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Random walks are fundamental models of stochastic processes with applications in various fields, including
physics, biology, and computer science. We study classical and quantum random walks under the influence of
stochastic resetting on arbitrary networks. Based on the mathematical formalism of quantum stochastic walks,
we provide a framework of classical and quantum walks whose evolution is determined by graph Laplacians.
We study the influence of quantum effects on the stationary and long-time average probability distribution
by interpolating between the classical and quantum regime. We compare our analytical results on stationary
and long-time average probability distributions with numerical simulations on different networks, revealing
differences in the way resets affect the sampling properties of classical and quantum walks.
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I. INTRODUCTION

Karl Pearson coined the term “random walk” in a short
commentary article in 1905 [1]. In the same year, Albert Ein-
stein described the random movements of particles suspended
in a fluid in terms of Brownian motion [2,3], illustrating the
potential of stochastic descriptions to improve our understand-
ing of physical processes.

Early versions of random walks were also applied to prob-
lems in probability theory [4] or in materials science [5–7].
Nowadays, applications of random walks are quite versatile
and are used to describe stock-price fluctuations [8,9], for-
aging animals [10,11], efficient search algorithms [12] such
as the famous PageRank [13], or even opinion formation
[14–16]. We could continue this list, but instead we refer the
interested reader to Refs. [17–19] for further information.

Naturally, the success of classical random walks (CRWs)
has stimulated intensive research on the implementation and
possible applications of quantum versions of random walks.
Such quantum walks (QWs) have been realized in various
experimental setups, cf. [20–27]. Although single-particle
QWs are usually closely related to classical wave phenomena
[28], quantum extensions [29] led to important advances such
as the development of hybrid classical-quantum versions of
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the PageRank [30,31], new classes of quantum algorithms
[32–35], and important insights into the feasibility of quantum
computations in terms of QWs [36].1

To use general walks in optimization problems, it may be
advantageous to employ algorithms with stochastic resetting
[48,49], since optimization strategies without reset may end
up in regions far away from the actual solutions [50,51].
Stochastic resetting is not only relevant in the context of
search strategies, but it is also useful to sample certain rare
events in simulations [52]. Furthermore, stochastic resetting
has been theoretically analyzed in a tilted Bose-Hubbard sys-
tem [53] for which results have been shown to smoothly
interpolate between results obtained from the diagonal en-
semble (vanishing reset rate) and the quantum Zeno effect
(large reset rate). In a recent work [54], classical random
walks with stochastic resetting were studied on networks. For
Caley trees, it was found that a classical random walker with
an optimized stochastic resetting protocol performs similarly
well as optimal search strategies in finding a target node at a
certain distance. In other networks, the performance of such
optimized random-walk searches depends on the centrality of
the node that is chosen as a reset state [54].

Motivated by the success of random-walk-based search
strategies with stochastic resetting [55,56], we study stochas-
tic quantum walks with resetting on networks. To do so, we
introduce a framework for classical, quantum, and hybrid
random walks with stochastic resetting on networks. Our

1Note that different formulations of QWs have been proposed, in-
cluding coined QWs [37,38], or the formalism developed by Szegedy
[39]. Connections between coined and Szegedy QWs have been
established through staggered QWs [40,41]. For an overview of QWs
and search algorithms, see Ref. [42], and for yet other formulations
of QWs, see Refs. [40,43–47].
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approach enables us to (i) interpolate between the classical
and quantum regimes of such walks, and (ii) analyze the in-
fluence of classical processes that perturb QWs. We explicitly
show how a hybrid classical-quantum walk can be defined as
an open quantum system and how the quantum jump operators
and dissipation rates are connected to the CRW Hamiltonian.
From this formulation, we derive the node occupation statis-
tics in the stationary state of classical and quantum walks
with stochastic resetting. We complement these efforts with a
detailed numerical analysis for which we unravel the quantum
master equation as a stochastic Schrödinger equation and de-
rive the adequate quantum jump probabilities. All codes that
we used in this work are made publicly available [57].

The paper is organized as follows. In Sec. II, we briefly re-
view some key concepts from the study of complex networks
that will be used in our further analysis. In Sec. III, we provide
precise definitions of the CRWs and the QWs we consider
and understand these walks as cornerstones for a linear inter-
polation scheme that allows us to add “classicality” to QWs
and vice versa “quantumness” to CRWs. Our general for-
mulation of classical, quantum, and hybrid classical-quantum
walks on networks utilizes the theoretical framework of quan-
tum stochastic walks [58], which we adapt to account for
stochastic resetting. We compare our analytical results with
corresponding simulations on different networks in Secs. IV
and V. In Sec. VI, we discuss our results and conclude.

II. NETWORK SCIENCE CONCEPTS

A graph G (i.e., a network) is an ordered pair of two sets
G = (V, E ), where V is the set of nodes and E ⊆ V × V is the
set of edges, respectively [59]. We denote the number of nodes
by N (i.e., |V | = N). Throughout this paper, we consider undi-
rected networks, meaning that all edges are bidirectional, with
unweighted edges. To describe the dynamics on such graphs,
we introduce a Hilbert space structure in the standard way by
assigning to each node i a basis vector |i〉. These basis vectors
are chosen to be orthonormal, i.e., 〈i | j 〉 = δi j . The adjacency
matrix A of a graph G describes the connections of the graph.
For undirected networks with unweighted edges, each matrix
element Ai j ∈ {0, 1} is

Ai j =
{

1 if (i, j) ∈ E ,

0 otherwise. (1)

The adjacency matrix is thus a symmetric binary matrix, and
it can be written in Dirac notation as

A =
∑
i, j∈V

Ai j |i〉 〈 j| . (2)

The degree ki of node i is defined as the sum over the re-
spective row of the adjacency matrix (i.e., ki = ∑N

j=1 Ai j) and
counts the number of connections leading to (respectively
away from) node i.

A characteristic quantity for graphs is the degree distri-
bution that indicates the frequency of nodes with a certain
degree. It is defined as Pk = nk/N , where nk is the number
of nodes of degree k in G. The degree matrix D of G is

D =
N∑

i=1

ki |i〉 〈i| . (3)

D is a diagonal matrix whose elements correspond to the
degree of the respective node. The evolution of CRWs and
QWs on a graph G(V, E ) can be described by the graph
Laplacian [60]

L = D − A, Li j =
⎧⎨
⎩

ki if i = j,
−1 if (i, j) ∈ E ,

0 otherwise.
(4)

These theoretical tools suffice for the study of the types of
random walks that we envision. We shall now specify the set
of graphs that we use in the present work. While our analytic
results can be applied to general graphs, we will focus on
the following three different networks for explicit numerical
verification of our results.

(i) Erdös-Rényi: Two nodes are connected with probability
p, which is independent of all other connections. Erdös-Rényi
graphs have a binomial degree distribution [59].

(ii) Barabási-Albert: A new node will be attached to m �
m0 existing nodes, and the attachment probability is propor-
tional to the number of edges of the existing nodes. Here m0

is the initial number of nodes. This preferential-attachment
process leads to a scale-free network with an algebraic degree
distribution [61].

(iii) Peer-to-peer (p2p-Gnutella08): Nodes in this empirical
network correspond to computers in a file-sharing network
[62].

In Fig. 1 we show the degree distributions of these net-
works. Our choice of the outlined networks is motivated by
their different connectivity patterns, which enable us to study
how such differences affect the properties of CRWs and QWs.

III. QUANTUM STOCHASTIC WALKS ON NETWORKS

In this section, we shall specify the types of walks on
graphs that we study in the present work. Our choice is
not unique, and we refer the reader to Refs. [42,63] for an
overview of different realizations of CRWs and QWs. The
walks that we study in this work are schematically summa-
rized in Fig. 2.

We start by introducing CRWs (Sec. III A) in terms of
their probability distribution and QWs (Sec. III B) in terms
of the corresponding wave function. CRWs and (continuous)
QWs are fundamentally different, as the latter obey unitary
dynamics as long as the walker is not measured, whereas the
former do not. It has been argued that the characteristics of
both types of dynamics can be incorporated in the dissipative
dynamics of the density matrix of a quantum system, resulting
in quantum stochastic walks [58]. General quantum stochastic
processes can be described by a Lindblad master equation for
the reduced density matrix � of a quantum system2 [64,65],

d�

dt
= −i[H, �] +

∑
n

Ln�L†
n − 1

2
{L†

nLn, �} = L(�). (5)

Here, H is the quantum Hamiltonian of the system describing
the coherent part of the dynamics, which accounts for wave-
like phenomena such as superposition and interference taking

2Here, h̄ = 1 and we apply this convention throughout the paper.
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FIG. 1. Degree distributions of different networks. We show the degree distributions of the different networks that we use throughout this
work. Black disks represent the degree distribution of a particular network realization, and the gray solid line is the corresponding analytic
degree distribution. (a) Erdös-Rényi network with a Gaussian degree distribution and N = 1600 nodes. (b) Barabási-Albert network with a
power-law degree distribution. The corresponding exponent is −3 [61]. Each new node is connected to m = 2 existing nodes (i.e., the degree
of each node is at least 2), and the depicted realization has N = 1600 nodes. (c) Peer-to-peer network (p2p-Gnutella08) [62] with N = 1600
nodes and mean degree k̄ ≈ 2.5.

place. Ln are certain quantum jump operators, each of which
introduces an incoherent stochastic process to the dynamics
of the quantum system. Thus, the above Lindblad dynamics
is suitable to describe the interplay between classical hopping
and quantum coherent evolution [58].

The generic solution of Eq. (5) with the initial density
matrix �(0) can be written in terms of the time-independent
superoperator L as

�(t ) = eLt�(0). (6)

In the following sections, we employ a set of rules [58] to
include CRWs as a stochastic background to QWs, and we
shall see that each classically allowed transition will result in
a dissipative contribution to the superoperator.

We proceed as follows. In Secs. III A and III B, we specify
the types of CRWs and QWs on networks that we study in
this paper. These can be seen as cornerstones of the out-
lined theory. In Sec. III C, we introduce an interpolation
scheme between these cornerstones, and in this way we define,
viz., a quantum-to-classical random walk (QCW).3 Finally,

3We use the term “quantum-to-classical” random walk to indicate
that we consider a subset of QSWs that interpolates between CRWs
and QWs.

in Sec. III D, we introduce stochastic resetting by means of
a suitable quantum jump process.

A. Classical random walks on networks

We describe the evolution of a CRW on a network G in
terms of the probabilities pi(t ) of observing a walker on node
i at time t . These probabilities form a normalized probability
vector

p(t ) = (p1(t ), . . . , pN (t )),
N∑

i=1

pi(t ) = 1 . (7)

In the time interval [t, t + �t], conservation of probability
implies that the local probabilities can only flow in and out of
nodes. In particular, if �t is small enough, the net-influx to
node i originates from the immediate neighborhood of node i.
The evolution of the probability pi(t ) is thus described by the
following rate equation:

pi(t + �t ) − pi(t ) = −�t

(
pi(t ) −

N∑
j=1

Ai j

k j
p j (t )

)
. (8)

The first term on the right-hand side corresponds to the out-
ward flow from node i to its surroundings, and the second
term describes the inflow to node i. We may rewrite Eq. (8)

FIG. 2. Overview of different classical and quantum reset walks. Different types of random walks as a function of the classicality parameter
ε [see Eq. (26)] and reset rate r [see Eq. (28)]. The classicality parameter 0 � ε � 1 allows us to smoothly interpolate between a QW (ε = 0)
and a CRW (ε = 1). In the time interval [t, t + dt], a reset to the initial state occurs with probability rdt .
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FIG. 3. Schematic of a quantum walk. A quantum walker starts from a certain initial state in panel (a). Here the initial state is fully localized
on a certain node for illustration purposes. The dynamics of the quantum walker is governed by the Schrödinger equation. After some time, the
wave function of the walker will be spread over the network as depicted in panel (b) and there will be quantum superpositions. Knowing the
initial state, both the Hamiltonian that induces the dynamics and the waiting time uniquely determine this state. Observing (or measuring) the
quantum walker will result in a collapse of the wave function as shown in panel (c), and there is no way of knowing to which state the wave
function collapses. This introduces stochasticity to QWs.

in matrix form,

p(t + �t ) − p(t )

�t
= −LD−1p(t ), (9)

with the graph Laplacian L and the degree matrix D [see
Eqs. (3) and (4)]. In the limit �t → 0, this rate equation
becomes a master equation in differential form,

d

dt
p(t ) = −Hcp(t ), Hc = LD−1. (10)

Here, we introduced the classical Hamiltonian Hc as the
generator of time translation of the probability distribution.
Equation (10) is formally solved with the time evolution op-
erator S(t ) = e−Hct , which allows us to write the probability
distribution at time t , that originated from an initial distribu-
tion p0, as

p(t ) = S(t )p0. (11)

For connected networks, where one can reach any node from
any other node, and sufficiently long times, the CRW ap-
proaches a stationary probability distribution p∗ such that
p∗

i = ∑N
j=1

Ai j

k j
p∗

j . This allows us to fully determine the sta-
tionary probability distribution as4

p∗
i = ki∑N

i=1 ki

. (12)

In the following sections, we will compare CRWs and QWs
in terms of the probability p′

k that any of the nk nodes with
degree k is occupied. Note that p′

k satisfies∑
k

nk p′
k = 1, (13)

whereas we have
∑N

i=1 p∗
i = 1 in the node-centered formula-

tion of the occupation probability.

B. Quantum walks on networks

A quantum walker is described by its wave function |φ〉 ∈
CN rather than a probability distribution. The wave function
propagates according to the Schrödinger equation

∂t |φ〉 = −iHq |φ〉 (14)

4It is straightforward to check that p∗ is indeed the steady state by
applying the classical Hamiltonian to Eq. (12).

with some quantum Hamiltonian Hq. This formulation of
QWs is generally referred to as continuous time quantum
walk [66]. We note that a QW, as defined in Eq. (14), is not
inherently stochastic since the Schrödinger equation itself is
deterministic. Stochasticity in QWs stems instead from mea-
surements that are applied to the quantum system and leads to
a collapse of the wave function [44], as illustrated in Fig. 3.
In analogy to a CRW [see Eq. (11)], the quantum Hamiltonian
generates a quantum-time-evolution operator

U (t ) = e−iHqt (15)

for a QW on G. The choice of Hq thus determines the behavior
of the QW. We follow Ref. [60] and choose the symmetric and
normalized graph Laplacian

Hq = D−1/2LD−1/2 (16)

as a Hermitian quantum Hamiltonian.5 QWs that are based on
the Hamiltonian in Eq. (16) have the appealing property that
the average probability to find the quantum walker on a certain
node will be the same as in the classical case if the system is
in the ground state (see Sec. III A) [60,67].

To prepare the ground for more general quantum stochastic
walks, we replace the wave function |φ〉 by the density matrix
� = ∑

i j �i j |i〉 〈 j| and the Schrödinger equation [see Eq. (14)]
by the equivalent von-Neumann equation

d�

dt
= −i[Hq, �]. (17)

This formulation is able to account for statistical mixtures of
wave functions, and it can be easily extended to open quantum
systems as needed for classical-quantum mixtures of random
walks. For the QW that results from Eqs. (16) and (17), the
long-time average probability of being on node i is given by

q∗
i = lim

T →∞
1

T

∫ T

0
〈i| �(t ) |i〉 dt . (18)

Similar to the classical case, we denote by q′
k the probability

that any node with degree k is populated. As in Eq. (13), the
probability q′

k satisfies ∑
k

nkq′
k = 1. (19)

5Note that the classical Hamiltonian is not necessarily Hermi-
tian since in general [A, D−1] �= 0 (for a lattice, however, we have
[A, D−1] = 0 since D ∝ 1).
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C. Quantum-to-classical stochastic walks

Having outlined frameworks for the treatment of CRWs
and QWs on networks, we now proceed and introduce a gen-
eralized quantum stochastic walk that interpolates between
these walks. We recall that any such walk is described by the
Lindblad master equation (5), and we introduce a dimension-
less interpolation parameter ε in such a way that we recover
the QW of Eq. (16) for ε = 0. The choice

H = (1 − ε)Hq, Ln ∝ √
ε , ∀n (20)

reduces the Lindblad master equation to the von-Neumann
equation of the QW [see Eq. (17)], in the limit ε → 0.

To also account for CRW dynamics, we need to choose
specific dissipative processes by specifying the quantum jump
operators Ln. It has been shown that if the quantum jump
operators satisfy the relation [58]∑

n

(
δab 〈a| L†

nLn |a〉 +
∑

m

〈a| Ln |b〉 〈b| Lm |a〉
)

= −〈a| Hc |b〉 , (21)

the classical processes induced by the classical Hamiltonian
are encompassed in the dynamics of the generalized quantum
system. To proceed, we choose the set of quantum jump oper-
ators6

Ln = Lnm = √
εγnm |n〉 〈m| , n = (n, m) ∈ E . (22)

Lnm induces jumps from node n to node m and satisfies

L†
nmLnm = εγnm |m〉 〈m| . (23)

The parameters γnm ∈ R are the so-called damping constants.
We use Eqs. (21) and (22) to determine the damping constants,
viz.,

γnm = −δnm + Anm

km
= −〈n| Hc |m〉 . (24)

It is important to distinguish between diagonal and off-
diagonal contributions. Based on Eq. (10), it is clear that the
off-diagonal elements of the classical Hamiltonian are nega-
tive, rendering the damping constants γnm positive for n �= m.
For n = m, the entries of the classical Hamiltonian are equal
to 1. Consequently, the parameter γnn < 0 and thus

Lnn = i
√

ε |n〉 〈n| . (25)

The full dynamics of a QCW is thus given by the Lindblad
master equation

d�

dt
= − i[(1 − ε)Hq, �]

+ ε
∑
nm

〈n| Hc |m〉
[
�mm |n〉 〈n| − 1

2
{|m〉 〈m| , ρ}

]
.

(26)

Based on this expression, it is possible to explicitly show that
this QCW recovers the CRW [see Eq. (10)] in the limit ε → 1;
see Appendix A for further details.

6The explicit choice of the quantum jump operators is not unique.

Despite the a priori phenomenological character of this
approach to incorporate coherent and incoherent dynamical
aspects, Eq. (26) can be considered as generic dynamics for
a walker on a given graph structure. The parameter ε then
indicates the competition between coherent and incoherent
processes between neighboring nodes. This is most evident
from an algorithmic point of view:7 Imagine a discrete time
step �t at the beginning of which a localized walker un-
dergoes a unitary dynamics, meaning that the wave function
spreads across the graph; see Figs. 3(a) and 3(b). In the next
time step, there is (i) a certain probability proportional to ε�t
that an incoherent transition occurs from any node that the
wave function occupies to a corresponding adjacent site, and
(ii) a certain probability that the wave function spreads further
in the neighborhood of already occupied sites.

In this manner, coherent and incoherent processes compete
on the same graph in our hybrid quantum-to-classical walk
formulation (26). Similar formulations have already proven
to be of great use, e.g., in the design of quantum versions
of the Page Rank [30], for graph isomorphism problems
[68], dissipative quantum computing algorithms [69,70], and
decision-making [71].

As the dissipator in Eq. (26) is well defined by the classical
and quantum Hamiltonian and the parameter ε, we introduce
the short-hand notation in terms of the superoperator

d�

dt
= L(ε)(ρ). (27)

The QCW defined by Eq. (26) linearly interpolates between
the CRWs and QWs that we defined in the preceding sec-
tions. This means that classical and quantum dynamics have
been induced on the same network and that each link of
this network is capable of hosting a classical and a quantum
hopping process. One way to look at this is that finite thermal
excitations in the system may introduce classical hopping on
the quantum graph. This setup can be readily altered by, for
instance, defining separate quantum and classical layers. We
leave these directions for future works and focus instead on
the dynamics induced by Eq. (26).

D. Reset quantum stochastic walks on networks

We describe stochastic resets by an additional dissipative
contribution in the evolution of QCWs [see Eq. (26)] [72]. The
modified Lindblad master equation including a reset process
with a certain rate r with the initial state �(0) reads [see
Ref. [72], Eq. (59)]

∂t� = L(ε)(�) + r�(0) − r� ≡ L(ε)
r (�). (28)

In the case of a pure reset state, the reset density matrix
may be written as a projector �(0) = |φ(0)〉 〈φ(0)|. It turns
out that the stationary state of the reset dynamics �∗

r may be
written explicitly in terms of left and right eigenmatrices and
eigenvalues of the system without reset,

L(ε)
0

(
r(ε)

n

) = λ(ε)
n r(ε)

n ,
(
L(ε)

0

)†(
l(ε)
n

) = λ̄(ε)
n l(ε)

n . (29)

7See Sec. IV for a detailed description of the unfolding of the
quantum master equation as a stochastic Schrödinger equation.
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The stationary state then reads [72]

(
�(ε)

r

)∗ = (
�

(ε)
r=0

)∗ + r
N2∑

n=2

〈φ(0)| (l(ε)
n

)† |φ(0)〉
λ

(ε)
n − r

r(ε)
n . (30)

This holds for all 0 < ε � 1 and reset rates r � 0. In the case
of a QW (ε = 0), there is no stationary state without reset, and
Eq. (30) reduces to [72]

(
�(1)

r

)∗ = E�rE†, (31)

where E is the matrix of eigenvectors of the quantum Hamil-
tonian HqE = E� with �i j = λiδi j , and the elements of

�r are

(�r )i j = r
〈φ(0) |e j 〉〈ei |φ(0) 〉

r + i(λi − λ j )
. (32)

Equations (30) and (31) are remarkable since they express the
stationary state of the reset dynamics in terms of the unper-
turbed system without reset (i.e., for r = 0). This means that,
e.g., for a QW where ε = 0, the stationary state for r > 0 is
found analytically by diagonalizing the quantum Hamiltonian.
Furthermore, for a general reset-QCW, the closed form allows
us to determine the steady-state probability for the walker to
be on node �, viz.,

(
q(ε)

r

)∗
�

= (
q(ε)

0

)∗
�
+ r

N2∑
n=2

〈φ(0)| l(ε)†
n |φ(0)〉 〈�| r(ε)

n |�〉
λ

(ε)
n − r

. (33)

In the special case of a QW (ε = 0), this formula reduces to
[72]

(
q(0)

r

)∗
�

=
∑

j,k

r〈φ(0) |ek 〉〈e j |φ(0) 〉
r + i(λk − λ j )

〈� |e j 〉〈ek |� 〉

=
∫ ∞

0
re−rτ

∑
j,k

e−i(λ j−λk )τ 〈φ(0) |ek 〉〈e j |φ(0) 〉〈� |e j 〉〈ek |� 〉 dτ, (34)

where λk and |ek〉 are the eigenvalues and the eigenvectors of
the quantum Hamiltonian Hq. That is,

Hq |ek〉 = λk |ek〉 . (35)

For a CRW (or QCW with ε = 1), it is also possible
to directly determine the stationary probability distribution
p∗(r). In an infinitesimal time interval [t, t + dt], the classical
walk starts from its initial state p0 with probability r dt . The
corresponding reset times τ are exponentially distributed with
probability-density function ϕ(τ ) = re−rτ . If the reset rate
is finite (i.e., r > 0), we find the corresponding stationary
distribution (see Appendix B for further details)

p∗(r) =
∫ ∞

0
re−rτ e−Hcτ p0 dτ

=
∫ ∞

0
re−rτ

∑
n

e−λnτ (p0)n |n〉 dτ

= r[1(1 + r) − AD−1]−1p0. (36)

Note the similarity in the mathematical structure of Eqs. (34)
and (36). One marked difference in (q(0)

r )
∗
� is the appearance

of product states that result from the mixing of wave-function
components.

IV. NUMERICAL RECIPES

To efficiently model classical and quantum random walks
on large networks, we simulate the Lindblad master equation
as a piecewise deterministic process. The commonly used (but
not unique) unfolding of the master equation (5) in terms of a

stochastic Schrödinger equation reads [64,65]

|dφ〉 = −iHeff |φ〉 dt +
∑

n

[
Ln |φ〉√

〈φ| L†
nLn |φ〉

− |φ〉
]

dNn.

(37)

Here |φ〉 is the wave function of a certain quantum trajectory,
and the Poisson increment dNn describes a noisy contribution
that is generated by the physical process belonging to the
quantum jump operator Ln. In each simulation step, the system
either performs a time evolution according to the effective
(non-Hermitian) Hamiltonian

Heff = H − i

2

[∑
n

L†
nLn − 〈φ| L†

nLn |φ〉
]

(38)

or otherwise an instantaneous quantum jump dNn occurs.
Quantum jumps dNn satisfy

dNndNm = δnmdNn, 〈dNn〉 = 〈φ| L†
nLn |φ〉 dt . (39)

The probability that a jump process occurs in the time step
dt is

Pj =
∑

n

dt 〈φ| L†
nLn |φ〉 . (40)

The average over independently sampled quantum trajectories
(or respectively the long-time limit of a single trajectory)
allows us to determine the results of the Lindblad master
equation.
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A. Stochastic Schrödinger equation for the reset dissipator

Here we discuss the numerical implementation of a quan-
tum stochastic reset process for an otherwise unitary quantum
walker. The inclusion of further dissipative processes is
straightforward as the dissipative processes are additive in
the Lindblad master equation (5). We shall exploit this fact
in the next sections to write down the stochastic Schrödinger
equation for a QCW.

The quantum jump operators for the reset process pre-
sented in Sec. III D are [72]

Jr
n = √

r |φ(0)〉 〈n| . (41)

From Eq. (37), we obtain the corresponding stochastic
Schrödinger equation,

|dφ〉 = r
∑
n∈V

[ 〈n |φ 〉
|〈φ |n 〉| |φ(0)〉 − |φ〉

]
dNn − iH |φ〉 dt,

(42)

with the quantum jump probability

Pj = r dt . (43)

We see that the quantum jump probability corresponds to the
reset rate and does not depend on the current quantum state,
as it should be for a stochastic reset process. Furthermore, the
only difference from a brute-force reset is a global phase that
keeps information about the pre-reset state. Since this phase is
global, we neglect it in the remainder and write

|dφ〉 = − iH |φ〉 dt + r
∑
n∈V

[|φ(0)〉 − |φ〉]dNn. (44)

This stochastic Schrödinger equation then yields the follow-
ing simple stochastic rule for the time evolution of a unitary
process with dissipative stochastic resets:

|φ(t + dt )〉 = [1 − iHqdt] |φ(t )〉�(z − r dt )

+ |φ(0)〉�(r dt − z) (45)

with a uniformly distributed random number z ∈ [0, 1] and
the Heaviside step function �(x), which is 1 for x � 0 and
0 otherwise. This description of quantum reset processes has
also been used in previous studies [53,72].

To efficiently simulate the stochastic process induced by
the reset [see Eq. (45)], we use a Crank-Nicholson scheme
[73]:

|φn+1〉 =
{|φ(0)〉 if z � r dt,
|φn−1〉 − 2i�tHq |φn〉 otherwise,

(46)

where the superscript n indicates the time step. For reset-
CRWs, we use Eq. (45) and replace |φ〉 by the probability
vector p and iHq by the classical Hamiltonian Hc. To numer-
ically solve the evolution of CRWs, we use an Euler forward
integration scheme.

B. Classical-to-quantum walks

In Sec. III, we introduced the quantum jump operators

Lnm = √
ε
√

〈n| Hc |m〉 |n〉 〈m| (47)

to include the CRW in a quantum process. The resulting mas-
ter equation of the QCW is Eq. (26), and the corresponding
unraveling [see Eq. (37)] can be written as

|dφ〉 = − i(1 − ε)Hq |φ〉 dt

+
∑

n,m∈V

[ 〈m |φ 〉
|〈m |φ 〉|ei π

2 δnm |n〉 − |φ〉
]

dNnm
(48)

with the Kronecker delta δnm. The quantum jump probability
belonging to this stochastic Schrödinger equation reads

Pj = εdt

(
1 −

∑
n �=m∈V

〈n| Hc |m〉 |〈m |φ 〉|2

)
= 2ε dt, (49)

where the first equality is the definition of the jump probability
for the previously defined set of quantum jump operators,
and the second equality is a direct consequence of the spe-
cific shape of the classical Hamiltonian and the symmetry of
the adjacency matrix. Note that the dissipative processes in
Eq. (48) do not contain the interpolation parameter ε. Rather,
the jump probability in Eq. (49) is proportional to ε, rendering
quantum jumps impossible in the unitary limit ε → 0.

V. NUMERICAL RESULTS ON GRAPHS

A. Classical and quantum walks with resetting

We now compare our analytical results of the stationary
states of reset QCWs [see Eqs. (33) and (34)] with the cor-
responding numerical solutions, given an underlying reset
process with rate r. In Fig. 4, we show the probabilities pk

′(r)
and qk

′(r) that a node of degree k is occupied by a classi-
cal and quantum random walker, respectively [see Eqs. (13)
and (19)]. We perform simulations on Erdös-Rényi, Barabási-
Albert, and peer-to-peer networks (see Sec. II). The degree
distribution of Erdös-Rényi networks is binomial, whereas
Barabási-Albert networks and the peer-to-peer networks ex-
hibit broader degree distributions (see Fig. 1). As initial
condition and reset state, we use a uniform distribution over
all nodes. Thus, in the limit r → ∞, the occupation probabil-
ities satisfy pk

′(r) = qk
′(r) = const for all degrees k. In other

words, for the chosen reset protocol, classical and quantum
walks share the same node occupation probabilities as r →
∞. Our results show that solutions of Eqs. (34) and (36) agree
well with the numerically obtained occupation probabilities
p′(r) on all networks for different reset rates r.

We observe that the underlying network structure has a
significant effect on how the occupation probabilities of the
CRW and QW approach the limiting uniform distribution as r
becomes larger. In the Supplemental Material [74], we include
an animation of the occupation-probability evolution for the
three aforementioned networks. Quantum walks sample from
the occupation probability distribution in a different way from
CRWs. For an Erdös-Rényi network and a reset rate r = 0.5,
low and high degree nodes are more likely to be sampled
by a QW than by a CRW, which is different from what we
observe for Barabási-Albert and peer-to-peer networks (see
Fig. 4). For a given network, this difference in sampling can
be controlled with the reset rate r.
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FIG. 4. Occupation probability for different networks and reset rates. For different networks (row) and reset rates r (column), we show the
probabilities p′(r) and q′(r) [see Eqs. (13) and (19)] that a node of degree k is occupied by a classical and quantum random walker, respectively.
As initial conditions and reset states, we use a uniform distribution over all nodes. Our numerical results are based on solutions of Eqs. (9)
and (46). The networks we consider have N = 1600 nodes. The shown data points are averages over 2.5 × 105 samples. We use gray markers
to indicate the solutions of the analytic results Eqs. (34) and (36). The black solid line is the occupation probability of a CRW for r = 0 as a
reference.

To determine the difference between p′(r) and q′(r) as a
function of r, we define the distance metric

d (r) = ‖p′(r) − q′(r)‖, (50)

where ‖ · ‖ denotes the Euclidean norm. In Fig. 5, we show
d (r) for the three networks of Sec. II. Numerical and an-
alytical results are indicated by red and black solid lines,
respectively. The distance between p′(r) and q′(r) is small,
yet finite, for r = 0 and vanishes as r → ∞. Interestingly, we
observe multiple inflection points in d (r) for the Erdös-Rényi
and Barabási-Albert networks and a maximum distance d (r)
at r ≈ 0.3 for the peer-to-peer and Erdös-Rényi networks.
After the initial local minimum at r ≈ 0, the distance between
the classical and quantum occupation-probability distributions
reaches a second pronounced local minimum at r ≈ 1 and
r ≈ 1.5 for the Erdös-Rényi and Barabási-Albert networks,

respectively. Each minimum corresponds to a crossover of
p′(r) and q′(r). Based on the observed behavior of p′(r),
q′(r), and d (r), we conclude that classical and quantum
occupation probabilities depend strongly on the underlying
network structure and are not affected in the same way by
changes of the reset rate r. The initial increase of the distance
d (r) with the reset rate seems to be universal throughout
our results and may be explained with the initially strong
impact of stochastic resetting on CRWs. While the long-time
behavior of QWs is characterized by Eq. (18), CRWs have
a unique stationary distribution that differs from our chosen
reset state in heterogeneous networks. Therefore, the resetting
mechanism introduces a strong competition between the reset
state and the r = 0 stationary state that strongly affects the
node occupation properties of CRWs. Conversely, for large
reset rates, the results in Fig. 4 and [74] show that QWs are
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FIG. 5. Difference between the classical and quantum occupation probability for different networks and reset rates. For different networks,
we show the distance d (r) [see Eq. (50)]. As an initial condition, we use a uniform distribution over all nodes. Our numerical results
are based on solutions of Eqs. (9) and (46). The networks we consider have N = 1600 nodes. The shown data points are averages over
2.5 × 105 samples.

closer to the uniform reset state for large reset rates. This can
be qualitatively traced back to the strong mixing of the unitary
dynamics: As the reset becomes the dominant contribution in
the dynamics, mixing leads to a rather large overlap with the
reset state and thus facilitates the relaxation into the reset state.

As described in Ref. [60], differences between the node
occupation statistics of CRWs and QWs (without stochastic
resetting, i.e., r = 0) are largest on networks with a hetero-
geneous degree distribution (e.g., Barabási-Albert networks).
As we show in Fig. 4, stochastic resetting can substantially
increase these differences. For instance, in the considered
Barabási-Albert network, the distance d (r) between CRWs
and QWs is about four to five times larger for certain reset
rates than d (r = 0).

B. Reset quantum-to-classical walks

Figures 6(a) and 6(b) show the occupation probability
distribution of a QCW [see Eq. (48)] with r = 0, 0.3 and
ε = 0, 0.5, 1 on an Erdös-Rényi network. Note that the limits
ε = 0 and 1 correspond to the purely quantum and classical
case, respectively. For ε = 0.5, we obtain a hybrid quantum-
to-classical walk with yet different node-occupation statistics.

Our simulation results in Fig. 6(a) confirm that the node
occupation statistics of a QCW with ε = 1 and r = 0 (orange
crosses) agree with those of a CRW (black solid line). We also
find that the analytical solutions (34) and (36) of the limiting
cases ε = 0, 1 (gray markers) agree with the corresponding
simulations results for a reset rate of r = 0.3 [see Fig. 6(b)].
Interestingly, the hybrid quantum-classical walk with ε = 0.5
is affected more by the finite reset rate r = 0.3 than its purely
classical and quantum counterparts.

VI. DISCUSSION AND OUTLOOK

Random walks are important models of diffusive processes
in many branches of science. In this work, we introduced a
framework for the study of classical, quantum, and hybrid
random walks with stochastic resetting on networks. We de-
rived analytical solutions for the probability that a classical
or quantum random walker occupies a certain node on a net-
work. These analytical results, valid for general reset rates and
network structures, are in perfect accordance with numerical
solutions of the underlying master equations. Our results also
revealed differences in the way classical and quantum walks
with reset sample nodes with certain degrees. Both walks react

FIG. 6. Occupation probability for quantum-to-classical walks. We show the probability that a node of degree k is occupied by a classical-
to-quantum random walker for (a) r = 0 and (b) r = 0.3. As initial conditions and reset states, we use a uniform distribution over all nodes.
Our numerical results are based on solutions of Eq. (48). Simulations were performed on an Erdös-Rényi network with N = 100 nodes. The
shown data points are averages over 2 × 105 samples. The black solid line is the occupation probability of a CRW for r = 0, and gray markers
in panel (b) correspond to analytical solutions of a CRW (ε = 1) and a QW (ε = 0).
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differently to changes in the reset rate, which may be used as
a control parameter to achieve the desired node occupation
(or sampling) statistics in quantum search and optimization
algorithms [33,75,76].

For the networks and uniform reset state that we studied
in this paper, quantum walks are closer to the reset state than
classical walks as the reset rate r becomes large (see Fig. 4
and [74]). This behavior is linked to the unitary dynamics of
QWs, which mixes quantum states [see Eq. (34)] and produces
wave-function components that are close to the uniform reset
state. Therefore, QWs reach such states “faster” (in terms of
a smaller reset rate) than classical walks. For large reset rates,
the stationary distribution of CRWs is significantly altered
from the one without resets. We thus find a competition be-
tween random-walk dynamics and reset dynamics, where both
processes compete at different time scales.

In future work, our framework may be used to study how
quantum walk search is affected by stochastic resetting as
was done for classical walks in Ref. [54]. Our framework is
also directly applicable to compute classical, quantum, and
hybrid random-walk-based centrality metrics on networks. In
contrast to earlier studies [30,77,78], we also account for
stochastic resetting, providing a possibility to reach desired
node occupation statistics and design tailored centrality mea-
sures.

Other areas of application for resetting mechanisms
include quantum feedback control [79,80] and repeated mea-
surements [49]. In these setups, one repeatedly measures the
quantum system and tailors the dynamics depending on the
experimental outcome. Such formulations might be useful to
impose constraints on the quantum system and in this manner
induce nontrivial dynamical behavior on otherwise free quan-
tum systems [81–86].

While there has been rapid theoretical progress in the field
of classical and quantum dynamics with stochastic resetting
[49], it will be important to also focus on experimental realiza-
tions of such processes in future studies and adapt theoretical
models according to experimental protocols. As described in
Ref. [49], “in a theoretical model one often assumes instanta-
neous resetting which is impossible to achieve experimentally.
Thus experimentalists need to devise different types of re-
setting protocols, which in turn pose interesting theoretical
challenges.”

All codes are publicly available on GitHub [57].
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APPENDIX A: INCLUSION OF CRW IN QCW

In this Appendix, we show that the construction outlined
in Sec. III C reduces to the CRW [see Eq. (10)] in the limit
ε → 1. This is done by evaluating the time evolution of the
corresponding occupation probabilities p�(t ) = 〈�| � |�〉. We

utilize the Lindblad master equation (26) to derive the time
evolution of the probabilities, viz.,

d p�

dt
=

∑
n �=m

〈n| Hc |m〉
[
�m� + ��m

2
δm� − pmδn�

]
. (A1)

It is then clear that we can reduce the double sum to a single
sum due to the Kronecker δ terms, and we see that there are
two distinct contributions, viz.,

d p�

dt
=

∑
m �=�

−〈�| Hc |m〉 pm +
∑
n �=�

〈n| Hc |�〉 p�. (A2)

The first term is already in the correct shape to reproduce the
classical dynamics, and solely the diagonal contributions are
different. We need to use the explicit form of the classical
Hamiltonian, in particular the fact that the diagonal elements
are equal to 1 in order to rewrite the second contribution. It is
then straightforward to carry the calculation out as

d p�

dt
=

∑
m �=�

−〈�| Hc |m〉 pm −
∑
n �=�

An�

k�

p�

=
∑
m �=�

−〈�| Hc |m〉 pm − p�

=
∑

m

−〈�| Hc |m〉 pm, (A3)

where we also used the symmetry of the adjacency matrix
Anm = Amn. This proves that the generated dynamics coin-
cides with the stochastic dynamics defined in Eq. (10).

APPENDIX B: RESOLVENT OF
INFINITESIMAL GENERATOR

In this Appendix, we illustrate the use of resolvents to
formally solve differential equations. We consider the matrix
differential equation

ẋ = Ax (B1)

for the vector function x = (x1, . . . , xd ) and A ∈ Rd×d . We
introduce the Laplace transform x̂(s) of x(t ) as

x̂(s) =
∫ ∞

0
x(t )e−st dt . (B2)

Applying the Laplace transform to Eq. (B1) yields

x̂(s)s − x(0) = Ax̂(s). (B3)

In this way, we reduced the differential equation (B1) to an
algebraic equation

x̂(s) = (1s − A)−1x(0), (B4)

whose solution is readily found. The operator (1s − A)−1 is
called the resolvent of A [87]. An integral representation of the
resolvent is found by applying the Laplace transform directly
to the solution of Eq. (B1). We find

x̂(s) =
∫ ∞

0
e−st eAt x(0) dt . (B5)
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Combining Eqs. (B3) and (B5) yields ∫ ∞

0
e−st eAt x(0) dt = (1s − A)−1x(0). (B6)

This identity is used in Eq. (36) in order to explicitly determine the stationary state of the CRW.
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