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Particle-based Ising model
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We characterize equilibrium properties and relaxation dynamics of a two-dimensional lattice containing,
at each site, two particles connected by a double-well potential (dumbbell). Dumbbells are oriented in the
orthogonal direction with respect to the lattice plane and interact with each other through a Lennard-Jones
potential truncated at the nearest neighbor distance. We show that the system’s equilibrium properties are
accurately described by a two-dimensional Ising model with an appropriate coupling constant. Moreover, we
characterize the coarsening kinetics by calculating the cluster size as a function of time and compare the results
with Monte Carlo simulations based on Glauber or reactive dynamics rate constants.
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I. INTRODUCTION

Many complex systems can be described as a collec-
tion of interacting diffusing agents with internal degrees of
freedom associated with a discrete set of states. Examples
range from bacterial communities, to layers of cells in tis-
sue development, to biomolecular systems [1–3], where the
internal states can represent either emission of electric or
chemical signals, differences in motility, or conformational
changes of the agents structure. Importantly, the internal state
of the agent/particles may affect the type and/or strength
of pairwise interactions. This results in nontrivial and often
interesting statistical properties under equilibrium or out-of-
equilibrium conditions.

Notable examples of biomolecular systems showing these
features are biological membranes. Cell membranes are com-
plex mixtures of amphiphilic molecules, namely lipids, which
show a complex phase behavior [4–7]. Of particular relevance
are two macroscopic phases: the liquid disordered, Ld , and
liquid ordered, Lo, that coexists in ternary mixtures containing
approximately equal amounts of cholesterol, unsaturated and
saturated lipids. At the demixing transition, while unsaturated
lipids partition into a Ld phase, saturated lipids mostly segre-
gate in cholesterol-rich, hexatically ordered (Lo) domains in
which the hydrophobic tails are in the extended conformation
and give rise to a thicker layer compared to the surrounding
Ld phase [8]. Interesting and still partly unanswered questions
then concern the role of integral membrane proteins, which
may have different affinities for the two macroscopic phases:
does the presence of proteins change the phase behavior of
the membrane? Is their lateral distribution or their internal
conformational transitions affected by fluctuations in lipid
composition?

To address these questions, it is customary to define a sta-
tistical field that describes locally the two macroscopic phases

*These authors contributed equally to the work

Lo and Ld , mapping their two components onto the celebrated
Ising model (see, e.g., [9]) with Hamiltonian

H = −
∑
〈i j〉

Jsis j, (1)

where si = ±1 is the particle’s i spin, J is the coupling con-
stant (J > 0 for ferromagnetic systems), and the sum runs
through nearest neighbors spins.

While extremely insightful, studies based on this mapping
rely on two inherent assumptions: spins are rigidly arranged
on a lattice, and their total density is fixed. These turn out to be
severe limitations when modeling lipid membrane for which
the surface area (and thus the density) fluctuates and that, as
mentioned above, undergo a transition from an hexatically
ordered to a disorder state (from Lo to Ld ). It is therefore
useful to envision a model Hamiltonian for a collection of
particles that, while retaining a two-state character for the
internal degree of freedom, can diffuse in space and therefore
assemble and form aggregates of varying densities and/or
degree of symmetry.

Here, we model lipids as pairs of particles (dumbbells)
with two stable particle-particle bond lengths (thereby mim-
icking the extended and disordered conformations of the lipid
tails). The dumbbells are oriented along the direction perpen-
dicular to the membrane plane (z) and can undergo Brownian
diffusion in the (x, y) plane. Thus, we neglect here fluctua-
tions perpendicular to the surface and consider only a planar
membrane. Importantly, while one of the particles of each
dumbbell is constrained to the z = 0 plane, the other one can
fluctuate between the two minima of a Ginzburg-Landau type
potential that enforces a quasi-two-state behavior. We will
call it the bond part of the potential (b), as it bonds the two
particles of each dumbbell, and it has the general form

V b(r) = ε[a(r − c)4 − b(r − c)2], (2)

with a, b, c parameters and ε the characteristic system’s en-
ergy. The particles of the dumbbells which are not constrained
in the z = 0 direction can also interact with their nearest
neighbors with an attractive pairwise Lennard-Jones potential
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FIG. 1. (a) Top view of the system (on the x-y plane), showing the triangular lattice, along with σcut = 1.5σ ; σ is the particles diameter
and σmin = 2

1
6 σ . (b) Side view of the system (x-z plane). Each dumbbell consists of a bottom particle (type 1, grey) and a top particle (type

2, red) whose z coordinate varies. The former are fixed in position, while the latter interact with potential V 22. Particles within each dumbbell
interact through the potential V 12

mod. (c) Instantaneous configuration of the dumbbells obtained by using the VMD software [13]. (d) Potential
V 22(r), with σcut , σmin, and the inflection point σinf = ( 26

7 )
1
6 σ highlighted. (e) Side view (on the x-z plane) of two interacting dumbbells in

two different minima of V 12
mod. The minima are located at z = σ (spin s = −1) and z = 1.54σ (s = +1). The type 2 particles are at a distance

of σinf . (f) Dumbbell potential V 12 (purple), and its modified version V 12
mod (blue) with the quadratic function used between r1 = 1.0496σ and

r2 = 1.4904σ . The two minima correspond to different z values of type 2 particle.

(p) of the form

V p(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
(3)

with σ the typical system length. This potential represents the
spin-spin interaction of Eq. (1). More details will be provided
in Sec. II. The resulting Hamiltonian shows resemblances
with previously described models, analyzed in the context of
stochastic resonance between anharmonic oscillators [10].

As a first step toward modeling a collection of two-state
Brownian particles, here we characterize the equilibrium and
relaxation dynamics in the solid crystalline phase. In Sec. II
of this paper, we describe in detail the model and numerical
methods used throughout the paper. In the remaining part
of the article, we focus on characterizing the ferromagnetic
properties of the model by considering a triangular lattice
[11,12], which represents the maximum packing configuration
for Brownian particles in two dimensions. In Sec. III, we char-
acterize the system’s phase diagram and heat capacity. We also
perform finite size scaling analysis to confirm that the critical
exponents are the ones of the two-dimensional Ising model. In
Sec. IV, we characterize the single particle dynamics and the
kinetics of clusters, comparing molecular dynamics with Ising
model simulations using Monte Carlo methods. Future work
will extend this model to the off-lattice case to investigate
how aggregation of Lennard-Jones particles couples with the
order/disorder Ising phase transition. Importantly, we will
then consider the effect of membrane proteins modeled as
inclusions with fixed or variable height.

II. MODEL AND NUMERICAL METHODS

A. Model

We consider a two-dimensional triangular lattice composed
of Nd pairs of particles (dumbbells), for a total of N = 2Nd

particles, oriented along the direction orthogonal to the lattice
plane (z). The primitive vectors of the triangular lattice are
n1 = [σmin, 0, 0] and n2 = [ 1

2σmin,
√

3
2 σmin, 0], where σmin =

2
1
6 σ is the minimum of the Lennard-Jones potential de-

scribed below. This lattice implies six neighbors per dumbbell
[Fig. 1(a)].

The first layer of particles composing a dumbbell (type
1 particles), with Cartesian coordinates r1i = [x, y, z] (i =
1, . . . Nd ), is constrained on the plane z = 0, while particles
in the second layer (type 2 particles), with coordinates r2i

(i = 1, . . . Nd ), can move along z, see Fig. 1(b) and 1(c). The
x and y coordinates of all particles are fixed. Type 2 particles
interact with particles of the same type with a Lennard-Jones
potential

V 22(r) =
{

4ε
((

σ
r

)12 − (
σ
r

)6) − δ1 0 � σcut

0 x > σcut,
(4)

where σcut = 1.5σ is the cutoff distance, and δ1 =
4ε(( σ

σcut
)12 − ( σ

σcut
)6) ensures that the potential is continuous

at σcut. The potential is thus attractive between the minimum
σmin and the cutoff, and repulsive for r < σmin [Fig. 1(d)].
Since the coordinates of type 1 particles are fixed over time,
no interaction potential is defined between them. When dumb-
bells are allowed to diffuse in the x-y plane (a case that we do
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not discuss in this paper) an interaction potential analogous in
form to V 22 is introduced also between particles of type 1.

Particles composing a dumbbell, r1i and r2i, are connected
by a quartic bond potential. This functional form results in two
energy minima, which can be approximately mapped onto the
spin states of an Ising model [Fig. 1(e)]. In particular, the bond
potential is defined as

V 12(r) = ε[a(r − c)4 − b(r − c)2] + δ2, (5)

where a, b are positive control parameters. The two potential

minima are positioned at rmin = c ±
√

b
2a , the barrier height is

h = b2

4a , and the constant δ2 = ε b2

4a conveniently sets the mini-
mum of the potential to zero [Fig. 1(f). We choose a = 1699.2
and b = 247.5, such that the distance between the two minima
is 0.54σ and the barrier is h = 9ε; under these conditions, the
two potential wells are sufficiently narrow and well separated
that a meaningful mapping can be established between the
z coordinate of the particle and the two discrete spin states.
The constant c = 1.27σ , ensures that the two minima are at
r = 1σ and r = 1.54σ [Fig. 1(f)]. This specific choice of
distances ensures that, when two neighboring particles of type
2 are in different minima, their interaction energy corresponds
to the Lennard-Jones potential at its inflection point [Fig. 1(e)
and 1(e)], located at σinf = ( 26

7 )
1
6 = 1.2444σ , i.e., where the

attractive force is at its maximum.
For practical reasons, in numerical simulations we consid-

ered a modified version of V 12(r) that greatly increases the
rate of transitions between the two spin states. We truncated
the potential around the local maximum, between the two
values of r corresponding to an energy of ε (r1 = 1.0496σ

and r2 = 1.4904σ ). We then defined a quadratic potential in
this region so that an energy barrier of ε would be present (the
total barrier height from the minima is thus 2ε). The overall
piecewise potential reads

V 12
mod(r) =

{−εd (r − c)2 + 2ε r1 � r � r2

ε[a(r − c)4 − b(r − c)2] + δ2 otherwise,
(6)

where d = 1/(r1 − c)2. Note that the choice of V 12
mod, which is

continuous at r1 and r2 [Fig. 1(f)], is a compromise between
the contrasting requirements of having a surmountable en-
ergy barrier at thermal equilibrium and enforcing a negligible
occupancy of the intermediate states (to obtain an effective
two-state behavior).

In conclusion, the z position of type 2 particles can be
mapped onto a spin variable, with z = 1σ representing spin
s = −1 and z = 1.54σ spin s = +1. The energy maximum is
located at z = 1.27σ with a barrier of height 2ε. The coordi-
nate zi of a dumbbell can thus be conveniently remapped into
a continuous spin variable

φi = zi − c√
b/2a

(7)

with φi = ±1 on the two energy minima.
The time evolution of the system is analyzed by integrating

an equation of motion of the Langevin type

mr̈2i = −γ ṙ2i − ∂V 12
mod

∂r12
i

−
∑
i �= j

∂V 22

∂r22
i j

+
√

2kBT γ ηi(t ), (8)

where r22
i j = r2i − r2 j , r12

i = r2i − r1i. The sum is referred to
the dumbbell index. T and γ are the temperature and friction,
respectively, of the thermal bath in contact with the system, m
the particle’s mass, ηi is an uncorrelated Gaussian noise with
zero mean and unit variance. γ is set to 0.5, which corresponds
to an intermediate regime of friction (see Sec. IV), in order for
spin-flip to occur efficiently over time.

B. Simulations setup and numerical methods

The potentials and the equation of motion described in
Sec. II A were implemented in a modified version of the
LAMMPS software [14]. The reference units are the standard
Lennard-Jones reduced units m, σ , and ε, all set to unity, as

well as kB = 1. Thus, the time units are τLJ =
√

mσ 2

ε
. We con-

sidered temperatures in the range T ∈ [0.1, 0.5]. The standard
Velocity-Verlet algorithm was used to integrate the equation
of motions, while the Langevin forces are implemented in
LAMMPS following Ref. [15].

For the purpose of sampling the phase space, we simulated
a 30 by 30 particle lattice with periodic boundary conditions,
for a total Nd = 900 dumbbells. The x, y, z positions of type
1 particles were initialized at the lattice sites as prescribed
in the previous section, while all type 2 particles were ini-
tialized to z = 1 (spin −1), and then allowed to equilibrate.
The same setup was used for the finite size scaling anal-
ysis with systems of increasing number of particles Nd =
100, 400, 900, 1600, 10000.

The dynamics of single spin-flip, described and char-
acterized in Sec. IV A, was studied in a 6 by 6 lattice
(36 dumbbells), and the small cluster spin-flip dynamics
(Sec. IV B) was studied in a system at least twice as large as
the cluster side.

For the purpose of studying the cluster growth (Sec. IV C),
we simulated a 1024 by 1024 system for a total of Nd = 10242

dumbbells. Type 1 particles were initialized as before, while
type 2 particles had the z position randomly assigned to the
z = 1 or z = 1.54 positions.

In order to efficiently explore the phase space of the system
as a function of the temperature, we used also the metady-
namics method [16], similarly to Ref. [17], implemented in
LAMMPS through the Colvars package [18]. The method
uses non-Markovian dynamics to discourage the system from
visiting repeatedly the same regions of the configuration
space and it is therefore useful to sample configurations with
large free energy. In practice, a collective variable v is used
to coarse-grain the configuration space and a short-ranged
(Gaussian) repulsive potential, V (v(t )), centered on the in-
stantaneous value of the collective variable is added at fixed
time-intervals to the unperturbed Hamiltonian of the system.
It can be shown that the time integral of the biasing potential
converges asymptotically to the underlying free energy sur-
face [19]. The collective variable of choice here is the average
magnetization per dumbbell, defined as

M = 1

Nd

∑
i

φi, (9)

where the sum over i is referred to the dumbbell index, and
the magnetization distribution is concentrated in the interval
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M ∈ [−1, 1] (although, strictly, M is unbound). This rescaling
allowed for easier comparison to the properties of the Ising
model. Gaussians potentials were added every 1000 time steps
for all temperatures, while the Gaussian height was set to
0.005ε and the Gaussian width to 0.001. The latter was chosen
to be smaller than the collective variable standard deviation at
all temperatures. The potentials of mean force (pmfs) were
computed by averaging the final third of the trajectory, sam-
pled every 105 steps.

Metadynamics simulations were run for a maximum of
5 × 108 time steps. Simulations to compute the average mag-
netization, the heat-capacity and the finite size scaling were
run without metadynamics for a maximum of 4 × 109 time
steps. Simulations for sampling single spin events lasted 109

time steps. The largest system used to characterize cluster
growth was run for about 2 × 107 time steps.

C. Kramers formula for rate constants

In Sec. IV A, we compared the molecular dynamics (MD)
spin flip kinetics with the Kramers’ intermediate-friction
formula [20], which approximates the rate of escape of a
Brownian particle from a free energy well. The approximate
rate reads

k = ωR

2πωb

⎛
⎝− γ

2m
+

√(
γ

2m

)2

+ ω2
b

⎞
⎠ exp

(
−�F

T

)
, (10)

where γ is the friction coefficient and F (M ) is the
pmf. Parameters derived from the pmf are the reactant
well frequency ωR = √

F ′′(MR)/m, the barrier frequency
ωb = √−F ′′(Mb)/m, and the barrier height �F = F (Mb) −
F (MR). Equation (10) approaches the well-known large fric-
tion form for large γ > mωb.

D. Dynamical Ising model

To compare the kinetics of MD with that of the Ising
model, we considered a two-dimensional triangular lattice of
spins governed by a master equation using reactive or Glauber
dynamics. Note that the model we refer to here is the standard
Ising model, with Hamiltonian of Eq. (1) and spins taking
up only two discrete values si = ±1. Reactive dynamics [21]
are characterized by an Arrhenius-type rate constant k =
νe−�E/2T , whereas in Glauber dynamics [22] flip rates are
saturable, described by k = νe−�E/2T /(e−�E/2T + e�E/2T ).
The rate factor ν determines the time scale of kinetics, while
�E = 4J (3 − u) is the change in system energy for a spin
to flip from −1 to +1 with u = 0, . . . , 6 neighboring spins
in the +1 position. Rate constants for the reverse transition
(+1 to −1) are obtained by changing the sign of �E . The
extended triangular lattice in the shape of a parallelogram
can be mapped to the traditional square Ising grid with two
diagonal interactions in addition to the usual four orthogonal
interactions for a total of six neighboring spin interactions.
Ising model simulations were performed in real time us-
ing the Gillespie algorithm for kinetic Monte Carlo (MC)
[23], in which waiting times between spin flips are given by
− ln r/

∑
i ki, where r is a uniform random number between

0 and 1, and
∑

i ki is the sum of transition rates taken over
all spins i. A second random number determines which spin

is flipped weighted by ki/
∑

i ki. The Gillespie algorithm is a
true kinetic Monte Carlo simulation with exponentially dis-
tributed waiting times between transition events.

E. Computing cluster size

In Sec. IV C we computed the clusters size through the
structure factor. Here, we describe the numerical implemen-
tation.

The spin were first discretized to −1 or 1 (using z = c as
mid point). The bounding square rectangle was changed into a
parallelogram conforming to the skew-geometry of the prim-
itive cell. For each frame, the triangular lattice was digitized
onto a

√
Nd × √

Nd square matrix, using the same mapping of
the Monte Carlo simulations. The digitized matrix was used to
compute fast Fourier transform (FFT), with discrete vectors in
real and reciprocal space ranging from 1 to

√
Nd and −√

Nd/2
to

√
Nd/2, respectively, and consequently the structure factor,

see Sec. IV C for the definition. Note that after digitizing the
triangular lattice, the radial distance in reciprocal space has to
be computed as

k =
√

k1
2 + (1/3)(2k2 − k1)2 (11)

with ki the coordinate in reciprocal space, in order to conform
to the original Euclidean distance in the triangular lattice. The
average cluster size L(t ) was obtained from

L(t )√
Nσmin

=
∑

k h(k, t )/n(k)∑
k h(k, t )k/n(k)

≈ 2π

∑
k h(k, t )/n(k)∑

k h(k, t )
, (12)

where we approximate n(k) ≈ 2πk, h(k) are the summed bin
values of the structure factor in radial intervals (k − 0.5, k +
0.5] and n(k) are the bin counts.

III. EQUILIBRIUM PROPERTIES

Here, we show that the properties of this collection of
dumbbells, as defined in Sec. II, closely match those of the
Ising model. In particular, we will show how the magnetiza-
tion and the heat capacity vary as a function of the temperature
T .

A. Phase diagram

We performed metadynamics simulations of the system,
for temperatures T ∈ [0.25, 0.39], characterizing for each T
the free energy as a function of the average magnetization
M, as described in Sec. II. We found that, upon increasing
the temperature, the system transitions from a fully ordered
configuration in which all spins are aligned, to a configuration
in which the average magnetization is zero. This is apparent
from Fig. 2 showing the most probable conformations for
six temperatures. At T = 0.25, 0.285, 0.32, 0.33 the confor-
mations are magnetized and at T = 0.45 the conformation is
clearly disordered. Instantaneous configurations are rendered
by showing type 2 particles from a top view colored according
their z coordinate.

Figure 3 shows the free energy as a function of M
for T = 0.31, 0.32, 0.33, 0.335, 0.34, 0.35, 0.36. Below T =
0.33, the free energy presents two well-defined minima,
separated by an energy barrier larger than kBT . At T = 0.33,
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FIG. 2. Equilibrium configurations sampled via molecular dynamics at six different temperatures, T = 0.25, 0.285, 0.32, 0.33, 0.335. The
system transitions from a magnetized state to a disordered one around T = 0.335. Snapshot are taken from a top view in the x-y axis in which
only type 2 particles are shown. Each particle is colored according its z coordinate.

the estimated free energy barrier between the two minima
becomes of the order of 2kBT allowing the system to explore
the two oppositely aligned ferromagnetic states, a sign that the
temperature is close to the critical one. By further increasing
the temperature, the free energy profile flattens out completely

-3

-2

-1

 0

 1

 2

 3

 4

 5

-1 -0.5  0  0.5  1

F
re

e 
E

ne
rg

y 
[ε

]

M

0.31
0.32
0.33

0.335
0.34
0.35
0.36

FIG. 3. Free energy as a function of the average magnetization
M for 6 temperatures (see key), computed using metadynamics. Two
distinct minima are visible with an energy barrier between them
larger than 2kBT up until T = 0.33.

and starts to develop a single minimum at M = 0, meaning
that the system is in the disordered state.

Figure 4 shows the magnetization values measured from
the positions of the free energy minima for temperatures
below T = 0.33 (red curve), as well as the average magnetiza-
tion values obtained from long simulations performed without
metadynamics. Consistent with the insight obtained from the
free energy profiles, we observe that around T ∼ 0.33 the
magnetization quickly drops off to M = 0. Deviations from
this value at larger temperatures are due to limited sampling
(see error bars).

B. Heat capacity

The heat capacity was calculated from trajectories sampled
without the metadynamics technique, and thus unbiased, as

Cv = Nd
〈E2〉 − 〈E〉2

kBT 2
, (13)

where E is the average per-dumbbell potential energy. The
error bar on M was obtained using the blocking analysis [24]
in order to have uncorrelated data (the maximum decorrelation
time observed is 104τLJ ).

Results are shown in Fig. 4. Similar to the Ising model,
a peak in the specific heat capacity is observed around T ∼
0.33, suggesting a phase transition.
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FIG. 4. Magnetization and heat capacity as a function of the tem-
perature, obtained from unbiased simulations. The red bar identifies
the region where the critical temperature is located.

C. Finite size scaling for critical behavior

We have shown that this model behaves as the Ising model.
We now want to check if the critical behavior is compatible
with the two-dimensional Ising universality class; thus we
performed a finite-size scaling analysis [25,26]. This analysis
allows us to estimate the critical temperature by analyzing
the Binder cumulant, and to measure the critical exponent
of the phase transition through the scaling of the absolute
magnetization, susceptibility and heat capacity. We analyzed

several system sizes L = 10, 20, 30, 40, 100σ with Nd =
100, 400, 900, 1600, 10000 and temperatures near T ∼ 0.33.

The Binder cumulant is defined as [27]

UL = 1 − 〈M4〉
3〈M2〉2

. (14)

The curves cross in Fig. 5(a) at Tc ∼ 0.326, which gives an
estimate of the critical temperature. We will see on the next
section, that this value agrees with the analytical solution for
the triangular Ising lattice [12].

We then proceed to rescale the thermodynamical quantities
using Tc ∼ 0.326 and the two-dimensional Ising critical ex-
ponents ν = 1, β = 1/8, γ = 7/8, α = 0, which we assume
here a priori to be the correct exponents. The first quantity we
examine is the absolute magnetization |M|, defined as

|M| =
∣∣∣∣ 1

Nd

∑
i

φi

∣∣∣∣. (15)

The correct scaling of this quantity is

|M|(T, L) = L−β/ν |M̃|(L1/ν (T − Tc)) (16)

with |M̃| independent on L. Figure 5(b) confirms that the
choice of critical exponents ν = 1 and β = 1/8 collapses the
data for all the system sizes into a single master curve.

The susceptibility is computed as

χ|M| = Nd (〈|M|2〉 − 〈|M|〉2) (17)

and scales as

χ|M|(T, L) = Lγ /νχ̃|M|(L1/ν (T − Tc)) (18)

with γ = 7/8, as confirmed by the plot in Fig. 5(c).
The last quantity of interest is the heat capacity, see

Eq. (13). Here, as α = 0, the correct scaling should be log-
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pairwise interactions (p) and (f) from bonded ones (b).
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FIG. 6. (a) Illustration of the setup used to study single spin-flip dynamics. The central spin is allowed to flip, while the six neighbor spins
have fixed spins, see text for detail. (b) Time evolution of z for the central spin, with setup as in (a). (c) Zoom-in of (b) over a smaller time
interval. (d) Free energy profile, as a function of z, with 0 to 3 neighbor spins with negative magnetization. (e) Rate of central spin-flip with
0 to 6 neighbor spins with opposite magnetization, along with Glauber and reactive dynamics MC rates adjusted to fit the MD, see text. In
green, Kramers prediction based on Eq. (10). (f) Rate of central spin-flip with same setup as (a), as function of γ . The temperature is fixed to
T = 0.185.

arithmic:

Cv (T, L) = log(L)C̃v (L1/ν (T − Tc)). (19)

Note that, unlike the Ising model, here, the potential energy
function is composed by a pairwise interaction term, which
represent the Lennard-Jones interactions and is directly re-
lated to Eq. (1), and a bond term, implemented as a truncated
quartic potential which represents the spring connecting the
two beads of each dumbbell. In Fig. 5(d) we can see the Cv

computed from the total potential energy, while Fig. 5(e) and
5(f) shows Cp

v and Cb
v , computed, respectively, for the pair-

wise and bond interactions energy contributions. Interestingly,
while Cp

v scales correctly Cb
v does not. The explanation is that

fluctuations in the per-particle bond energy scale as N−1
d (since

the bond energy for any given dumbbell does not depend on
the system size), thus the specific Cb

v is independent of L. For
this reason, the relative contribution of Cb

v to Cv vanishes in
the thermodynamic limit. In fact, we can see how Cb

v/ log(L)
decreases as L increases [Fig. 5(f)]. Overall, the scaling of Cv

is expected to be the correct one for large enough Nd .

IV. DYNAMICAL PROPERTIES

From a dynamical point of view, the trajectory obtained
from integration of a Langevin-type equation of motion is
conceptually distinct from the time series obtained from a

Monte Carlo (MC) simulation. Thus it is interesting to inves-
tigate the dynamical differences between MC and molecular
dynamics for these Ising-like systems.

A. Single spin-flip dynamics

First, we characterize the spin-flip dynamics for a single
spin. In particular, we focus on cases where the six neighbor
spins have their magnetization fixed, Fig. 6(a). This is ob-
tained by constraining the positions to z > c for s = +1 and
z < c for s = −1, using for each spin a repulsive quadratic
potential at z = c with force constant k = 10ε/σ 2. Seven
cases are possible, with a total of 0 to 6 neighbor spins with
opposite magnetization to the central one that has to flip (and
a complementary number of 6 to 0 neighbor spins with the
same magnetization as the central one). The temperature will
be from now on fixed at T = 0.185 for MD, which is about
0.56Tc and we choose similarly T/Tc = 0.56 for MC (we use
in this case the theoretical value for Tc).

Figure 6(b) and 6(c) show a single spin-flip trajectory over
time with three neighbors with same magnetization and three
with opposite one. The value of z, and consequently of M,
varies continuously in time. Figure 6(d) shows the free energy
profile, as a function of z, of a spin with 0 to 3 neighbor
spins with negative magnetization. The other cases have a free
energy which is the mirror image around z = c.
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From the 0 neighbor free energy of Fig. 6(d), it is possible
to estimate an effective coupling constant J [see Eq. (1)] and
thus infer the critical temperature Tc. Because we have six
nearest neighbors, 2J = �E/6, with �E = 1.074ε the differ-
ence in energy between the two minima. The value of J =
0.0895 can be then inserted in the analytical solution for the

triangular Ising lattice [12] kBT th
c

J = 3.640957, finding T th
c =

0.326. This estimate is in striking agreement with the one ob-
tained using the Binder cumulant, thereby further confirming
the presence of a phase transition in the thermodynamic limit.
Note that the value of J extracted from the free energy is
different from the one obtained by the bare difference in inter-
action energy between the “parallel” and “antiparallel” case,
which amounts to 2J = [V 22(σinf ) − V 22(σmin)] = 0.202. At
the same time, we expect a slight dependence of the value
of Tc by changing the bond potential around the barrier (and
consequently J).

Figure 6(e) shows the rate (inverse time) for the central
spin to invert its magnetization, for the seven possible cases.
The flipping-rate increases exponentially, as expected due to
the linear decrease in the energy barrier observed in Fig. 6(d).
This results are in agreement with the prediction obtained
from Kramers’ intermediate-friction rate constant formula
[Eq. (10)] using MD-derived pmfs to compute the formula
parameters.

Note that changing the barrier height of the bond potential
by a factor α affects the typical crossing time from one state
to the other by a factor eα: this exponential scaling makes it
extremely difficult to sample events for large values of the
barrier using MD simulations, unlike Monte Carlo methods.

Figure 6(f) shows how the flipping rate with three neighbor
spins of opposite magnetization is affected with changing γ ,
along with Eq. (10). Indeed, the chosen value of γ = 0.5 falls
within the intermediate-friction regime.

We can use the MD results of Fig. 6(e) to match the
rate constants of the kinetic Ising model. By varying ν, J ,
and T with arbitrary units, the Ising rate constants for the
reactive dynamics can be aligned with MD-derived flip rates
[Fig. 6(e)]. The Glauber rates, obtained using the same ν as
the reactive dynamics, underestimate reaction rates for all
conditions [Fig. 6(e)]. The two rates can coincide for the
specific case of equal number (3) of oppositely magnetized
neighbor particles by scaling Glauber rates by a factor of 2.

B. Cluster-flip dynamics

Next, we characterized the amount of time needed for an
hexagonal cluster to completely invert its magnetization when
surrounded by a bulk of spins with opposite magnetization
[Fig. 7(a)]. Note that only spins inside the cluster were con-
sidered when monitoring the magnetization.

Figure 7(b) reports on the cluster-flip time. The time scales
linearly with the cluster size for sufficiently large clusters,
while a nontrivial dependency is observed for low cluster
sizes, which is dependent on the chosen dynamics. Although
the rates between MD and reactive dynamics were perfectly
matched (the curves start from the same point) the cluster-flip
times do not match for large clusters. The ratio between the
two slopes is 2.75. Instead, for Glauber MC dynamics these
times coincide for large clusters.

101

102

103

104

105

 1  10  100

t[τ
LJ

]

Cluster size (number of spins)

MD
Glauber MC

Reactive MC

Cluster-flip dynamics(a)

(b)

FIG. 7. (a) Illustration of the setup used to study cluster-flip
dynamics. A single cluster is placed in the center of a system with
opposite magnetization. (b) Time required to invert the cluster’s
magnetization, as a function of the cluster size, in term of spins
number, for MD and reactive and Glauber MC.

C. Cluster growth kinetics

Last, we characterize the time evolution of cluster size
L(t ) by performing a similar analysis to the one reported in
Ref. [28]. Figure 8(a) shows the evolution of the 10242 spin
system starting from a random configuration for the three
different dynamics considered.

We computed the structure factor in the reciprocal space
defined by the contravariant vectors b1 = [ 1

σmin
,− 1√

3σmin
, 0]

and b2 = [0, 2√
3σmin

, 0], such that n1 · b2 = n2 · b1 = 0. The
structure factor is the spectral density of the spin matrix,
where the spins have been considered in their discretized
version s:

SF (k) =
∣∣∣∣∣
∑

r

(s(r) − 〈s〉)e−2π ik·r
∣∣∣∣∣
2

, (20)

where r are the positions in real space ranging from
[1, . . . ,

√
Nd ]ni, k the ones in the reciprocal space, ranging be-

tween [−√
Nd/2, . . . ,

√
Nd/2](bi/

√
Nd ) and 〈s〉 is an average

over all configurations spins. For each frame, we computed
SF (k, t ) and the average cluster size L(t ) was obtained from

L(t ) =
∫

dkSF (k, t )/k∫
dkSF (k, t )

. (21)

For the actual numerical implementation details, see Sec. II E.
Figure 8(b) shows L(t ), along with a power law (dotted

line) with exponent 0.5, which is expected when the order
parameter is nonconserved as in model A dynamics [29], see
also Supplemental Material Movie S1 [SM][30] (system with
1002 spins, T = 0.185 starting from a random configuration).
Consistent with the observations of Sec. IV B, L(t ) of MD
and Glauber MC overlaps well at long times, while reactive
dynamics MC does not. The latter overlaps when the times
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three different dynamics considered. In cyan, reactive dynamics MC shifted by a factor of 2.75, see main text for details. In (b) the dashed line
shows the power law fit with exponent 0.5. In (d) it shows a power law with exponent −0.5.

are rescaled by the factor 2.75 (cyan curve), as measured in
Sec. IV B.

Figure 8(c) shows the growth exponent α, L(t ) ∼ t1/α as a
function of time, computed as [31]

1

α(t )
= d ln L(t )

d ln t
. (22)

The exponent slowly saturates to 0.5 over time. This feature is
common to both MD and MC, and it is due to the dynamics of
cluster interfaces, which play an important role at finite (T >

0) temperatures [31].
Finally, Fig. 8(e) and 8(f) shows the system’s energy E (t )

measured using the Ising model Hamiltonian 1, after spin
discretization for MD configurations, and the total system’s
magnetization |M(t )|. The former saturates to a power law
(dotted line) with exponent −0.5.

V. DISCUSSION

In this work, we investigated a two-dimensional system
of pairs of particles (dumbbells) connected by a double-well
potential. This allows the dumbbells to fluctuate between
two states, which can be interpreted as two spin states si =
±1. Importantly, dumbbells interact with each other through
a Lennard-Jones potential with an interaction energy that
discriminates between “parallel” and “antiparallel” configura-
tions. In this way, each spin can influence its closest neighbors

(six for the triangular lattice considered here). All spins evolve
simultaneously under the action of the interaction potential as
prescribed by a Langevin-type equation of motion.

First, we characterized equilibrium properties, including
a finite size scaling analysis: the observed behavior follows
closely what expected for an Ising model, with the criti-
cal exponents matching those of the two-dimensional Ising
universality class. Second, we characterized several dynam-
ical properties, such as single spin- and cluster-flip, and the
cluster growth kinetics starting from a random initial con-
figuration. We highlighted a rich dynamical behavior, which
differs to some extent from two of the most widely consid-
ered dynamics, namely reactive and Glauber dynamics Monte
Carlo.

Future work will investigate the most general case in which
dumbbells are allowed to diffuse in the x, y plane, as occurs
in biological systems such as lipid membranes. We expect
the phase diagram of this off-lattice case to show a non-
trivial combination of vapor-liquid and liquid-solid transitions
typical of both Lennard-Jones systems and ferromagnetic
order/disorder transitions.
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