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The nonequilibrium temperature in the kinetic theory of gases is reexamined and an alternative definition of
the temperature in terms of the local equilibrium distribution function is proposed. The alternative definition
introduces a new physical quantity, ‘exoenergy,’ which represents the nonequilibrium nature of thermodynamic
systems. The internal energy equation is split into two equations, the temperature equation and the exoenergy
equation. In order to rationalize the equation splitting, the nonequilibrium thermodynamics is considered
introducing the nonequilibrium entropy phenomenologically. The proposed temperature equation resolves the
overshooting anomaly of temperature profiles of the Monte Carlo data for one-dimensional normal shock waves.
The exoenergy equation makes the theory self-consistent and gives the entropy production of shock waves in
closed form. The theory gives a general form of the shock wave equation and the general relation of the bulk
viscosity to the shear viscosity and the heat conductivity of dilute monatomic gases.
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I. INTRODUCTION

It has been conventional in the kinetic theory of dilute
gases [1,2] that the nonequilibrium local temperature T (r, t )
is defined by the average kinetic energy of molecules by using
the velocity distribution function, whether the gas is at near-
equilibrium or far from equilibrium, writing

3

2
kBT (r, t ) = 1

n(r, t )

∫
1

2
mC2 f (v, r, t )dv, (1)

where f is the distribution function, v is the molecular ve-
locity, C is the magnitude of the peculiar velocity C = v −
u(r, t ), u is the local fluid velocity, m is the molecular mass,
n is the local number density of gas molecules, and kB is
the Boltzmann constant. In the Monte Carlo simulation of
nonequilibrium gases [3], the definition in Eq. (1) has been
employed to produce the temperature. For the transport pro-
cesses of liquids [4], the definition has also been applied.
There seems to be a prevalent belief that the nonequilibrium
local temperature should be defined like Eq. (1) in the kinetic
theory of fluids.

According to the distribution function theory of equi-
librium statistical mechanics, the temperature is derived as
the form of Eq. (1) described in normal textbooks [5]. The
nonequilibrium local temperature is a conceptual extension of
the derivation in equilibrium statistical mechanics, assuming
its validity by replacement of the equilibrium distribution
function with the nonequilibrium one. However, the extension
has the status of a postulate the validity of which remains to
be further demonstrated, especially its limits.

The direct simulation Monte Carlo (DSMC) method for
stationary one-dimensional (1D) normal shock waves shows
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a small overshooting temperature profile on the downstream
side in the shock layer [6–9], when the Mach number is
increased above a certain value. This is not due to a mathe-
matical artifact of theory, but the result of atomistic dynamics.
The temperature overshoot is a strange behavior, because the
temperature gradient changes its sign within such a small
distance of the shock layer, which amounts to a few mean
free paths of gas molecules. Moreover, the sign change gives
rise to a negative thermal conductivity. There were no proper
explanations about this abnormal outcome, although there was
a report that the overshoot is a matter of the definition of the
nonequilibrium temperature [10].

Recently, a possible resolution of the anomaly has been
suggested by the present author [11]. In the suggestion, the
author postulated a temperature equation in a solely intuitive
way and introduced a quantity termed ‘exopressure,’ which
represents a deviation of the nonequilibrium pressure, i.e., one
third of the trace of the pressure tensor, from the equilibrium
hydrostatic pressure. The important result is the finite ratio of
the bulk viscosity to the shear viscosity of dilute monatomic
gases. Because it has been well recognized that the bulk vis-
cosity is equal to 0 for dilute monatomic gases, the result is at
variance with the conventional kinetic theory [12].

The definition in Eq. (1) has enforced that the bulk vis-
cosity should be 0 for dilute monatomic gases. The pressure
tensor P is written for the dilute gases [13]

P(r, t ) =
∫

mCC f (v, r, t )dv. (2)

It has been well understood that the pressure tensor should be
split into a scalar hydrostatic part p and a viscous part P . The
p is regarded to be the equilibrium part of P, giving relation
to the local temperature by the equation of state, p = nkBT ,
for dilute gases. The nonequilibrium part P is again split into
the trace part P and the traceless stress tensor Π. The P is
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related to the bulk viscosity, which is called the exopressure.
The exopressure is the nonequilibrium part of the trace of P,

P = (nkBT + P )δ + Π, (3)

where δ is the second-order unit tensor. According to Eq. (1),
it is apparent that P = 0 by definition. In the previous work,
it has been shown that the application of the postulated tem-
perature equation to the energy conservation equation gives a
nonvanishing P , which gives a finite bulk viscosity together
with monotonic temperature profiles without the overshoot-
ing.

The bulk viscosity has been disclosed only for polyatomic
or dense fluids [12,14]. It is questionable whether the bulk vis-
cosity of a dilute monatomic system is unmeasurable because
it is too small, or because it does not exist in the nature. In or-
der to answer this question, it may be inevitable to reexamine
the definition of temperature in Eq. (1). There was an effort to
conceptualize the nonequilibrium temperature from the ther-
modynamic viewpoint [15]. The present work addresses the
kinetic theory, proposing an alternative definition, and then
the thermodynamic aspect of the temperature is examined.

The shock condition of compressible fluids, i.e., the
upstream should be supersonic while the downstream is sub-
sonic, gives a finite entropy increase. Because the shock wave
is essentially an adiabatic process, the entropy increase is
equal to the total entropy production of the whole shock wave.
It is important to study the physical mechanism of producing
the entropy and evaluate the local entropy production within
the layer. The spatial integration of local entropy production
should coincide with the total entropy production if the theory
is properly developed.

In the present work, it is attempted to look for the molecu-
lar basis of the temperature equation proposed in the previous
work. In order to rationalize the equation in thermodynamics,
the nonequilibrium thermodynamics is reformulated, because
the equation does not comply with conventional theories. The
nonequilibrium entropy is also defined in the reformulation,
and the entropy balance equation is derived using the temper-
ature equation. In order to see the validity of the proposal,
it is applied to 1D stationary shock waves and analysis of
the DSMC data. The obtained local entropy is compared
with existing theories. The whole theory is restricted to dilute
monatomic gases.

II. THE LOCAL EQUILIBRIUM

There seem to be some different understandings of the
terminology of the local equilibrium of dilute gases. It is
important to clarify the definition of it in the present work.

A. Phenomenological definitions

1. Thermodynamic definition

The local equilibrium is defined such that the thermody-
namic quantities are functions of (r, t ) but they comply with
the equilibrium thermodynamic laws. The definition disre-
gards whether or not the temperature gradient and the strain
rate are present, if the local quantities obey equilibrium ther-
modynamics.

2. Fluid dynamic definition

The definition requires three balance equations, i.e., the
continuity equation, the Euler equation, and the isentropic
equation, in addition to the thermodynamic definition.

B. Microscopic definition

Let us write the Boltzmann equation in conventional
notation,

∂ f

∂t
+ vs∇s f = J, (4)

for dilute monatomic gases, where repeated indices mean
summation convention, J represents the collision integral, and
∇s ≡ ∂/∂rs. The H theorem states that∫

J ln f dv � 0. (5)

According to the property of collision integral, the equality of
Eq. (5) holds only when ln f is a linear combination of five
collision invariants [1], i.e., the mass, three components of the
momentum, and the kinetic energy of molecules,

ln f = ln f0 = a + bsvs + cv2, (6)

which gives the Maxwell-Boltzmann distribution function un-
der appropriate physical conditions.

Let us write the Boltzmann equation for f0,

∂ f0

∂t
+ vs∇s f0 = 0, (7)

in which the collision integral vanishes obviously. The ques-
tion is what the result is when f0 in Eq. (6) is substituted into
Eq. (7). The result is that only if the coefficients, a, bi, and
c, are such that the temperature gradient and the strain rate
are 0 does f0 satisfy Eq. (7), as shown in Appendix A. The
temperature must be spatially uniform, and the fluid velocity
should be the value at which the strain rate vanishes,

∇iT = 0, (8a)
1
2 (∇iu j + ∇ jui ) − 1

3∇susδi j = 0. (8b)

The present work defines this state as ‘physical local equi-
librium.’ The terminology reflects the fact that the nonzero
temperature gradient and the strain rates should give rise to
a dissipative process and nonzero entropy production, which
mean the system is no longer at local equilibrium. The equa-
tions for the physical local equilibrium stand for reversible
changes of the system.

It is conventional to write the Maxwell-Boltzmann distri-
bution function

f0(v, r, t ) = n
( m

2πkBT

) 3
2

exp
[
− m

2kBT
|v − u|2

]
, (9)

in which n, u, and T are regarded as functions of (r, t ), in
contrast to the physical local equilibrium. The same is true
for the phenomenological definitions of the local equilibrium.
To clarify and distinguish the states, we define ‘virtual local
equilibrium’ for the state where n, u, and T are functions of
(r, t ) regardless of the temperature gradient and the strain rate,
and their behaviors are described by the continuity equation,
the Euler equation, and the isentropic equation, as well as
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the equilibrium thermodynamic laws. Apparently, there is no
entropy production at the virtual local equilibrium. The virtual
local equilibrium is a hypothetical state, because the tempera-
ture gradient and the strain rate should not necessarily vanish
while the heat flux and the viscous pressure tensor should be 0,
i.e., all the transport coefficients should be 0. The inviscid flow
in the aerodynamic analyses assumes virtual local equilibrium
[16].

III. NONEQUILIBRIUM TEMPERATURE

In order to look for the molecular basis of the temperature
equation proposed in the previous work [11], the Boltzmann
transport equation, (4), is employed. The solution of the Boltz-
mann equation may be written in factorized form, without loss
of generality,

f (v, r, t ) = f0(v, r, t )g(v, r, t ), (10)

in which f0 is the distribution function of the virtual local
equilibrium in Eq. (9), and g represents a deviation of f from
f0, which accounts for the nonequilibrium nature of f . There
is no special restriction on g. Individual theories may model
the functional forms of g to evaluate f , however, the present
work employs the DSMC data for a particular molecular
model. Therefore, g no longer enters the present theory.

At the present moment, n, u, and T in Eq. (9) are just
mathematical functions of (r, t ) . The n and u are assigned
to the physical quantities by the definitions

n(r, t ) =
∫

f (v, r, t )dv, (11)

the number density, and

u(r, t ) = 1

n(r, t )

∫
v f (v, r, t )dv, (12)

the gas flow velocity. Obviously,∫
( f − f0)dv =

∫
v( f − f0)dv = 0. (13)

As the temperature is defined in the equilibrium theory, it is
interesting to extend the definition in terms of f0 rather than f
and examine its consequences,

3

2
kBT (r, t ) = 1

n(r, t )

∫
1

2
mC2 f0(v, r, t )dv. (14)

The equation for the local temperature thus defined will have
to be derived from the equation for f0, not the equation for f .
It should be noted that∫

1

2
mC2( f − f0)dv �= 0. (15)

The inequality prevents the use of the Chapman-Enskog
method for the Boltzmann equation, since the solubility con-
dition of the method, which stems from Hilbert’s theorem
[1,2], is given by ∫

1

2
mC2( f − f0)dv = 0, (16)

together with Eq. (13). The condition in Eq. (16) is deemed to
be an overimposition on f (v, r, t ) as long as the temperature

is defined by Eq. (14). The inequality in Eq. (15) is there-
fore regarded as a conservative idea to allow for f (v, r, t )
to be comprised of more physical ingredients, e.g., the bulk
viscosity. Although there is no way to provide a fundamental
justification of the idea, there may be a way to rationalize it
considering the thermodynamics, which is discussed in the
next section.

The hydrostatic pressure p is defined by

p(r, t ) = 1

3

∫
mC2 f0(v, r, t )dv, (17)

and the exopressure is defined by

P (r, t ) = 1

3

∫
mC2( f − f0)dv. (18)

It is obvious that

p(r, t ) = kBn(r, t )T (r, t ), (19)

the equation of state. The internal energy for monatomic dilute
gases is defined by

ρ(r, t )U (r, t ) =
∫

1

2
mC2 f (v, r, t )dv, (20)

where U is the internal energy per mass, and ρ is the mass
density.

Let us introduce the ‘exoenergy,’ E , defined by

ρ(r, t )E (r, t ) =
∫

1

2
mC2( f − f0)dv. (21)

Then the internal energy is composed of two terms:

U = U0 + E, (22)

where U0 is the equilibrium part

U0 = 3

2

kBT

m
, (23)

and E is the nonequilibrium part. For dilute gases, the relation
between the exopressure and the exoenergy can be written as

P = 2

3
ρE . (24)

For later use, we define the stress tensor Π and the heat flux
vector Q:

Π(r, t ) =
∫

m

(
CC − 1

3
C2δ

)
f (v, r, t )dv, (25a)

Q(r, t ) =
∫

1

2
mCC2 f (v, r, t )dv. (25b)

Here, Π and Q are the quantities of the unit volume. The
pressure tensor and its nonequilibrium viscous part given in
Eqs. (2) and (3) are written as

P = pδ + P , (26a)

P =
∫

mCC( f − f0)dv = Pδ + Π. (26b)
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It is straightforward to write the equations for ρ and u,
using the Boltzmann equation in Eq. (4),

∂ρ

∂t
+ ∇s(ρus) = 0, (27a)

∂

∂t
(ρui ) + ∇s(Psi + ρusui ) = 0, (27b)

the continuity equation and the equation of motion, respec-
tively.

The temperature equation can be derived by using the
equation for f0 in Eq. (7). Multiplying 1

2 mv2 by both sides
of Eq. (7) and integrating them,∫

1

2
mv2 ∂ f0

∂t
dv +

∫
1

2
mv2vs∇s f0dv = 0. (28)

Since v2 = C2 + 2Crur + u2, it is straightforward to get
∂

∂t

(
3

2
nkBT + 1

2
ρu2

)
+ ∇s

[
us

(
5

2
nkBT + 1

2
ρu2

)]
= 0,

(29)
which is the proposed nonequilibrium temperature equation.
Applying Eqs. (23) and (27) to Eq. (29), and using p = nkBT ,
Prs = Pδrs + Πrs, the equation is rewritten,

ρ
DU0

Dt
= −Psr∇sur + ∇s(urPrs), (30)

where D
Dt ≡ ∂/∂t + us∇s, the material derivative. The internal

energy equation is derived using Eq. (4),

ρ
DU

Dt
= −∇sQs − Psr∇sur, (31)

and the equation of exoenergy can be written by using
Eqs. (22), (30), and (31),

ρ
DE
Dt

= −∇sQs − ∇s(urPrs). (32)

Insofar as the equalities of Eq. (13) hold, it should also
be possible to derive the equations for ρ and u from Eq. (7).
The continuity equation takes the same form as Eq. (27a),
however, the equation of motion gives the Euler equation,

∂

∂t
(ρui ) + ∇s(pδsi + ρusui ) = 0, (33)

which is the equation for the virtual local equilibrium. Al-
though the role of Eq. (33) in nonequilibrium flows is not
clear, it is apparent that the equation should participate in the
process of onset of viscous flows from the physical local equi-
librium state. The mathematical instability of viscous flow
seems to suppress the role of Eq. (33) after the onset. In this re-
spect, the derived Eq. (33) may be regarded as an ‘equilibrium
branch’ of the equation of motion in the nonequilibrium flows,
which becomes unstable after the onset of viscous flows.

There is also an equilibrium branch in the temperature
equation. By multiplying 1

2 mC2 by both sides of Eq. (7) and
integrating them,∫

1

2
mC2 ∂ f0

∂t
dv +

∫
1

2
mC2vs∇s f0dv

= ∂

∂t

∫
1

2
mC2 f0dv + ∇s

∫
1

2
mC2vs f0dv

+ (∇sur )
∫

mCrvs f0dv, (34)

one obtains

∂

∂t

(
3

2
nkBT

)
+ ∇s

(
us

3

2
nkBT

)
+ (∇sus)nkBT = 0. (35)

Using the continuity equation (27a), Eq. (35) is rearranged to

D

Dt
ln

(
T

3
2

n

)
= 0. (36)

It is noteworthy that the equilibrium branch of the temperature
equation in Eq. (36) is an isentropic equation, which is also
the equation for the virtual local equilibrium. It is regarded
that the equilibrium branch of the temperature equation be-
comes mathematically unstable after the temperature gradient
is developed by the onset of nonequilibrium flows.

IV. NONEQUILIBRIUM ENTROPY

The entropy is a concept of the equilibrium state. Its exten-
sion to nonequilibrium phenomena stems from the Clausius
inequality and the Boltzmann H theorem [17]. It seems that
the establishment of the second law is the main task in the
nonequilibrium thermodynamics. On the other hand, the first
law has been regarded as relatively less important, although
the thermodynamics roots its foundation on the mechanical
equivalent of heat. However, recent understandings of the time
arrow of spontaneous changes in nonequilibrium phenomena
[18–20] seem to enforce a reconsideration about the first law,
i.e., the equivalence of heat and mechanical energy.

It has been well understood that the thermodynamic
process involving nonequilibrium breaks the time reversal
symmetry which the microscopic physics laws should follow.
After taking the symmetry breaking as the nature itself, it
may be the next step to reflect it properly in the thermody-
namic laws [21,22]. Because the time translation symmetry
is reflected by the energy conservation laws, the symmetry
breaking should play its role in the energy equation. The
first law of equilibrium thermodynamics describes the energy
conservation, taking the thermal energy as a form of the
internal energy as well as the mechanical energy. The mechan-
ical energy change and its conservation in a specific process,
whether reversible or irreversible, is essentially a reflection
of the time translation symmetry, as in the microscopic laws.
But the change of thermal energy is quite different from the
mechanical part, which requires an additional law (the second
law) for the direction of spontaneous irreversible change [22],
whereas it is equivalent to the mechanical energy change in
the reversible process. Therefore, it is regarded that the broken
symmetry may be related to the anisotropy of heat flow.

It is interesting to split the internal energy equation for
nonequilibrium processes into two parts, the equation for
mechanical energy changes and the equation for heat flows,
and examine their consequences considering the second law.
Because the equilibrium thermodynamics is complete in the
present form, the split equations should be combined in the
original form in the physical local equilibrium state. Further-
more, it should be noted that the amount of work or heat
flow in different processes may be different (i.e., inexact),
even though each of the processes starts in the same initial
state and terminates in the same final state. Both the heat and
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the work equations should be balanced by exact quantities
whose changes are given by the differences in their initial and
final states regardless of the detailed processes of the changes,
which means that a new quantity should be introduced to make
the heat and work be exact quantities. The new quantity must
vanish in the physical local equilibrium state. In the following
subsection, a possible formulation for the nonequilibrium first
law is demonstrated realizing the above-mentioned idea.

A. The first law

Let us write the first law in the physical local equilibrium,

DU

Dt
= dq

dt
+ dw

dt
, (37)

in which the inexactness of the infinitesimal heat flow and
work is expressed by the Fraktur typeface. Considering the
internal energy equation in Eq. (31), it is regarded that

ρ
dq

dt
= −∇sQs, (38a)

ρ
dw

dt
= −Psr∇sur . (38b)

Because the internal energy comprises the equilibrium and
nonequilibrium parts in Eq. (22),

DU

Dt
= DU0

Dt
+ DE

Dt
. (39)

Then the energy equation is split into two equations by using
Eqs. (30) and (32):

ρ
DU0

Dt
= ρ

dw

dt
+ ∇s(urPrs), (40)

the equation for mechanical energy change; and

ρ
DE
Dt

= ρ
dq

dt
− ∇s(urPrs), (41)

the equation for heat flow. Combining the split equations, the
original energy equation is obtained. It is noteworthy that
the terms ∇s(urPrs) in the split equations play roles to make
the right-hand sides (RHSs) be exact differential, because the
left-hand sides (LHSs) are regarded as exact differential.

The mechanical energy equation for dilute monatomic
gases constitutes the temperature equation. The equation is
meaningful only when E �= 0, which implies that split energy
equations should be applied to dissipative irreversible pro-
cesses. The state of E = 0 corresponds to the physical local
equilibrium, the equations for which are given in Eqs. (A6).

B. The equilibrium branch

The basic idea of the present theory is that when a
macro system at equilibrium suffers from external opera-
tions (e.g., an external heat source or external force by
piston movements), and when it should undergo the onset of
nonequilibrium, a set of equations describing system behav-
iors, Eqs. (A6), furcates into branches. There are two kinds
of branches. One is the stable nonequilibrium branch, which
complies with the external operations generating entropy. The
other is the unstable equilibrium branch, which goes under-
ground without entropy production, keeping the values of

intensive quantities consistent with the complying branch. The
energy equation trifurcates at the onset: the isentropic equa-
tion, the equation for mechanical work, and the equation for
heat flow. Among these, the isentropic equation is the unstable
branch and the others are the stable. The equation of motion
bifurcates: the Euler equation and the dissipative momentum
balance equation. The Euler equation is the unstable branch.
The continuity equation does not furcate.

The system in the nonequilibrium branch may be arbi-
trarily far from equilibrium and changes its state evolving
in time according to stable balance equations. The unstable
branch is at virtual local equilibrium, not physical local equi-
librium. The evolution of the unstable branch is suppressed
by the external operation, and it does not contribute to the
irreversible process of the system if there happens to be no
singular behavior.

The nonequilibrium local chemical potential, μ(r, t ), one
of the intensive quantities, is defined by the fundamental ther-
modynamic equation for the nonequilibrium branch,

μ = U + pV − T S, (42)

in parallel to the equation for the equilibrium branch,

μ0 = U0 + pV − T S0, (43)

where V = 1/ρ, the volume per mass, S is the local entropy
per mass of the nonequilibrium system in the stable branch,
and the subscript 0 designates the value of the virtual local
equilibrium in the unstable branch. It is imposed that μ = μ0

at steady state, and μ �= μ0 for a time-dependent transient
state, while the other intensive quantities, T , ρ, and p, of the
nonequilibrium branch are always equal to the values of the
equilibrium branch whether steady or transient. Additional
impositions to μ are such that if μ > μ0, the system under-
goes a change toward the local equilibrium decreasing μ until
μ = μ0, arriving at a new steady state or local equilibrium,
and if μ < μ0, then the system changes farther from the
local equilibrium increasing μ until μ = μ0, arriving at a new
steady state.

At steady state, the unstable equilibrium branch is regarded
as a conjugate pair of the stable nonequilibrium branch by
the common intensive quantities and uncommon extensive
quantities. The equations for ρ, u, and T , in Sec. III, are
rationalized by the above arguments.

C. Stationary nonequilibrium entropy

Considering Eq. (42), the stationary chemical potential is
written in the form

μ(s) = U + pV − T S(s), (44)

where the superscript (s)’s designate the steady-state values.
Since μ(s) = μ0, by definition, and U = U0 + E , given in
Eq. (22), the stationary entropy is obtained from Eqs. (43) and
(44),

S(s) = S0 + E
T

, (45)

which is the definition of the local stationary entropy, and S0

is the local specific entropy of the equilibrium branch, given
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by the Sackur-Tetrode formula [5],

S0 = kB

m
ln

(
T

3
2

ρ

)
+ constant. (46)

In parallel to the equilibrium theory, the entropy differen-
tial of the equilibrium branch should be written by the Gibbs
relation,

DS0

Dt
= 1

T

DU0

Dt
+ p

T

DV

Dt
, (47)

and the Gibbs-Duhem equation takes the form

Dμ0

Dt
= −S0

DT

Dt
+ V

Dp

Dt
, (48)

because there is no entropy production in the equilibrium
branch by definition. Substituting S0 = S(s) − E/T and U0 =
U − E into Eqs. (47) and (48), the nonequilibrium Gibbs
relation,

D(s)

Dt

(
S(s) − E

T

)
= 1

T

D(s)

Dt
(U − E ) + p

T

D(s)V

Dt
, (49)

and the nonequilibrium Gibbs-Duhem equation,

D(s)μ(s)

Dt
= −

(
S(s) − E

T

)
D(s)T

Dt
+ V

D(s) p

Dt
, (50)

are obtained for the steady state, in which the stationary ma-
terial derivative is designated by the superscript (s) defining
D(s)

Dt ≡ ur∇r .

D. The nonequilibrium steady state

The balance equations, (27), (29), and (32), take the forms
at steady state

∇r (ρur ) = 0, (51a)

∇r[Pri + ρurui] = 0, (51b)

∇r

[
ur

(
5

2
nkBT + 1

2
ρu2

)]
= 0, (51c)

∇r

[
3

2
urP + Qr + usPrs

]
= 0. (51d)

Equation (51c) can be further simplified using Eq. (51a),

ur∇r

[
5kB

m
T + u2

]
= 0, (52)

which is the relation between the temperature gradient and the
gradient of the fluid velocity, giving

5kB

m
T + u2 = constant (53)

along the streamline of steady flow. Also, by applying Prs =
Pδrs + Πrs, Eq. (51d) is rearranged to

∇r

[
5

2
urP + Qr + usΠrs

]
= 0, (54)

which gives the relation among P , Q, and Π at steady state.
The relation between T and u2 in Eq. (53) has been ob-

tained by splitting the internal energy equation as described

thus far. In 1922, Becker [23] obtained the same relation with-
out the split for 1D stationary normal shock waves, assuming
that the viscosity and the heat conductivity are constants, and
the Prandtl number, Pr = 3

4 , which is defined by Pr ≡ cpη/κ ,
where cp, η, and κ are the isobaric specific heat, the shear
viscosity, and the heat conductivity, respectively. For dilute
monatomic gases, cp = 5

2 kB/m, the Prandtl number gives

κ

η
= 10

3

kB

m
, (55)

whereas the ratio κ/η for monatomic ideal gases at near-
equilibrium has been known as 15

4 kB/m [1], giving Pr = 2
3 .

Since the Prandtl number, Pr = 3
4 , is a good approximation for

the actual value, and the simple form of the energy equation
in Eq. (53) makes the equation of motion in Eq. (51b) be of
an analytically integrable form, there have been many efforts
to analyze, extend, and modify Becker’s work over about a
hundred years [24–28].

In order to see what happens in Eq. (54) when Pr = 3
4 , let

us introduce the transport coefficients writing the constitutive
relations for 1D shock waves,

Πxx = −4

3
η

dux

dx
, (56a)

P = −ζ
dux

dx
, (56b)

Qx = −κ
dT

dx
, (56c)

in which ζ is the bulk viscosity. Since
dT

dx
= − 2m

5kB
ux

dux

dx
, (57)

from Eq. (53), it is obtained that

ζ = 2

5

(
2m

5kB
κ − 4

3
η

)
, (58)

from Eq. (54) for dux/dx �= 0. When κ/η = 15
4 kB/m, it gives

ζ = η/15, as shown in the previous work [11], however, it is
apparent that ζ = 0 when κ/η = 10

3 kB/m, which gives P =
uxΠxx + Qx = 0, and thus Eq. (54) becomes null. This is the
reason why the relation in Eq. (53) is obtainable without the
splitting internal energy equation as Becker demonstrated.

In general, the transport coefficients are complicated func-
tions of the temperature, and show deviations from the simple
relations given by the Newton and Fourier laws, when the
system is driven far from local equilibrium. The same is
true for the behavior of κ and η within the shock layer, as
argued by Wang Chang [29]. Therefore, the Prandtl number
should apply to the upstream equilibrium or the downstrean
equilibrium gases, for example,

Pr = c(u)
p

η(u)

κ (u)
, (59)

where the superscript (u)’s designate upstream values. By
manipulating Eq. (58) a bit,

ζ = 2

5
η(u)

(
2m

5kB

κ

κ (u)

κ (u)

η(u)
− 4

3

η

η(u)

)

= 2

5
η(u)

(
1

Pr

κ

κ (u)
− 4

3

η

η(u)

)
. (60)
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When Pr = 3
4 , the bulk viscosity takes the form

ζ = 8

15
η(u)

(
κ

κ (u)
− η

η(u)

)
, (61)

where κ/κ (u) �= η/η(u), in general. This point is discussed
further in Sec. VII.

E. Entropy production

Since the positivity of entropy production is consistent with
the Clausius inequality, it has been conventional to demon-
strate the second law by proving the positivity after derivation
of the entropy balance equation. In the kinetic theory ap-
proach, the nonequilibrium entropy is defined by using the
velocity distribution function and applies the H theorem for
this purpose. In this approach, the H theorem is the bridge
connecting the molecular theory to the second law of thermo-
dynamics.

In the present formulation, the temperature equation takes
the role of a bridge between the Boltzmann equation and
the first law of thermodynamics. The entropy is defined phe-
nomenologically, and the entropy balance equation is derived
by using the temperature equation.

The entropy balance equation takes the form

ρ
DS

Dt
= −∇rFr + σ, (62)

where Fi and σ represent the entropy flux vector and the
entropy production, respectively. The entropy equation for the
virtual local equilibrium is derived from the equilibrium Gibbs
relation, in Eq. (47), and using p = nkBT ,

ρ
DS0

Dt
= ρ

1

T

DU0

Dt
+ ρ

p

T

DV

Dt
(63a)

= 3

2

kB

m
ρ

1

T

DT

Dt
− kB

m

Dρ

Dt
(63b)

= kB

m
ρ

D

Dt
ln

(
T

3
2

ρ

)
, (63c)

which is to be the isentropic equation. The entropy balance
equation for a nonequilibrium system can be derived from the
nonequilibrium Gibbs relation in Eq. (49), at steady state,

ρ
D(s)S(s)

Dt
= ρ

1

T

D(s)

Dt
(U − E ) + ρ

p

T

D(s)V

Dt
+ ρ

D(s)

Dt

E
T

= ρ

T

D(s)U0

Dt
− kB

m

D(s)ρ

Dt
+ ρ

D(s)

Dt

E
T

. (64)

Since

ρ
D(s)

Dt

E
T

= ρ

T

D(s)E
Dt

− ρE
T 2

D(s)T

Dt
, (65)

using Eqs. (27a), (30), and (32) and p = nkBT , it is obtained
that

ρ
D(s)S(s)

Dt
= − 1

T
∇rQr − 1

T
Prs∇sur − ρE

T 2

D(s)T

Dt
. (66)

Substituting D(s)

Dt T = ur∇rT into Eq. (66) and considering

1

T
∇rQr = ∇r

(Qr

T

)
+ Qr

T 2
∇rT, (67)

the entropy balance equation at steady state is written in the
form

ρ
D(s)S(s)

Dt
= −∇rF (s)

r + σ (s), (68)

where

F (s)
i = Qi

T
, (69)

the steady-state local entropy flux, and

σ (s) = − 1

T 2
(Qr + ρEur )∇rT − 1

T
Prs∇rus, (70)

the steady-state local entropy production per unit volume. The
second law of thermodynamics requires that

σ (s) > 0, (71)

which should be verified for individual applications.

V. APPLICATION TO A 1D NORMAL SHOCK WAVE

A. Balance equations

In order to examine the validity of the postulated temper-
ature equation and the entropy production, it is applied to
the stationary 1D normal shock wave problem. Considering
Eqs. (51), a set of balance equations for a 1D shock wave is
written as

d

dx
(ρux ) = 0, (72a)

d

dx

(
Πxx + P + p + ρu2

x

) = 0, (72b)

d

dx

[
ux

(
5

2
p + 1

2
ρu2

x

)]
= 0, (72c)

d

dx

(
5

2
uxP + Qx + uxΠxx

)
= 0. (72d)

Applying the upstream equilibrium boundary condition at
x → −∞, the stationary equations are integrated from −∞ to
a certain x,

ρux = ρ (u)u(u), (73a)

Πxx + P + p + ρu2
x = p(u) + ρ (u)(u(u) )2, (73b)

5ux p + ρu3
x = 5u(u) p(u) + ρ (u)(u(u) )3, (73c)

5uxP + 2Qx + 2uxΠxx = 0, (73d)

where ρ (u), u(u), and p(u) are the upstream mass density, the
x component of the upstream gas velocity, and the hydro-
static pressure of upstream gas, respectively. The downstream
equilibrium values at x → ∞ are obtained in terms of the
upstream boundary conditions,

ρ (d )u(d ) = ρ (u)u(u), (74a)

p(d ) + ρ (d )(u(d ) )2 = p(u) + ρ (u)(u(u) )2, (74b)

5u(d ) p(d ) + ρ (d )(u(d ) )3 = 5u(u) p(u) + ρ (u)(u(u) )3, (74c)

where the superscript (d )’s denote the downstream values. It
is convenient to express the values in dimensionless form. Let
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us define

ρ̃ (d ) ≡ ρ (d )

ρ (u)
, ũ(d ) ≡ u(d )

u(u)
, T̃ (d ) ≡ T (d )

T (u)
, (75)

in which T (u) and T (d ) are the upstream and the downstream
temperatures, respectively. Since p(d ) = kBρ (d )T (d )/m and
p(u) = kBρ (u)T (u)/m, the dimensionless values are obtained
from Eqs. (74),

ρ̃ (d ) = 4

1 + 5p0
, ũ(d ) = 1 + 5p0

4
,

T̃ (d ) = 1

16p0
(3 − p0)(1 + 5p0), (76)

where p0 is the dimensionless upstream pressure, which is
related to the Mach number M as follows:

p0 ≡ kBT (u)

m(u(u) )2 = 3

5M2
. (77)

B. Shock wave equation

Considering Eqs. (53) and (73c), it is apparent that

5kB

m
T + u2

x = 5kB

m
T (u) + (

u(u)
)2

. (78)

For later use, it is useful to write Eq. (78) in dimensionless
form,

5p0T̃ + ũ2 = 5p0 + 1, (79)

where T̃ ≡ T/T (u) and ũ ≡ u/u(u).
In order to estimate the shock profiles, the shock equation

should be derived. Substituting Eqs. (56a) and (56b) into the
equation of motion, (73b), it is obtained that(

4

3
η + ζ

)
dux

dx
= p + ρu2

x − p(u) − ρ (u)(u(u) )2, (80)

which constitutes the general form of the 1D normal shock
wave equation. Because p = nkBT and T is given by Eq. (78),
the shock equation in Eq. (80) is just a single ordinary dif-
ferential equation for ux(x), provided that the shear and bulk
viscosity are known. The bulk viscosity can be replaced by the
heat conductivity if the relation in Eq. (58) is employed:

4

3
η + ζ = 4

5

(
η + m

5kB
κ
)
. (81)

In general, the viscosity is a complicated function of the
temperature and shows non-Newtonian behaviors when the
system is driven far from equilibrium; care should be taken
to apply the equation to strong shock waves.

C. Entropy production

The local entropy balance equation in Eq. (68) takes the
form, in 1D shock waves,

d

dx

(
ρuxS(s)

) = − d

dx

(Qx

T

)
+ σ (s), (82)

where

σ (s) = − 1

T 2
(Qx + ρEux )

dT

dx
− 1

T
Pxx

dux

dx
, (83)

in which the property of Eq. (72a) has been used. Using
Eqs. (57) and (73d), ρE = 3

2P , and Pxx = P + Πxx, it is ob-
tained that

σ (s) = − 1

T

(
2mu2

x

5kBT
+ 1

)
Pxx

dux

dx
. (84)

From Eq. (73b), we see that

Pxx = p(u) − p + ρ (u)(u(u) )2 − ρu2
x

= kBT (u)

m
ρ (u) − kBT

m
ρ + ρ (u)(u(u) )2 − ρu2

x, (85)

and

Pxx

ρ (u)(u(u) )2 = p0 + 1 − p0ρ̃T̃ − ũ, (86)

where ρ̃ ≡ ρ/ρ (u), and the property ρ̃ũ = 1 in Eq. (73a) has
been used. Using Eqs. (76) and (79),

Pxx

ρ (u)(u(u) )2 = − 4

5̃u
(̃u − 1)(̃u − ũ(d ) ), (87)

which gives

m

kB

λ(u)σ (s)

ρ (u)u(u)

= 4

ũ

1 + 5p0 + ũ2

(1 + 5p0 − ũ2)2 (̃u − 1)(̃u − ũ(d ) )
dũ

dx̃
, (88)

where λ(u) is the mean free path of upstream molecules, and
x̃ ≡ x/λ(u).

It is useful to note that

u(u) =
√

kBT (u)

m

√
m(u(u) )2

kBT (u)
= p

− 1
2

0

√
kBT (u)

m
, (89)

and the mean time between successive collisions of upstream
molecules

τ ≡ λ(u)

√
m

kBT (u)
. (90)

Then the LHS of Eq. (88) can be rewritten as

m

kB

λ(u)σ (s)

ρ (u)u(u)
= p

1
2
0

τσ (s)

kB

m

ρ (u)
. (91)

Since σ (s) is the entropy production per unit volume, τσ (s)/kB

is the entropy produced during τ per unit volume in di-
mensionless entropy unit. Therefore, the local contribution
of a molecule at x to the entropy creation during τ in
entropy units at steady state, writing in �(s), takes the
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form

�(s) ≡ τσ (s)

kB

m

ρ (u)

= 4p
− 1

2
0

ũ

1 + 5p0 + ũ2

(1 + 5p0 − ũ2)2 (̃u − 1)
(̃
u − ũ(d )

)dũ

dx̃
. (92)

The transport coefficients for the entropy production are in-
cluded in the term dũ/dx̃, as shown in Eq. (80). It is obvious
that �(s) > 0, for

ũ(d ) < ũ < 1 and
dũ

dx̃
< 0. (93)

The local entropy change can be expressed by the nonequi-
librium Gibbs relation in Eq. (49):

ux
d

dx
S(s) = ux

d

dx

E
T

+ 1

T
ux

d

dx
(U − E ) + p

T
ux

dV

dx
. (94)

Using U − E = U0 = 3
2 kBT/m, p = ρkBT/m, and V = 1/ρ,

it is simplified to

dS(s)

dx
= d

dx

E
T

+ 3

2

kB

m

1

T

dT

dx
− kB

m

1

ρ

dρ

dx
. (95)

The equation is further simplified:

dS(s)

dx
= d

dx

( E
T

+ 3

2

kB

m
ln T − kB

m
ln ρ

)
. (96)

Since d (ρuxS(s) )/dx represents the entropy increasing rate
per unit volume, the local entropy per mass, S(s)(x), can be
evaluated by integration,∫ x

−∞

d

dx

(
ρuxS(s)

)
dx = ρ (u)u(u)

(
S(s) − S(u)

0

)
, (97)

with the use of Eq. (73a), where S(u)
0 is the upstream equi-

librium entropy per mass. Therefore, the local entropy is
obtained by using either Eq. (82) or Eq. (96),

S(s) − S(u)
0 = 1

ρ (u)u(u)

(
−Qx

T
+

∫ x

−∞
σ (s)dx

)
, (98a)

S(s) − S(u)
0 = E

T
+ 3

2

kB

m
ln

T

T (u)
− kB

m
ln

ρ

ρ (u)
. (98b)

The entropy production in Eq. (88) gives

m

kB

λ(u)

ρ (u)u(u)

∫ x

−∞
σ (s)dx

=
∫ x

−∞

4

ũ

1 + 5p0 + ũ2

(1 + 5p0 − ũ2)2 (̃u − 1)(̃u − ũ(d ) )
dũ

dx̃
dx. (99)

Since 4(̃u − ũ(d ) ) = 4̃u − 1 − 5p0, the indefinite integration
of the integral of the RHS of Eq. (99) is carried out,∫ [

ũ − 1

ũ

(1 + 5p0 + ũ2)(4̃u − 1 − 5p0)

(1 + 5p0 − ũ2)2

]
dũ

= ln
[̃
u
(
1 + 5p0 − ũ2

) 3
2

]
+ 5[1 + 5p0 − (1 + p0 )̃u]

1 + 5p0 − ũ2
.

(100)

Applying upper and lower limits of integration and using the
relation in Eq. (79),

m

kB

1

ρ (u)u(u)

∫ x

−∞
σ (s)dx

= ln
(̃
uT̃

3
2
) + 4

5p0T̃
(̃u − 1)

(̃
u − ũ(d )

)
. (101)

Therefore, Eq. (98a) gives
m

kB

(
S(s) − S(u)

0

)
= ln

(̃
uT̃

3
2
) + 4

5p0T̃
(̃u − 1)

(̃
u − ũ(d )

) − Q̃

p0T̃
, (102)

where

Q̃ ≡ Qx

ρ (u)(u(u) )3 . (103)

It is immediate to rewrite Eq. (98b) in dimensionless form,

m

kB

(
S(s) − S(u)

0

) = Ẽ
p0T̃

+ 3

2
ln T̃ − ln ρ̃, (104)

where

Ẽ ≡ E
(u(u) )2 . (105)

Both expressions, Eqs. (102) and (104), are equivalent, as
shown in the next section.

VI. ANALYSES OF DSMC DATA

Because the present formulation is more or less fundamen-
tal than modeling a particular phenomenon, the purpose of
this section is to demonstrate the validity of the theory by
analyzing the DSMC data on 1D normal shock wave. The data
are generated for hard spheres using the DSMC1S.FOR pro-
gram written by Professor Graeme Bird [3]. The literature data
on DSMC given by Nanbu and Watanabe [30] for Maxwell
molecules are also used. The coordinate origin is defined at
the location of half-density, and the distance from the origin is
scaled by the upstream mean free path. Details of the program
run and data manipulations are given in Appendix B.

It is convenient to introduce dimensionless quantities,

P̃ ≡ P/p∗, Π̃ ≡ Πxx/p∗, P̃ ≡ Pxx/p∗,

p̃ ≡ p/p∗, p∗ ≡ ρ (u)
(
u(u)

)2
,

η̃ ≡ η/η∗, ζ̃ ≡ ζ/η∗, η∗ ≡ λ(u)ρ (u)u(u), (106)

κ̃ ≡ κT (u)

λ(u)u(u) p∗ = mp0

kB
κ/η∗,

where p0 is defined in Eq. (77), and also, Q̃, Ẽ , ρ̃, ũ, and T̃
have already been defined. The mean free path of upstream
molecules is taken in parallel to the hard-sphere value [3],
defining

λ(u) = 8

5

η(u)

ρ (u)

√
2m

πkBT (u)
, (107)

in which η(u) is the shear viscosity of the upstream gas.
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A. Shock wave structure

Equations (73) are rewritten in terms of dimensionless
quantities:

ρ̃ũ = 1, (108a)

Π̃ + P̃ + p̃ + ρ̃ũ2 = p0 + 1, (108b)

5̃up̃ + ρ̃ũ3 = 5p0 + 1, (108c)

5̃uP̃ + 2Q̃ + 2̃uΠ̃ = 0. (108d)

Equations (108a) and (108c) give the relations among ρ̃, ũ,
and p̃. Taking ũ as independent, others are expressed in terms
of ũ:

ρ̃ = 1

ũ
, (109a)

p̃ = 1

5̃u
(1 + 5p0 − ũ2). (109b)

It is noteworthy that these relations are independent of
particular force models of molecules and degrees of approxi-
mation to the distribution function. There are four unknowns,
ũ, Π̃, P̃ , and Q̃, in the remaining two equations, (108b) and
(108d). It is useful to rearrange them,

ũΠ̃ + Q̃ = −5

2
ũP̃, (110a)

3̃uΠ̃ − 2Q̃ = X, (110b)

where

X = (1 − ũ)(4̃u − 1 − 5p0)

= −4
(̃
u − ũ(u))(̃u − ũ(d )). (111)

For illustrative purposes, the agreements between theoreti-
cal balance equations and DSMC results are demonstrated by
applying the simulated data for ũ, Π̃, and Q̃ to Eq. (110b).
Bird’s program DSMC1S.FOR provides an option to se-
lect molecular models from the hard sphere to the Maxwell
molecule. The results of examination of Eq. (110b) by chang-
ing the molecular parameter and the Mach number show that
the simulated data satisfy the equation within 1%. For illustra-
tion, the LHS and the RHS of Eq. (110b) inputting the DSMC
data are shown in Fig. 1 for hard spheres and in Fig. 2 for
Maxwell molecules at different Mach numbers, M = 3 and
10. In Fig. 2, the literature data for Maxwell molecules, given
by Nanbu and Watanabe [30], are used.

The shock wave equation, (80), can be rewritten in terms
of dimensionless variables. By using Eqs. (56) and (57),

Π̃ = −4

3
η̃

dũ

dx̃
, (112a)

Q̃ = −κ̃
dT̃

dx̃
, (112b)

dT̃

dx̃
= − 2̃u

5p0

dũ

dx̃
, (112c)

Eq. (110b) gives

dũ

dx̃
= −5p0

4̃u

X

κ̃ + 5p0η̃
. (113)

FIG. 1. Agreements between DSMC data and predictions of the
balance equation, (110b), for hard spheres at M = 3 (lower curve;
crosses) and M = 10 (upper curve; circles). The symbols are LHS
values of the equation, and the lines are RHS values.

Shock profiles can be obtain by solving (113) for known κ̃ and
η̃. The main task in the shock wave problem, therefore, is the
modeling of κ̃ and η̃ for particular molecules.

FIG. 2. Agreements between DSMC data and predictions of the
balance equation, (110b), for a Maxwell molecular gas at M = 3
(lower curve; crosses) and M = 10 (upper curve; circles). The sym-
bols are LHS values of the equation, and the lines are RHS values.
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FIG. 3. Temperature and exopressure profiles vs x̃, by the DSMC
simulation for hard spheres at M = 10. The T̃ values are plotted by
the solid line using the DSMC ũ and Eq. (79) and by circles using
Eq. (115). The overshooting T̃k values are represented by crosses,
and the dotted curve shows the contribution of (̃u/p0)P̃ in Eq. (115).

B. Nonequilibrium temperature

The DSMC programs employ the definition in Eq. (1) to
produce the temperature. However, it is actually the internal
energy in Eq. (20), evaluated in temperature units. Let us
define the kinetic temperature Tk ,

3

2
kBTk = 1

n

∫
1

2
mC2 f dv. (114)

The DSMC temperature should be read as Tk , and it is related
to T by the relations in Eqs. (20)–(24),

T̃ = T̃k − ũ

p0
P̃, (115)

in dimensionless quantities, where T̃k = Tk/T (u). The simu-
lated data for Π̃ and Q̃ produce P̃ by using Eq. (110a), which
gives T̃ by Eq. (115) using the simulated T̃k data. The mono-
tonic profiles of T̃ thus obtained are shown in Fig. 3 for hard
spheres and in Fig. 4 for Maxwell molecules [30], at M = 10.
The overshooting T̃k curve, which has been known until now
as the temperature profile, and the contribution of exopressure,
which has been ignored in conventional theories, are shown
in the same figures. The overshooting occurs when the Mach
number is increased over a certain value, e.g., M > 3.3 for
Maxwell molecules [9]. Figures 5 and 6 are drawn for the
same quantities as Figs. 3 and 4, at M = 3.

C. Nonequilibrium entropy

In Eq. (92), the local entropy creation per molecule during
the mean free time, i.e., the mean time between successive
collisions of upstream molecules, is given in entropy units.

FIG. 4. Temperature and exopressure profiles vs x̃, by the DSMC
simulation for Maxwell molecules with M = 10. The T̃ values are
plotted by the solid line using the DSMC ũ and Eq. (79) and by
circles using Eq. (115). The overshooting T̃k values are represented
by crosses, and the dotted curve shows the contribution of (̃u/p0 )P̃
in Eq. (115).

FIG. 5. Temperature and exopressure profiles vs x̃, by the DSMC
simulation for hard spheres with M = 3. The T̃ values are plotted by
the solid line using the DSMC ũ and Eq. (79) and by circles using
Eq. (115). The T̃k values are represented by crosses, and the dotted
curve shows the contribution of (̃u/p0 )P̃ in Eq. (115).
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FIG. 6. Temperature and exopressure profiles vs x̃, by the DSMC
simulation for Maxwell molecules with M = 3. The T̃ values are
plotted by the solid line using the DSMC ũ and Eq. (79) and by
circles using Eq. (115). The T̃k values are represented by crosses,
and the dotted curve shows the contribution of (̃u/p0 )P̃ in Eq. (115).

It is straightforward to evaluate the distribution of entropy
production along the streamline of the shock wave, using
the value of dũ/dx̃ obtainable by numerical differentiation
of DSMC ũ data. For local entropy, S(s)(x), there are two
expressions, Eqs. (102) and (104), which should be equivalent
in order for the theory to be self-consistent. Substituting the Q̃
obtained from Eq. (110a) into Eq. (102),

m

kB

(
S(s) − S(u)

0

) = 4

5p0T̃
(̃u − 1)(̃u − ũ(d ) )

+ ũ

p0T̃

(
5

2
P̃ + Π̃

)
+ ln(̃uT̃

3
2 ). (116)

By using the Π̃ from Eq. (108b) and p̃ from Eq. (109b), it is
obtained that

5

2
P̃ + Π̃ = 3

2
P̃ − 4

5̃u
(̃u − 1)(̃u − ũ(d ) ), (117)

in which the values in Eqs. (76) and ρ̃ũ = 1 have been applied.
Therefore, Eq. (116) becomes

m

kB

(
S(s) − S(u)

0

) = ln
(̃
uT̃

3
2
) + 3

2

ũP̃
p0T̃

, (118)

which is equivalent to Eq. (104) for P̃ = 2
3 ρ̃Ẽ and ρ̃ũ = 1.

In the literature, there have been two different approaches
to evaluating the entropy of 1D shock waves. One of them
[28,31] is the efforts to apply the phenomenological entropy
equation derived by De Groot and Mazur (DGM) [13]; the
other [32] is an application of the Boltzmann H theorem, with
the use of the approximate velocity distribution function, to
shock waves. The results of the two are quite different. The

former gives a maximum entropy behavior within the shock
layer, while the latter does not.

The basic assumption of the DGM theory is that the Gibbs
relation of equilibrium thermodynamics can be applied to
nonequilibrium processes if the thermodynamic variables are
regarded as local quantities, i.e., quantities which are func-
tions of (r, t ). It has been well known that the assumption
holds in the state of near-equilibrium. In this theory, the
temperature should be read as Tk as defined in Eq. (114),
and E = 0, because the theory is founded on the temperature
defined in Eq. (1). By using the continuity equation, (27a), and
the internal energy equation, (31), the Gibbs relation gives the
entropy balance equation,

ρ
DS

Dt
= ρ

Tk

DU

Dt
− p

Tkρ

Dρ

Dt
(119a)

= − 1

Tk
∇rQr − 1

Tk
Πrs∇sur, (119b)

in which care should be taken not to confuse the subscript k
in Tk with the tensor components r and s. By introducing the
entropy flux vector, Q/Tk , and the entropy production per unit
volume, σ (D), it is written as

ρ
DS(D)

Dt
= −∇r

(Qr

Tk

)
+ σ (D), (120)

where the superscript (D) is used to emphasize the DGM
theory, and

σ (D) = −Qr

T 2
k

∇rTk − Πrs

Tk
∇rus. (121)

In the practical calculation of entropy, either Eq. (119a) or
Eq. (119b) can be used, and they should give equivalent re-
sults, however, there is a lack of consistency because the DGM
theory employs the dissipative energy equation rather than
the isentropic equation in order to derive the entropy balance
equation, whereas the Gibbs relation is the law of virtual local
equilibrium.

The entropy balance equation in Eq. (120) takes the form
at steady state

ρux
dS(D)

dx
= − d

dx

(Qx

Tk

)
+ σ (D), (122)

where

σ (D) = −Qx

T 2
k

dTk

dx
− Πxx

Tk

dux

dx
. (123)

In dimensionless form,

m

kB

λ(u)σ (D)

ρ (u)u(u)
= − 1

p0

(
Q̃

T̃ 2
k

dT̃k

dx̃
+ Π̃

T̃k

dũ

dx̃

)
, (124)

and

�(D) ≡ τσ (D)

kB

m

ρ (u)
= −p

− 3
2

0

(
Q̃

T̃ 2
k

dT̃k

dx̃
+ Π̃

T̃k

dũ

dx̃

)
. (125)

The local entropy is evaluated by the integration,∫ x

−∞
ρux

dS(D)

dx
dx = −Qx

Tk
+

∫ x

−∞
σ (D)dx. (126)
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Rewriting it in dimensionless form,

m

kB

(
S(D) − S(u)

0

)
= − Q̃

p0T̃k
− 1

p0

∫ x̃

−∞

(
Q̃

T̃ 2
k

dT̃k

dx̃
+ Π̃

T̃k

dũ

dx̃

)
dx̃. (127)

The local entropy can also be evaluated by using the Gibbs
relation. Since the hydrostatic pressure takes the form p =
ρkBTk/m, and the internal energy, U = 3

2 kBTk/m, in the DGM
theory, the Gibbs relation in Eq. (119a) is rewritten as

DS(D)

Dt
= kB

m

(
3

2

D

Dt
ln Tk − D

Dt
ln ρ

)
. (128)

For 1D stationary shock waves, it takes the form,

m

kB

dS(D)

dx
= 3

2

d

dx
ln Tk − d

dx
ln ρ. (129)

Integration from −∞ to a certain x gives

m

kB

(
S(D) − S(u)

0

) = 3

2
ln T̃k − ln ρ̃ (130)

in dimensionless form. Equations (127) and (130) are not
ensured to be consistent.

In order to compare the present theory and the DGM the-
ory, the same DSMC data are used. For dT̃k/dx̃ in Eqs. (125)
and (127), numerical differentiation of DSMC T̃k data has
been carried out. For the local entropy of DGM, the integral
in Eq. (127) has been calculated by numerical integration.
Figure 7 shows the local entropy thus obtained and the results
from Eqs. (118) and (130) for hard spheres at M = 3 and 10.
Also, the entropy production values in Eqs. (92) and (125) are
shown in Fig. 8.

The present work supports the results given by Morduchow
and Libby [28] and Velasco and Uribe [31]. The maximum
peak of local entropy is regarded as the incoming entropy
flux due to the internal heat flow within the shock layer being
maximum at the peak. The sole contribution of the entropy
production to the local entropy should be a monotonic in-
crease, like Margolin’s results [32], because the integration
in Eq. (98a) gives a monotonic increasing curve.

VII. DISCUSSION

A. Limiting properties

1. Shock wave structure

It is worthwhile to examine the shock wave structure near
the upstream and downstream limits. Since ũ(u) = 1, substi-
tuting ũ = 1 + ũ(u)

1 and ũ = ũ(d ) + ũ(d )
1 into Eq. (113) and

keeping the first-order terms,

dũ(u)
1

dx̃
= 5p0

4

(3 − 5p0 )̃u(u)
1

κ̃ (u) + 5p0η̃(u)
, (131a)

dũ(d )
1

dx̃
= − 5p0

1 + 5p0

(3 − 5p0 )̃u(d )
1

κ̃ (d ) + 5p0η̃(d )
. (131b)

FIG. 7. Local entropy distribution along the streamline of a
shock wave of hard spheres at M = 3 (lower curve and symbols) and
M = 10 (upper curve and symbols). Solid lines represent the present
work in Eq. (118), circles the local equilibrium values in Eq. (130),
and crosses the values of numerical integration of Eq. (127). Insets:
The lack of consistency in the local entropy of the De Groot and
Mazur theory; horizontal lines represent the downstream equilibrium
entropy at M = 3 and M = 10.

FIG. 8. Entropy generation per molecule during the mean free
time of upstream molecules in entropy units for hard spheres at
M = 3 (lower curve and crosses) and M = 10 (upper curve and
circles). Solid lines represent results of the present work in Eq. (92),
and symbols the De Groot and Mazur theory in Eq. (125).
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The solutions are

ũ(u)
1 = ũ(u)

1

(̃
x(u)

0

)
exp

[
5p0

4

(3 − 5p0)
(̃
x − x̃(u)

0

)
κ̃ (u) + 5p0η̃(u)

]
, (132a)

ũ(d )
1 = ũ(d )

1

(̃
x(d )

0

)
exp

[
− 5p0

1 + 5p0

(3 − 5p0)
(̃
x − x̃(d )

0

)
κ̃ (d ) + 5p0η̃(d )

]
,

(132b)

where x̃(u)
0 and x̃(d )

0 are certain locations at the limits of the
upstream equilibrium and the downstream equilibrium, re-
spectively. The boundary conditions,

lim
x̃→−∞

ũ(u)
1 = 0, lim

x̃→∞
ũ(d )

1 = 0, (133)

impose 3 − 5p0 > 0. Since p0 = 3
5 M−2, this gives the shock

condition, M > 1, that the upstream should be supersonic.
The downstream subsonic condition can be derived from the
upstream condition. Let us consider(

u(d )
)2 − 5kBT (d )

3m
= (

u(u)ũ(d )
)2 − 5kBT (u)

3m
T̃ (d )

= (
u(u)

)2
[(̃

u(d )
)2 − 5

3
p0T̃ (d )

]

= (u(u) )2

12
(1 + 5p0)(5p0 − 3). (134)

Since p0 < 3
5 for M > 1, it should be that

u(d ) <

√
5kBT (d )

3m
, (135)

where
√

5kBT (d )/(3m) is the sound speed of the downstream
equilibrium gas.

2. Entropy production

The limiting values of entropy generation per molecule
during the mean free time of the upstream, �(u), and the
downstream, �(d ), can be estimated by using Eq. (92). Using
Eqs. (111) and (113),

�(s) = 20p
1
2
0 (1 + 5p0 + ũ2)

[̃u(1 + 5p0 − ũ2)]2

(̃u − 1)2(̃u − ũ(d ) )
2

κ̃ + 5p0η̃
. (136)

Therefore, the limiting values take the forms

�(u) = 4

5
p

− 3
2

0 (2 + 5p0)
(1 − ũ(d ) )

2(̃
u(u)

1

)2

κ̃ (u) + 5p0η̃(u)
, (137)

�(d ) = 20p
1
2
0 [1 + 5p0 + (̃u(d ) )

2
]

(̃u(d ) )2[1 + 5p0 − (̃u(d ) )2]2

(̃u(d ) − 1)
2(̃

u(d )
1

)2

κ̃ (d ) + 5p0η̃(d )
.

(138)
Substituting,

1 − ũ(d ) = 1

4
(3 − 5p0), (139a)

1 + 5p0 + (̃u(d ) )2 = 1

16
(1 + 5p0)(17 + 5p0), (139b)

1 + 5p0 − (̃u(d ) )2 = 5

16
(1 + 5p0)(3 − p0), (139c)

it is obtained that

�(u) = p
− 3

2
0 (2 + 5p0)(3 − 5p0)2

(̃
u(u)

1

)2

20(̃κ (u) + 5p0η̃(u) )
, (140a)

�(d ) = 64p
1
2
0 (17 + 5p0)(3 − 5p0)2

(̃
u(d )

1

)2

5(1 + 5p0)3(3 − p0)2 (̃κ (d ) + 5p0η̃(d ) )
. (140b)

Considering p0 = 3
5 M−2, it is evident that the limiting val-

ues of the entropy production approach zeros for weak shock,
M → 1, at the rate

(3 − 5p0)2 = 9

(
1 − 1

M2

)2

∼ (M2 − 1)2. (141)

For the behavior for strong shock, it is necessary to rewrite
the η̃ and κ̃ , because they comprise u(u). Using Eqs. (147), it
is obtained that

κ̃ + 5p0η̃ = 5

8

√
π

2
p

3
2
0

(
m

kB

κ

η(u)
+ 5

η

η(u)

)
. (142)

Therefore,

�(u) = 2

25p3
0

√
2

π
(2 + 5p0)(3 − 5p0)2K (u)

(̃
u(u)

1

)2
,

(143a)

�(d ) = 512

25p0

√
2

π

(17 + 5p0)(3 − 5p0)2

(1 + 5p0)3(3 − p0)2 K (d )
(̃
u(d )

1

)2
,

(143b)

where

K (i) =
(

m

kB

κ (i)

η(u)
+ 5

η(i)

η(u)

)−1

, (144)

in which the superscript (i)’s mean that i = u for upstream and
i = d for downstream. The entropy generations during the
mean free time become infinity at the boundary limits when
M → ∞ at the rates

�(u) ∼ p−3
0 ∼ M6, (145a)

�(d ) ∼ p−1
0 ∼ M2. (145b)

It is interesting to note that the entropy production goes
to infinity on the upstream side more quickly than on the
downstream side. Since the entropy production is related to
the heat generation converting the kinetic energy of molecules
into thermal energy, the limiting properties in Eqs. (145) im-
ply that the heat is produced mainly on the upstream side
of the shock layer (Fig. 8), then the generated heat causes
an increase in the downstream temperature. At steady state,
the heat flows from the higher temperature downstream to the
lower temperature upstream according to the thermodynamic
law, giving rise to the maximum peak of local entropy due
to the increased entropy flux. Because the higher temperature
gives less entropy flux according to Eq. (69), the local entropy
is lessened on the downstream side, giving the maximum peak
on the upstream side (Fig. 7). It is worthwhile to consider that
the downstream temperature given in Eq. (76) goes to infinity
when M → ∞, while the upstream temperature is finite.
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B. Becker theory (BT)

The bulk viscosity ζ is related to the shear viscosity and
the heat conductivity; rewriting Eq. (60),

ζ = 2

5
η(u)

(
1

Pr

κ

κ (u)
− 4

3

η

η(u)

)
, (146)

where Pr is the Prandtl number of the upstream equilibrium
gas. Since u(u) takes the form of Eq. (89) and λ(u) is defined in
Eq. (107), it is immediate to write

κ̃ = mp0

kB

κ

λ(u)ρ (u)u(u)
= 5

8

√
π

2
p

3
2
0

mκ

kBη(u)
, (147a)

η̃ = η

λ(u)ρ (u)u(u)
= 5

8

√
π

2
p

1
2
0

η

η(u)
, (147b)

which give

κ

κ (u)
= 16

25
Pr

√
2

π
p

− 3
2

0 κ̃, (148a)

η

η(u)
= 8

5

√
2

π
p

− 1
2

0 η̃. (148b)

Therefore,

ζ

η(u)
= 32

25

√
2

π p0

(
κ̃

5p0
− 2̃η

3

)
. (149)

It is apparent that ζ = 0 when 1
5 κ̃/p0 = 2

3 η̃, regardless of the
Pr value. Since

κ̃ = −Q̃

(
dT̃

dx̃

)−1

= 5p0

2̃u
Q̃

(
dũ

dx̃

)−1

, (150a)

η̃ = −3

4
Π̃

(
dũ

dx̃

)−1

, (150b)

it becomes

κ̃

5p0
− 2̃η

3
= 1

2

[
1

ũ
Q̃ + Π̃

](
dũ

dx̃

)−1

. (151)

The bulk viscosity should be 0 for any Pr values when

Q̃ + ũΠ̃ = 0, (152)

which is the case for P̃ = 0 in Eq. (110a), the case for the
physical local equilibrium, and also the case for the Becker
theory [23]. The condition in Eq. (152) is more inclusive than
the original Becker’s condition, Pr = 3

4 .
The BT is essentially a local equilibrium theory based on

the Gibbs relation in Eq. (119a). The governing equations
for the virtual local equilibrium should be the continuity, the
Euler, and the isentropic equations. However, the BT takes
the viscous momentum balance equation rather than the Euler
equation for the equation of motion. This is regarded as a
physical approximation of the BT. The condition in Eq. (152)
derives the entropy equation, as well as the relation between
the temperature and the flow velocity. Conversely, it is possi-
ble to derive the condition from the entropy equation.

The entropy equation at steady state takes the form

ρ
D(s)S

Dt
= kB

m
ρux

d

dx
ln

T
3
2

k

ρ
, (153)

in which Tk is used rather than T , because the BT disregards
the exoenergy. The momentum balance equation in Eq. (51b)
is rewritten as

dΠxx

dx
+ kB

m

d

dx
(ρTk ) + d

dx

(
ρu2

x

) = 0. (154)

The Gibbs relation gives the entropy equation in the form

ρ
D(s)S

Dt
= − 1

Tk

dQx

dx
− 1

Tk
Πxx

dux

dx
. (155)

Considering Eqs. (153) and (155),

3

2

kB

m

ρux

Tk

dTk

dx
+ 1

Tk

dQx

dx
− kB

m
ux

dρ

dx
+ 1

Tk
Πxx

dux

dx
= 0.

(156)
Since

Πxx
dux

dx
= d

dx
(uxΠxx ) − ux

dΠxx

dx
, (157)

applying Eq. (154) to (156) and using d (ρux )/dx = 0, the
continuity equation, it is obtained that

1

Tk

d

dx
(Qx + uxΠxx ) + 1

2
ρ

d

dx

(
5

kBTk

m
+ u2

x

)
= 0. (158)

Let us consider the energy equation, (31), for this problem:

3

2

kB

m
ρux

dTk

dx
= −dQx

dx
− Pxx

dux

dx
. (159)

Since Pxx = Πxx + ρkBTk/m, applying Eqs. (154) to (159) in
the same way, it is obtained that

d

dx
(Qx + uxΠxx ) + 1

2
ρux

d

dx

(
5

kBTk

m
+ u2

x

)
= 0. (160)

In order for Eqs. (158) and (160) to hold simultaneously, it
should be that

d

dx
(Qx + uxΠxx ) = 0 (161a)

and

d

dx

(
5

kBTk

m
+ u2

x

)
= 0. (161b)

The equilibrium boundary condition gives

Qx + uxΠxx = 0, (162a)

5
kBTk

m
+ u2

x = 5
kBT (u)

m
+ (u(u) )2. (162b)

The entropy equation of the BT gives a consistent local
entropy with the value of the Gibbs relation, in contrast to
the DGM theory. However, the inconsistency comes from
the entropy production. The nonzero heat flux and stress
tensor in the BT give rise to a finite entropy production.
According to Eq. (119b), the entropy equation of the BT is
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written as

ρ
DS

Dt
= − 1

Tk

dQx

dx
− 1

Tk
Πxx

dux

dx

= d

dx

(ux

Tk
Πxx

)
+ 1

Tk
Πxx

(
ux

Tk

dTk

dx
− dux

dx

)
, (163)

which gives the entropy production,

σ (B) = 1

Tk
Πxx

(
ux

Tk

dTk

dx
− dux

dx

)
= − 1

Tk

(
2

5

mu2
x

kBTk
+ 1

)
Πxx

dux

dx
, (164)

in which the superscript (B) indicates the BT. It is noted that
Eq. (164) is in exactly the same form as Eq. (84) in the present
work, except that T and Pxx are replaced by Tk and Πxx for
P = 0. Because the relation between Tk and ux in Eq. (162b)
is also in the same form as Eq. (78) in the present work, with T
replaced by Tk , the BT may be regarded as an approximation
of the present work putting P = 0, or the present work may
be regarded as a generalization of the BT for P �= 0. In any
case, it should be emphasized that the present theory was mo-
tivated to resolve the temperature anomaly of 1D shock waves
and to try to do this by introducing P �= 0. In the present
formulation, the state P = 0 is a physical local equilibrium,
the equations for which have not yet branched.

VIII. CONCLUDING REMARKS

Let us consider an equation,

A + B = 0, (I)

and its solution or solutions, termed SOL-I. Let us also con-
sider a set of equations,

A + Y = 0, B − Y = 0, (II)

and their solution(s), SOL-II. It is evident that SOL-II are
sufficiently solutions of Eq. (I), however, SOL-I do not nec-
essarily satisfy Eq. (II), which means that SOL-II is a subset
of SOL-I. Of the SOL-I, there can be other solutions than the
SOL-II.

The motivation for the present work is to resolve the ab-
normal overshooting temperature profile of 1D normal shock
waves. Since the overshoot gives a negative heat conductivity
by the sign change of the temperature gradient, there should
be a proper explanation of it.

In the present work, a new physical quantity, the exoenergy
(or the exopressure), has been introduced, and the nonequilib-
rium temperature redefined. Because the exoenergy is defined
as a part of the internal energy, it has been attempted to split
the energy equation into two parts. One of them is taken as the
equation for the exoenergy, and the other part as the equation
for the redefined temperature. The solutions of the equations
thus obtained should be regarded as a subset of the solutions
of the original energy equation. In order to rationalize the
equation splitting, the nonequilibrium thermodynamics has
been reconsidered and applied to 1D normal shock waves.
The derived equations are self-consistent and well analyze the
DSMC data on shock waves. The important results are the
finite bulk viscosity of monatomic dilute gases and its relation

to the shear viscosity and heat conductivity, together with the
general form of the shock wave equation.

APPENDIX A: PHYSICAL LOCAL EQUILIBRIUM

The characteristic function of the velocity distribution
function is defined by

(ξ, r, t ) = 1

n

∫
e−iξ ·(v−u) f (v, r, t )dv. (A1)

For the Maxwell-Boltzmann distribution function,

0 = exp

(
−θ

2
ξ 2

)
, (A2)

where θ = kBT/m. The Boltzmann equation for 0 is

D0

Dt
+ 1

n

(Dn

Dt
+ n∇rur

)
0 + i∇r

∂0

∂ξr
− i

Dur

Dt
ξr0

+ i
1

n
(∇rn)

∂0

∂ξr
+ (∇sur )ξr

∂0

∂ξs
= 0. (A3)

Using

D0

Dt
= −1

2
ξ 20

Dθ

Dt
, (A4a)

∂0

∂ξr
= −ξr0θ, (A4b)

it is obtained that

1

n

(Dn

Dt
+ n∇rur

)
0 − i

n

[
n

Dur

Dt
+ ∇r (θn)

]
ξr0

−
(

1

2

Dθ

Dt
+ 1

3
θ∇rur

)
ξ 20 −

(
ξsξr − 1

3
δsrξ

2

)
0θ∇sur

+ i

2
ξ 2ξr0θ∇rθ = 0. (A5)

Since Eq. (A5) should be true for any ξi,

Dn

Dt
+ n∇rur = 0, (A6a)

n
Dui

Dt
+ ∇i(θn) = 0, (A6b)

3

2

Dθ

Dt
+ θ∇rur = 0, (A6c)

and

1

2
(∇iu j + ∇ jui ) − 1

3
δi j∇rur = 0, (A6d)

∇iθ = 0, (A6e)

in which the property(
ξiξ j − 1

3
δi jξ

2

)
∇iu j = ξiξ j

(
∇iu j − 1

3
δi j∇rur

)
= ξiξ j

[
1

2
(∇iu j + ∇ jui ) − 1

3
δi j∇rur

]
(A7)

has been used.
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Equations (A6) describe the behavior of the physical lo-
cal equilibrium, which furcate into branches at the onset of
nonequilibrium caused by external forces.

APPENDIX B: DSMC RUN

DSMC1S.FOR can be downloaded from Professor Bird’s
site http://www.gab.com.au/legacy.html. Before compiling
the program, two bugs should be corrected as reported at the
site:

(1) On line 965 the statement "SUU=0." should be added.
(2) The variables NCU and NCD should be added to those in

the restart file.
Also, the PARAMETER value MNM=20000 must be increased

to MNM=100000 for accuracy and speed.
To reproduce Fig. 1, the following lines should be inserted

at the proper location in the SUBROUTINE OUT1S and used to
calculate Eq. (110b).

(1) txx=(denn*(suu-sm*uu-1/3*(smcc-sm*uu))/sn)
/udn/fvel/fvel for Π̃.

(2) hx=(denn*(0.5*(sccu-vel(1)*smcc)-suu*vel(1)
+sm*uu*vel(1))/sn)/udn/fvel**3 for Q̃.

(3) Xval=-4.*(vel(1)-fvel)*(vel(1)-dvel)
/fvel/fvel for X .

The default data are for argon at M = 1.4. The time step
value DTM and the boundary locations SXB and DXB should be
adjusted properly to different Mach numbers. The coordinate
origin is defined at the location of half-density,

ρ(0) = 1
2 (ρ (u) + ρ (d ) ).

The molecular parameters are SP(4,1)=0.5 and
SP(5,1)=0 for hard spheres.

In order to use the Nanbu data, the following must be
considered.

(1) The location of origin is defined at the half-velocity
of upstream and downstream, but the Bird data at the half-
density,

ux(0) = 1
2 (u(u) + u(d ) ),

and the mean free path is defined by a different formula,
λ(u) = 1.0186λ

(u)
NANBU. The location of origin and the length

scale have been adjusted to fit Bird’s definition for drawing
the figures.

(2) The stress tensor and heat flux are in dimension-
less values but defined differently, Π̃ = −2p0Π̃NANBU and Q̃ =
(2p0)

3
2 Q̃NANBU.
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