decrease in the total
current through the system. A similar inference can be drawn
from Fig. 9(b) for the operation regime under the high bias
condition (Fig. 3).

APPENDIX B: EFFECT OF THE RATIO r = γ/γc ON THE
REFRIGERATION PROPERTIES OF THE TRIPLE

QUANTUM DOT SETUP

Here, we discuss the dependence on refrigeration
performance of the triple quantum dot setup (system I)
with a change in r = γ /γc. Until now, the values of the
system-to-reservoir and interdot coupling were assumed
to be γc = 10−6 eV and γ = 10−5 eV. Since the overall
conductance of the current path is dependent on both γ

and γc, reducing either of the two affects the refrigeration
performance. Figures 10(a) and 10(b) demonstrate the

FIG. 11. Performance variation of the refrigeration engine as
the values of γc and γ are swapped. The two situations illustrated
here are (i) γc = 10−6 eV and γ = 10−5 eV (r = 10) and (ii) γc =
10−5 eV and γ = 10−6 eV (r = 10). Plot of (a) maximum cooling
power IM

Qe and (b) the COP at the maximum cooling power, with vari-
ation in the applied voltage for TG = TL(R) = 10 K and Um = 2 meV
(≈2.5kT/q).

variation in the maximum cooling power IM
Qe and the COP

with applied bias V as the ratio r = γ /γc is gradually reduced
while keeping γc fixed at γc = 10−6 eV. It is expected that for
both high and low values of r, the overall conductance of the
current path is determined by min(γc, γ ). Thus, for r � 10,
the conductance of the current track is mainly controlled
by γc, and hence, further enhancing the interdot tunnel
coupling γ does not have a drastic impact on the refrigeration
performance. However, as γ is gradually reduced such that r
decreases from r = 10, the overall conductance of the current
path decreases, resulting in a deterioration in the refrigeration
power. Such a trend is noted in Fig. 10(a). From Fig. 10(b),
we note that the COP is not strongly dependent on r.

Figure 11 demonstrates the change in refrigeration per-
formance of the system as γ and γc are interchanged. In
particular, Fig. 11 illustrates the refrigeration performance for
two different cases: (i) γc = 10−6 eV and γ = 10−5 eV, that
is, for r = 10 (shown in green), and (ii) γc = 10−5 eV and
γ = 10−6 eV, that is, for r = 0.1 (shown in brown). We note
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that there is a slight deterioration in the saturation cooling
power (under the high bias condition) for r = 0.1 compared

to r = 10. The COP, on the other hand, remains almost the
same for both cases.
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