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Percolation threshold of curved linear objects
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In this study, we investigate the percolation threshold of curved linear objects, describing them as quadratic
Bézier curves. Using Monte Carlo simulations, we calculate the critical number densities of the curves with
different curviness. We also obtain the excluded area of the curves. When an excluded area is given, we can
find the critical number density of the curves with arbitrary curviness. Apparent conductivity exponents are
computed for the curves, and these values are found to be analogous to that of sticks in the percolative region
for a junction resistance dominant system. These results can be used to analyze the optoelectrical performance
of metal nanowire films because the high-aspect-ratio metal nanowires can be easily curved during coating.
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I. INTRODUCTION

Transparent conductive films (TCFs) are optically trans-
parent and electrically conductive thin films. Traditionally,
indium tin oxide (ITO), which is a doped metal oxide,
has been widely used as a TCF in the market for decades
[1]. However, brittleness, the impracticability of applying
solution-based coating processes, and price fluctuations are
the critical drawbacks in the case of ITO. In this regard,
two-dimensional networks of high-aspect-ratio conducting
nanomaterials such as carbon nanotubes [2,3], graphenes
[4,5], and metal nanowires [6,7] have been actively studied
[8–10] for use as next-generation TCFs for applications in
devices such as flexible touch screens [3,11], flexible solar
cells [12,13], and sensors [14]. Networks of metal nanowires,
including silver and copper nanowires, are promising candi-
dates being considered to replace ITO [7,15].

TCFs are required to exhibit a certain desired optoelectrical
performance in terms of high optical transmittance and low
sheet resistance. However, many factors in the case of metal-
nanowire networks, such as the length [16], diameter [17],
orientation [18,19], and density of nanowires [20,21] and the
junction resistance between intersecting nanowires [22–24],
influence the optoelectrical performance. In this regard, sev-
eral studies have been conducted to investigate the effects of
these factors and determine which factors are important for
achieving the desired optoelectrical performance of the film.
According to percolation theory, the electrical conductivity
σ of a network of conductive objects exhibits a power-law
dependence on the reduced number density n/nc − 1 with a
universal conductivity exponent t ≈ 1.3 in two dimensions as
follows:

σ ∝
( n

nc
− 1

)t
, (1)

*Corresponding author: jaewooknam@snu.ac.kr

where n denotes the number density, nc is the critical number
density at the percolation threshold, and t is the conductivity
exponent [25]. It is necessary to accurately estimate the criti-
cal number density of a given system to identify the power-law
dependence expressed in Eq. (1). The majority of previous
studies have focused on straight linear objects (“sticks”) for
analyzing the electrical conductivity and optical transmittance
of metal-nanowire networks [20,23,26–28] and considered the
previously obtained percolation threshold of sticks [29,30].
Additionally, the percolation threshold of sticks oriented in
one direction with certain distributions [18,31] and that of
wavy objects [32,33] have also been studied.

According to the previous studies [16,17], a high aspect
ratio of metal nanowires is needed to achieve the desired
optoelectrical performance that is comparable to that of ITO.
For the same number density, the sheet resistance of the
network reduces as the aspect ratio of the metal nanowires
increases. However, high-aspect-ratio metal nanowires tend
to be curved after various coating processes. Figure 1 shows
high-resolution images of silver nanowire films fabricated via
the bar-coating process of the silver nanowire ink (FlexioInk,
Flexio Co., Ltd., Korea). The images were obtained via scan-
ning electron microscopy (SEM, JSM-7800F Prime JEOL
Ltd., Japan). The silver nanowires in both images are clearly
curved linear objects. Nevertheless, the effect of the curviness
on percolation has not been thoroughly investigated thus far.
Consequently, we present a simplified model system herein to
analyze this effect.

II. METHODS

A. Representation of a curved linear object

The curved linear objects considered in this study are de-
scribed as quadratic Bézier curves; in such a curve, control
point P2 lies on the perpendicular bisector of the line segment
between P1 and P3. We call this type of curve a “symmetric”
quadratic Bézier curve. The curve is expressed as a parametric
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FIG. 1. Scanning electron microscope images of high-aspect-
ratio silver nanowire films. The silver nanowires are no longer
straight but curved in both (a) the high-number-density network and
(b) low-number-density networks.

function given by

B(k) = (Bx, By)

= (1 − k)2P1 + 2(1 − k)kP2 + k2P3, (2)

where k ∈ [0, 1].
Figure 2 shows several parameters of interest for a given

curve. The center point c of the curve is the midpoint of P1

and P3. We chose the orientation angle of the curve to be θ ,

FIG. 2. Symmetric quadratic Bézier curve. The solid black line
denotes the curve, and the gray dotted lines represent the horizontal
axis and several line segments. P1, P2, and P3 represent the control
points, c represents the center point, θ represents the orientation
angle, and α represents the curviness angle.

the angle of the line segment between P1 and P3 with respect
to the horizontal axis. The arc length of the curve can be
obtained as

l =
∫ 1

0

√(
dBx

dk

)2

+
(

dBy

dk

)2

. (3)

To quantify the degree of curviness of the curve, we introduce
the curviness angle α, the angle between the line segment with
end points P1 and P2 and the line segment with end points P1

and P3. As α increases, the degree of curviness increases. Fur-
thermore, α is bounded in the interval 0◦ � α < 90◦. When
α = 0◦, the curve becomes a perfectly straight line, which is
a convex object. However, when 0◦ < α < 90◦, it turns into a
nonconvex object that has been considered by only a few stud-
ies. It must be noted that the nonconvex objects can intersect
more than twice. Furthermore, the percolation properties of
the nonconvex objects are mostly unknown. When α → 90◦,
P1 approaches P3. In this limit, the curve eventually becomes
a half-length stick, which is not considered in this study.

B. Monte Carlo simulation

Monte Carlo simulations were used to generate networks
that consist of symmetric quadratic Bézier curves with the
parameters specified previously. In each simulation, the curvi-
ness angle was fixed, while the orientation angle and the
center point followed a uniform distribution. Here, we focus
on the effect of the curviness of linear objects on the percola-
tion. We varied the curviness angles from 10◦ to 80◦ in steps
of 10◦. For simplicity, we set l = 1. The sizes of the square-
shaped simulation domain L in units of l are 4, 8, 16, 32, and
64 to consider the finite-size effect.

An instance of a “just-percolated” system is considered
during the simulations for the given parameters. The curves
are added one by one until the system percolates, that is, a
cluster of the curves extends from one side of the system to
the opposite side, as shown in Figs. 3(d)–3(f). Here, we use an
efficient algorithm based on Li and Zhang [30] developed for
stick percolation, which combines a weighted union-find algo-
rithm with path compression [34,35] and a subcell algorithm
[36]. The algorithm for computing percolation probability
R(N, L) is summarized in the Appendix.

Considering the available computing power, we performed
approximately 105 realizations for L � 32 and approximately
2 × 104 realizations for L = 64. The algorithm considered in
this study was implemented via an in-house PYTHON code and
executed on a computer with an Intel Xeon Gold 6146 CPU at
3.20 GHz with 125 GB RAM. The curves with α = 30◦, 50◦,
and 70◦ are shown in Figs. 3(a)–3(c), and the corresponding
percolated systems are shown in Figs. 3(d)–3(f), respectively.

C. Excluded area

The excluded area Aex denotes the minimum area around
an object into which the center of another object cannot enter
without causing overlapping of the two objects [20,37,38].
The relationship between the excluded area (volume) and the
onset of percolation in two (three) dimensions has been widely
studied [20,37,39–41]. The average excluded area 〈Aex〉 can
be obtained by averaging Aex of two objects with all possible
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FIG. 3. Symmetric quadratic Bézier curves whose curviness an-
gles are (a) 30◦, (b) 50◦, and (c) 70◦ and (d)–(f) their Monte Carlo
simulations. In (d)–(f), the system size is 16, and percolating clusters
and the boundary sticks are represented in blue.

relative orientations. The critical total average excluded area
is defined as

〈Aex_tot〉 = nc〈Aex〉. (4)

The critical total average excluded area is invariant for
all-parallel soft-core objects [37]. In the continuum two-
dimensional isotropic system, the bound 〈Aex_tot〉 = 3.2–4.5
for nonparallel convex objects is conjectured by Balberg [39].

Unfortunately, there is no general theory for the evalua-
tion of excluded areas of nonconvex objects. For example,
one cannot find general extensions of Steiner’s kinematic
formulas [42] for nonconvex objects. However, this can be
circumvented by using Monte Carlo trials for its estimation.
For the curviness angles considered in this study, 〈Aex〉 of
the symmetric quadratic Bézier curves were calculated nu-
merically following Saar and Manga [43]. The arc length is
unity for each curve. In this study, the size of the square
simulation box was set to 4. For each curviness angle, a curve
with random orientation was positioned at the center of the
simulation box. Next, another curve with the same curviness
angle was introduced into the simulation box. Here, we note
that the orientation and location were randomly determined.
For each step, the connectivity of the curves was checked. We
repeated this step 107 times to obtain the number of curves
intersecting the central one. Finally, the average excluded area
was obtained by dividing the number of curves intersecting

TABLE I. Critical number densities nc with 95% confidence
intervals (CIs), average excluded areas 〈Aex〉, critical total average
excluded areas 〈Aex_tot〉, and apparent conductivity exponents t̃ .

α nc (95% CI) 〈Aex〉 〈Aex_tot〉 t̃

0◦ 5.63726a 0.636620b 3.588792
10◦ 5.6542 (5.65189, 5.65652) 0.634846 3.589551 1.40
20◦ 5.7065 (5.70279, 5.71020) 0.629711 3.593444 1.40
30◦ 5.8042 (5.80168, 5.80668) 0.620788 3.603167 1.41
40◦ 5.9694 (5.96669, 5.97221) 0.606773 3.622099 1.41
50◦ 6.2457 (6.24291, 6.24840) 0.586339 3.662072 1.41
60◦ 6.7358 (6.73426, 6.73736) 0.556683 3.749712 1.41
70◦ 7.7344 (7.72150, 7.74738) 0.506997 3.921339 1.40
80◦ 10.3331 (10.32292, 10.34324) 0.401144 4.145053 1.42

anc,sticks from Ref. [30].
bThe actual value is 2/π from Ref. [37].

the central one by the number of trials (107) and multiplying
by the area of the simulation box. We averaged 〈Aex〉 over 20
calculations.

III. RESULTS AND DISCUSSION

A. Critical number density and average excluded area

In continuum percolation, the number density n, which is
defined as the number of objects per unit area, is an impor-
tant parameter for a given system. Here, we note that the
number of objects N is discrete but n is not necessarily so.
However, we cannot obtain any n upon dividing N by L2 di-
rectly; hence, we calculate the percolation probability R(n, L).
As per Ref. [30], R(n, L) can be obtained by convolving
R(N, L) with the Poisson distribution for any n with arbitrary
precision:

R(n, L) =
∞∑

N=0

λN e−λ

N!
R(N, L), (5)

where λ = nL2. The summation in Eq. (5) proceeds until the
magnitude of a successive term is smaller than 10−20.

The critical number density estimate n0.5(L) is defined
as the number density satisfying R(n0.5, L) = Rc = 0.5. In
Fig. 4(a), n0.5(L) for each system size can be obtained by
the intersection of the dotted horizontal line R = 0.5 and each
curve.

To obtain the critical number density nc, we use finite-size
scaling as follows:

n0.5(L) − nc ∝ L−1−1/ν, (6)

where ν = 4/3 denotes the correlation-length exponent in a
two-dimensional system [30,44]. Hence, the critical number
density for the thermodynamic limit (L → ∞) is extracted
using the result of linear regression, as shown in Fig. 4(b).
For the curviness angles considered in this study, Eq. (6)
is suitable, given that the coefficient of determination R2 is
greater than 0.995. The results are listed in Table I, along with
the critical number density of the sticks.

As mentioned before, when α → 90◦, the curve becomes
a half-length stick. Now, 〈Aex〉 becomes 1/4 of that of α =
0◦, while 〈Aex_tot〉 is the same. Hence, there has to be a
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FIG. 4. Monte Carlo simulation results of the curves with curvi-
ness angle α = 30◦ for system sizes L = 4, 8, 16, 32, and 64. (a) The
plot of percolation probability R as a function of the number density
n. The horizontal dotted line corresponds to R = 0.5. (b) The plot
of the critical number density estimate n0.5 vs L−1−1/ν for finite-
size scaling. The red line indicates the best fit of the data, which
is the result of linear regression with coefficient of determination
R2 = 0.99969.

transition from increasing to decreasing 〈Aex_tot〉; that is, the
maximum of nonconvexity between α = 70◦ and 90◦ has to
occur.

Over the whole range of curviness angles, 3.5 <

〈Aex_tot〉 < 4.2, as can be observed in Table I. Interestingly, the
values of 〈Aex_tot〉 of the symmetric quadratic Bézier curves
lie in the range of 〈Aex_tot〉 reported by Balberg [39]. It must
be noted that our curves are nonconvex objects, whereas the
range was estimated using nonparallel convex objects in the
continuum two-dimensional isotropic system.

Following Li and Östling [40], we next introduce
the correction factor nc0 = −2.46, and the relation

FIG. 5. Critical number density nc as a function of the reciprocal
of the average excluded area 〈Aex〉−1. The red line indicates the
best fit of the data, which is the result of linear regression with the
coefficient of determination R2 = 0.99943. The data point at 〈Aex〉 =
0.636620 is computed from the stick corresponding to α = 0◦.

becomes

nc + 2.46 = 5.14l2/〈Aex〉. (7)

We can therefore derive the relation between the critical num-
ber density of the curves and that of sticks eliminating nc0:

nc = nc,sticks + 5.14 [l2/〈Aex〉 − l2/〈Aex,sticks〉]. (8)

As shown in Fig. 5, this linear relation can successfully predict
any critical number density at a given 〈Aex〉 without time-
consuming Monte Carlo simulations.

B. Conductivity exponent

Several studies have reported on the conductivity exponent
t for a network of sticks. According to Li and Zhang [45], the
apparent conductivity exponent t̃ can be extracted with the
conductivity data at n above, but not very close to, nc. Here,
we compute t̃ for the network of symmetric quadratic Bézier
curves for comparison with that of sticks. For a junction re-
sistance dominant system, the reported t̃ for sticks lie in the
range of t̃ = 1.4–1.5 [20,45].

In this study, we computed the conductivity of the network
of the curves using the method proposed by Kim and Nam
[26]. The network is represented with a matrix by a multinodal
representation model. The network forms a graph contain-
ing information about the junctions of the curves and their
respective separations [23]. Here, the junctions of the inter-
secting curves have two vertices each, and the junctions or
segments of the curve between junctions form the edges. The
corresponding matrix system of Kirchhoff’s laws is treated via
the block matrix approach. Here, we assume that the internal
resistances Ri and junction resistances Rj are constant.
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FIG. 6. Three mean conductivities 〈σ 〉 vs reduced number den-
sity for networks of conducting curves with curviness angle α = 30◦.
The ratio of the internal resistance to the junction resistance is set to
10−3, i.e., corresponding to a junction resistance dominant system.
The slope of the red line indicates the apparent conductivity exponent
(t̃ = 1.41).

We calculated the conductivities for 1000 networks for
each curviness angle with Ri/Rj = 10−3 in the percolative
region, where 0.1 � n/nc − 1 � 1. Here, we particularly con-
sider a junction resistance dominant system. Following Li
and Zhang [45], the arithmetic, geometric, and harmonic
means of the conductivities are calculated, as shown in Fig. 6.
Subsequently, the conductivity exponent is estimated for the
regime 0.3 � n/nc − 1 � 1 via nonlinear regression using the
Levenberg-Marquardt algorithm, as the calculated conductiv-
ity exponents of the three means are analogous to each other
in this regime.

For the curviness angle considered in this study, the appar-
ent conductivity exponents are in the range of t̃ = 1.40–1.42,
as listed in Table I. These values are almost the same as those
obtained for the sticks which was reported by Refs. [20,45].
Therefore, we conclude that the power-law dependence does
not change owing to the curviness of objects.

IV. CONCLUSIONS

In this study, we considered the percolation of the networks
of linear objects, which deviate from that of sticks owing
to curviness. Based on this difference, the critical number
densities also deviate from those of the sticks. In addition,
we determined the relationship between curviness and the
critical number density via the excluded area. However, the
conductivity exponent of the power-law dependence does not
change owing to the curviness of the linear objects.

The critical number densities of linear objects monoton-
ically increase as the curviness angle increases. For practical
applications such as the networks of metal nanowires, a higher
curviness of nanowires implies that a higher number density is
required to achieve the same degree of conductivity. However,
the density of nanowires is proportional to the area coverage,

and a larger area coverage reduces the transmittance of the
nanowire network [17].

Although a previous study suggested that higher aspect
ratios result in higher conductivity, our results imply that the
control of the nanowire shape is the key [16]. Typically, high-
aspect-ratio nanowires are easily curved during the various
coating processes. Therefore, to benefit from a high aspect
ratio, a process to ensure that the nanowire is straight must
be carefully developed.

Our findings can serve as a basis for future studies: we can
optimize the optoelectrical performance of a network of metal
nanowires considering not only the aspect ratio but also the
curviness of the nanowires. Moreover, if individual nanowires
can be extracted automatically from the SEM images of high-
aspect-ratio metal nanowire films, we can analyze the factors
that need to be considered to improve the performance.
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APPENDIX: ALGORITHM FOR MONTE
CARLO SIMULATIONS

In our study, the simulation system is split into L × L
square subcells, where the size of the unit subcell is l × l .
The center point c of one curve is generated in position (x, y)
using a uniform distribution with random orientation angle
θ . We note that 0 � x, y � L and 0 � θ � 2π . Each curve
is ascribed to the subcell to which the center of the curve
belongs. The connectivity needs to be checked only for two
sticks belonging to the same and neighboring subcells. For
the sake of efficiency of the algorithm, a tree data structure is
used to represent the cluster.

Two boundary sticks of length L [e.g., thick blue vertical
sticks in Figs. 3(d)–3(f)] form the boundaries of the system
facing each other, and each of them is a “root” node in the
individual graph tree structure. Subsequently, when a new
curve is added with random position and orientation, the
connectivity is checked with the two boundary sticks and
the curves in the same and neighboring subcells. Three cases
exist for connectivity. First, if the curve does not intersect
any other curve, it is assigned as the root curve of the new
cluster. Second, if the curve intersects existing curves or a
boundary stick, the curve belongs to the same cluster, pointing
to the root curve or another curve in the cluster. Finally, if
the curve belongs to two clusters simultaneously, the clusters
are amalgamated as the root curve of one cluster points to
the root curve of the other cluster. Pointing to the same root
curve directly or indirectly implies that the curves belong to
the same cluster.

When two boundary sticks are in the same cluster for the
first time, that is, when the system percolates, the number
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of sticks is stored as Nf . Finally, the percolation probability
R(N, L) for N curves with system size L can be obtained by

dividing the number of Nf satisfying Nf � N by the number
of realizations.
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