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Extensive numerical simulations of surface growth with temporally correlated noise
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Surface growth processes can be significantly affected by long-range temporal correlations. In this work,
we perform extensive numerical simulations of a (1+1)- and (2+1)-dimensional ballistic deposition (BD)
model driven by temporally correlated noise, which is regarded as the temporal correlated Kardar-Parisi-Zhang
universality class. Our results are compared with the existing theoretical predictions and numerical simulations.
When the temporal correlation exponent is above a certain threshold, BD surfaces develop gradually faceted
patterns. We find that the temporal correlated BD system displays nontrivial dynamic properties, and the
characteristic roughness exponents satisfy α � αloc < αs in (1+1) dimensions, which is beyond the existing
dynamic scaling classifications.
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I. INTRODUCTION

Nonequilibrium growth processes described by the Kardar-
Parisi-Zhang (KPZ) universality class have attracted the
attention of researchers for several decades [1–3]. The KPZ
equation, which was originally proposed to describe stochas-
tic surface and interface growth and has been observed in
many physical fields, reads [1]

∂h(r, t )

∂t
= ν∇2h + λ

2
(∇h)2 + η(r, t ), (1)

where h(r, t ) is the height of the surface at position r and time
t , ν is the surface tension, λ represents the lateral dependence
of growth velocity, and the stochastic force η(r, t ) is usually
Gaussian and uncorrelated in space and time.

One of the most important tasks to solve the KPZ equa-
tion is to obtain scaling exponents with different types of
fluctuation in (d + 1) dimensions. Scaling behavior is often
characterized by the fluctuation of the growth height around
its mean height. The characteristic quantity commonly used
to investigate is interface width that follows a dynamic scaling
form [4]:

W (L, t ) =
〈√∑

r

[h(r, t ) − −
h(t )]2/L

〉1/2

∼ Lα f (t/Lz ), (2)

where the overbar denotes the spatial average in the r di-
rection with system size L, 〈. . .〉 stands for the average over
different noise realizations. The scaling function f (u) ∼ uβ

for u � 1 and f (u) → const for u 	 1, and α, z, β = α/z are
roughness, dynamic, and growth exponents, respectively. The
KPZ equation with the Gaussian white noise has been well
investigated. It is obtained exactly in the (1+1)-dimensional
case, and gives α = 1/2, β = 1/3, and z = 3/2. However, it
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is very hard to solve exactly the KPZ equation in two cases:
(i) the substrate dimension d > 1, and (ii) in the presence of
the long-range correlated noise. In the latter case, the spatial
correlations in KPZ system have been extensively investigated
numerically and theoretically [5–14], while only a few studies
discussed the KPZ equation with long-range temporal corre-
lations [15–19].

It should be noted that analytical results on temporal cor-
relations in surface growth are noticeably different based on
several theoretical schemes, such as dynamic renormalization
group (DRG) [20], Flory-like scaling approach (SA) [21], and
self-consistent expansion (SCE) [16]. Recently, many effects
on the temporal correlated KPZ system have been investi-
gated numerically, and abundant results have been obtained
correspondingly [17,18]. However, the inconsistencies still
exist between the numerical simulations and theoretical pre-
dictions. Furthermore, the results in d > 1 are still rare when
long-range temporal correlations are considered. Thus these
issues motivate us to further investigate the KPZ universality
class involving temporal correlations. In this article, we first
revisit the ballistic deposition (BD) model with temporally
correlated noise [22], which was thought to belong to the same
universality class as the temporal correlated KPZ system. We
adopt the hybrid simulations based on graphics processing
units (GPUs) and CPUs to improve the computing efficiency
by dozens of times [23–26], so that we can perform extensive
numerical simulations for larger system sizes and longer grow
times and more independent runs than the previous studies.
For the (1+1)-dimensional case, we reinvestigate the numer-
ical results, and compare with that of the previous studies
[18,22], and obtain some nontrivial dynamic properties. Fur-
thermore, we investigate the (2+1)-dimensional BD model
in the presence of temporal correlations. Then we make a
comparison with theoretical predictions.

The rest of this paper is arranged as follows. First, we intro-
duce the method to generate desired long temporal correlated
noise. Then we briefly describe the BD model with long-range
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temporal correlations in (1+1) and (2+1) dimensions. After
that, we exhibit our simulated results and present a discussion.
Finally, a brief conclusion is given.

II. MODELS AND METHODS

A. Long-range temporal correlated noise

To investigate how temporally correlated noise affects scal-
ing behavior of the BD model, it needs to generate a correlated
sequence first. The desired correlation function has the follow-
ing form:

C(τ ) = 〈ηtηt+τ 〉 ∼ τ 2θ−1, (5)

where θ is the temporal correlation exponent. Here we adopt
the fast fractional Gaussian noise (FFGN) method that was
proposed by Mandelbrot [27]. First, by introducing un = aB−n

with B = 2, a = 6, and rn = e−un , the weight function is given
by

W 2
n = 12

(
1 − r2

n

)
(B1/2−θ − Bθ−1/2)(aB−n)1−2θ


(2 − 2θ )
, (6)

and then two auxiliary functions are defined to be

X1(u) = [ζ1(u) − 0.5]/
√

1 − r2, for t = 1,

Xt (u) = rXt−1(u) + [ζt (u) − 0.5], for t > 1, (7)

where ζ (u) is uncorrelated uniformly distributed noise in the
interval [−0.5, 0.5]. Finally, we can obtain the desired cor-
relation noise ηt = ∑N

n=1 WnXt (un), where N is chosen in the
value range of [20,45] in order to satisfy the noise correlation
function (5) for different values of θ .

B. BD model in (1+1) dimensions

The BD model was initially introduced for explaining col-
loidal aggregates, and widely studied in the area of surface
growth as the paradigmatic discrete model of the KPZ univer-
sality class [2]. The BD model has an even simpler growth
version, namely, the nearest neighbor sticking rule, which has
the following form in (1+1) dimensions:

h(x, t ) = max {h(x, t ) + η′(x, t ), h(x − 1, t ), h(x + 1, t )},
(8)

where η′(x, t ) is the binarized noise as the discrete version of
the temporal correlated η(x, t ). More specifically, it is defined
as η′(x, t ) = 1 for η(x, t ) � 0 and η′(x, t ) = 0 for η(x, t ) < 0.

C. BD model in (2+1) dimensions

The BD model in (2+1) dimensions can be described as
follows:

h(x, y, t + 1) = max{h(x, y, t ) + η′(x, y, t ), h(x − 1, y, t ),

h(x + 1, y, t ), h(x, y − 1, t ), h(x, y + 1, t )}.
(9)

Equation (9) indicates that a falling particle will stick to the
highest particle of the four nearest neighbor positions around
it. As an attempt, we also extend the BD grow rule for a
falling particle sticking to the surrounding eight sites, i.e.,

FIG. 1. The interface width W (L, t ) at different growth regimes
with (a) θ = 0.05; (b) θ = 0.45. Results have been averaged over
1500 noise realizations, and these dotted lines are plotted to guide
the eyes. The insets are the log-log plot of saturated interface width
Wsat and system size L, and the solid lines are the fitting results with
the values of global roughness exponent α.

four nearest neighbors and four next-nearest neighbors, which
reads

h(x, y, t + 1) = max{h(x, y, t ) + η′(x, y, t ), h(x − 1, y, t ),

h(x + 1, y, t ), h(x, y − 1, t ), h(x, y + 1, t ),

h(x − 1, y − 1, t ), h(x + 1, y + 1, t ),

h(x + 1, y − 1, t ), h(x − 1, y + 1, t )}. (10)

Through performing simulations of both Eqs. (9) and (10), we
find that adding next-nearest neighbor rule (10) does not affect
the scaling properties in the (2+1)-dimensional BD model. In
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FIG. 2. The log-log plot of the scaled interface width vs the
scaled growth time: (a) θ = 0.05; (b) θ = 0.45. Results show data
collapses with the chosen critical exponents: (a) α = 0.52 and z =
1.55; (b) α = 0.92 and z = 1.42.

the following BD simulations, we will carry out our studies
based on Eq. (9).

III. RESULTS AND DISCUSSIONS

A. BD model in (1+1) dimensions

We begin by analyzing the results of simulating the corre-
lated BD model in (1+1) dimensions. At first, we calculate
interface width W (L, t ) and then obtain the critical expo-
nents based on power-law scaling from Eq. (2) in different
growth regimes separated by a crossover growth time t× ∼ Lz:

FIG. 3. The log-log plot of the height-height correlation function
G(l, t ) vs l with L = 4096: (a) θ = 0.05; (b) θ = 0.45. Results have
been averaged over 1500 noise realizations. For clear comparison,
each curve shifts accordingly along the vertical coordinate.

W (L, t ) ∼ tβ for t � t× and W (L, t ) ∼ Lα for t 	 t×. Thus,
in order to confirm BD scaling, we obtain the effective scaling
exponents β and α in the early growth times and the saturated
growth regimes, respectively. Considering large fluctuations
of W (L, t ) with system size and growth time, we adopt the
large system sizes and plenty of noise realizations in order
to alleviate the fluctuations. In the following, numerical sim-
ulations of hybrid computing between GPUs and CPUs are
performed extensively.

Figure 1 exhibits the log-log plot of the interface width
W (L, t ) versus growth time t in the whole growth regimes
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FIG. 4. The structure factor S(k, t ) of the growth interface at
different growth times for the BD system in presence of the corre-
lated noises: (a) θ = 0.05; (b) θ = 0.45. Results have been averaged
over different noise realizations: 1500 for θ = 0.05 and 500 for
θ = 0.45. Insets show good data collapses with the chosen critical
exponents: (a) α = 0.518–0.538 and z = 1.55; (b) α = 0.921–0.931
and z = 1.42.

for the BD model with θ = 0.05 and θ = 0.45. In the early
time regime t � Lz, we obtain the growth exponents β =
0.335 ± 0.013 for θ = 0.05, and β = 0.647 ± 0.007 for θ =
0.45. Here L = 65 536 is used to increase the precision. To
determine the values of α, system sizes are chosen in the range
[256, 4096]. And in the saturated growth regime t 	 Lz, we
obtain the global roughness exponents α = 0.518 ± 0.006 for
θ = 0.05, α = 0.921 ± 0.013 for θ = 0.45 from the double-
log plot of the saturated interface width as a function of the
system size, as shown in the insets of Figs. 1(a) and 1(b),
respectively.

FIG. 5. The scaling exponents as a function of θ for the cor-
related BD model: (a) α vs θ ; (b) β vs θ ; (c) z vs θ . The
existing theoretical predictions are also provided for comparison
quantitatively.
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FIG. 6. The comparison of interface morphology in the (1+1)-dimensional correlated BD model with three growth regimes and two
temporally correlated parameters: (a) t = 1.2 × 103, (b) t = 7.5 × 104, (c) t = 4.8 × 106 for θ = 0.05; and (d) t = 1.2 × 103, (e) t = 7.5 ×
104, (f) t = 4.8 × 106 for θ = 0.45.

In order to make further numerical analysis of scal-
ing exponents, we rescale the interface width by W/Lα

which means vertical shifting of curves, and rescale growth
time by t/Lz which means horizontal shifting. Accord-
ing to Eq. (2), these curves with different system sizes
collapse into only one curve after rescaling, as shown
in Fig. 2. These results also show that the dynamic ex-
ponents obtained independently from data collapses are
consistent with the results obtained from the relation z =
α/β.

In addition to the scaling exponents of the interface width,
the equal-time height difference correlation function G(l, t ) is
also very important and informative. The function is defined
as G(l, t ) = 〈(h(r + l, t ) − h(r, t ))2〉, where the brackets de-
note ensemble average. The local roughness exponent αloc

is determined from the relation G(l, t ) ∼ l2αloc (l � L). The
relation α = αloc is always satisfied in a normal self-affine
interface, and α �= αloc indicates anomalous scaling in surface
growth [28]. As for the BD model in (1+1) dimensions,
we computed G(l, t ) with different θ , and obtained αloc,
as shown in Fig. 3. Here, we choose t = 4.82 × 106, l1 =
8, and l2 = 32 in order to satisfy the local window sizes
l � L. Our results show that αloc ≈ 0.503 (θ = 0.05) and
αloc ≈ 0.925 (θ = 0.45). Compared with the global rough-
ness exponents related to the interface width, we find that
αloc ≈ α from the whole θ regions. Therefore, in a certain
sense, our results imply that normal self-affine scaling still

satisfies in the BD growth in presence of temporally correlated
noise.

Furthermore, the structure factor S(k, t ) =
〈ĥ(k, t )ĥ(−k, t )〉 also plays a vital role in revealing scaling
properties of growth interface, where h(k, t ) is the Fourier
transformation of h(x, t ). For (d + 1)-dimensional growth
surface, the structure factor satisfies the scaling form [29,30]

S(k, t ) = k−(2α+d )s(kt1/z ),

with

s(u) ∼
{

u2(α−αs )u 	 1

u2α+d u � 1
,

where s(u) is a spectral scaling function and αs is a spec-
tral roughness exponent. The roughness process follows the
normal Family-Vicsek (FV) scaling when αs=α. On the con-
trary, anomalous scaling occurs when α �= αs. To determine
the universal critical properties, we use a scaling func-
tion S(k, t )k(2α+d ) against kt1/z. Furthermore, when kt1/z 	
1, S(k, t )k(2α+d )∼k−2(αs−α)t2(α−αs )/z, and when kt1/z � 1,
S(k, t )k(2α+d )∼k(2α+d )t (2α+d )/z. When the roughness and dy-
namic exponents are chosen effectively, all the data collapses
into a single universal curve for different wave number
regimes. Therefore, we can estimate the critical exponents
α and z based on data collapse. Meanwhile, we also check
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FIG. 7. The comparison of interface morphology in (1+1)-dimensional correlated BD model with three growth regimes and two temporally
correlated parameters: (a) t = 7.5 × 104, (b) t = 4.8 × 106 for θ = 0.20; and (c) t = 7.5 × 104, (d) t = 4.8 × 106 for θ = 0.35.

the dynamical exponent obtained independently based on the
scaling relation z = α/β.

Figure 4 shows the double logarithmic plot of the structure
factor S(k, t ) versus wave number k with various temporal
correlation parameters. Compared with different sizes and
growth times, we find that the scaling properties of the struc-
ture factor do not change evidently with L and t . Figure 4(a)
shows the log-log plot of S(k, t ) versus k with θ = 0.05.
Figure 4(b) provides the numerical results with θ = 0.45.
Using the scaling relation S(k, t )∼k−(2αs+d ) in the large wave
number regime, one can obtain the spectral roughness ex-
ponent αs as an independent exponent. When θ = 0.05, we
obtain αs = 0.57 ± 0.01. Based on data collapses, we obtain
independently α = 0.52 and z = 1.55, as shown in Fig. 4(a).
We find that the global roughness exponents are evidently less
than the corresponding spectral scaling exponents obtained
directly through S(k, t ) against k. Thus our results provide
numerical evidences that nontrivial scaling can occur even
in the small θ region. In Fig. 4(b), we choose θ = 0.45 as
a typical example of the correlated BD system for the large
θ region, and obtain αs = 1.18 ± 0.02. Here, the critical ex-
ponents used for data collapse are α = 0.92 and z = 1.42,
which is consistent with the values obtained from Eq. (2).
Remarkably, we find that the spectral roughness exponent is
not equal to either local or global roughness exponents, and
the latter two roughness exponents are nearly equal to each
other. Therefore, these results imply that the BD system within
the large θ region displays nontrivial dynamical scaling. It is

quite remarkable that α ≈ αloc �= αs does not satisfy dynamic
scaling classifications [31].

In order to effectively reduce the finite-size effects, our
results are obtained for the system of larger size. We estimate
quantitatively α, αloc, and αs in the stable scaling regions
with different θ . We find that the value αs is always larger
than the local and global roughness exponents in presence
of long-range correlations, which slightly differs from the
recent numerical results [18]. For the sake of comparison,
Fig. 5 also includes the previous theoretical predictions and
numerical simulations of KPZ and BD system driven by tem-
porally correlated noise. For the global roughness exponents,
with comparison of the previous theoretical predictions, we
find that our results are consistent with SCE predictions in
the small θ region, and are in agreement with FRG in the
large θ region. Furthermore, we also find that α ≈ αloc in the
whole correlation region, which implies that the interface of
the BD model with long-range temporally correlated noise
still displays a self-affine fractal from a certain sense. And
the dynamic exponents can be obtained using z = α/β, and
meanwhile, we also obtain it based on good data collapses
from the scaled interface width and structure factor. It should
be noted that these values obtained independently are consis-
tent with each other.

Next, we provide an intuitive evidence of the morphology
evolution with different growth times and temporal correla-
tions. Figure 6 clearly shows that the interface profiles of the
BD model can be obviously affected by long-range temporally

TABLE I. Roughness exponents of the KPZ universality class in (2+1) dimensions.

HSM BCSOS RSOS DPRM BD KPZ DLC Our results
Model [32] [33] [34–37] [38] [39] [38,40] [25,41]

α 0.385 0.38 0.38–0.393 0.385 0.363–0.366 0.38–0.4 0.377–0.393 0.390
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FIG. 8. W (L, t ) vs t in (2+1)-dimensional BD without temporal
correlation. Inset exhibits Wsat against L.

correlated noise. Figures 6(a)–6(c) exhibit the typical profiles
of growth interface in early, intermediate, saturated growth
regimes for θ = 0.05. We can easily observe that, from the
early growth to the saturation regions, the BD model with
small temporal correlations exhibits a self-affine interface,
which differs drastically from the case of large temporal cor-
relations. This observation is consistent with the consequence
that the self-affine fractal still appears for the small tempo-
ral correlations. However, when noise correlation exponent θ

increases gradually, the self-affine fractal will be destroyed,
and the interface develops faceted patterns that completely
dominate the dynamics in the saturated growth region. The
evident change will happen when the temporal correlation
exponent is beyond the critical threshold [18]. Figures 6(d)–
6(f) exhibit the morphology of surface height with different
growth regimes for θ = 0.45. We find that, when increasing
temporal correlations and reaching the long growth time limit,
the similar interfaces at small and large scales are gradually
formed, and thus the local and global roughness satisfies
statistical similarity, which evidently differs from anomalous
roughening where α �= αloc [31]. We also find that, when θ is
close to 0.5, the values of both α and αloc approach 1 in the
(1+1)-dimensional case.

In order to explore qualitatively the crossover effects from
the self-affine to the mounded pattern, we display the surface
morphology with θ = 0.20 and 0.35, as shown in Fig. 7.
Interestingly, we find that there exists a critical threshold θτ

between the two values of θ . When θ = 0.20, both the early
and saturated surfaces all display self-affine, and there are
no obvious mounds. However, one can find the mounds in
the saturated growth regime with θ = 0.35. The differences
of surface morphology imply that there exists a nontriv-
ial scaling transient from small to large θ in the temporal
correlated BD model, which is closely related to anoma-
lous scaling in the KPZ subject to temporally correlated
noise [18].

FIG. 9. The log-log plot of surface width vs growth time in (2+1)
dimensions: (a) θ = 0.05; (b) θ = 0.45. Results have been averaged
over 500 noise realizations, and these dotted lines are plotted to guide
the eyes. The insets are the log-log plot of saturated surface width
Wsat and system size L, and the solid lines are the fitting results with
the values of global roughness exponent α.

B. BD model in (2+1) dimensions

As far as we know, numerical and theoretical investiga-
tion on surface growth with long-range temporal correlation
in (2+1) dimensions is very rare. As a special case of
temporal correlation, namely, θ = 0, we first revisit BD
simulations without temporal correlated noise. In these sim-
ulations, FFGN is not used, and most GPU memory and
computing resources are reserved, thus larger system sizes
have been applied to perform numerical simulations. The
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FIG. 10. The structure factor S(k, t ) of the growth surface at
different growth times for (2+1)-dimensional BD system in presence
of the correlated noises: (a) θ = 0.05; (b) θ = 0.45. Insets show
good data collapses with the chosen critical exponents: (a) α =
0.415 ± 0.010 and z ≈ 1.60; (b) α = 0.870 ± 0.010 and z ≈ 1.40.
The system size L = 1024 × 1024 is used, and data are averaged
over 500 independent noise realizations.

numerical results of the BD model without temporally cor-
related noise are shown in Fig. 8.

Without temporal correlation, the main numerical results
of (2+1)-dimensional KPZ universality class are listed in Ta-
ble I. We find that most recent results show 0.38 < α < 0.40,
and we obtain α ≈ 0.390 when θ = 0, which is also consistent
with previous studies.

When θ �= 0, from the perspective of analytic approxi-
mations, it is difficult to analyze theoretically the (2+1)-
dimensional KPZ system. For numerical simulation, one
immediate limitation is that when performing simulations of
long-range correlations in (2+1) dimensions, it will take too
much time to obtain reasonable results as system size in-

FIG. 11. The values of critical exponents in (2+1) dimensions:
(a) α and αs; (b) β, (c) z.
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FIG. 12. The surface morphology in (2+1)-dimensional BD model with θ = 0.05 at different growth times: (a) t = 6.75 × 102; (b) t =
4.32 × 104; (c) t = 1.73 × 105; and with θ = 0.45 at different growth times: (d)t = 6.75 × 102; (e) t = 4.32 × 104; (f) t = 3.01 × 105. The
subgraphs of each subfigure are height of cross section at X = 1 (L) and Y = 1 (R).

creases. In our simulations, the system size 2048 × 2048 is
used to obtain growth exponent, and the largest size 512 ×
512 is used for roughness exponent calculations. It should be
noted that both (9) and (10) of the BD model have consistent
results. The scaling behavior and the obtained critical expo-
nents based on computing the global surface width for θ =
0.05 and θ = 0.45 are illustrated in Fig. 9. For θ = 0.05, we
obtain β = 0.249 ± 0.003 and α = 0.405 ± 0.010, and for
θ = 0.45, β = 0.606 ± 0.005 and α = 0.883 ± 0.015. There-
fore, temporal correlations can affect evidently the scaling
behavior at both the early growth and saturated regions for
the (2+1)-dimensional case.

In order to further investigate scaling behavior in (2+1)
dimensions, we also calculate the structure factors, which are

summarized to show in Fig. 10. We obtained αs = 0.42 ±
0.02 for θ = 0.05 and αs = 1.14 ± 0.03 for θ = 0.45. It is
easy to find that the difference between global and spectrum
roughness exponents is more evident as θ increases.

Figure 11 shows our numerical values of the (2+1)-
dimensional BD system driven by temporally correlated noise,
and the main theoretical predictions are given for compari-
son correspondingly. The results of α and αs against θ are
shown in Fig. 11(a), and the growth exponents with temporal
correlations are listed in Fig. 11(b). Obviously, our results
are consistent with the previous numerical results when θ

approaches 0. Through the comparison, our results are not
close to the theoretical predictions of the one-loop DRG
technique [20] and the nonperturbative renormalization group
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FIG. 13. The crossover from self-affine to mounded pattern in simulating BD model from small to large temporal correlations with different
growth times: (a) t = 3.529 × 104, (b) t = 3.529 × 106 (θ = 0.20); (c) t = 3.529 × 104, (d) t = 3.529 × 106 (θ = 0.35). The subgraphs of
each subfigure are height of cross section at X = 1 (L) and Y = 1 (R).

(NPRG) approach [42], thus more theoretical and numerical
methods are still required to make further investigations and
comparisons. Our results show that the temporal correlated
BD system in (2+1) dimensions displays nontrivial dynam-
ical scaling. Remarkably, similar to (1+1) dimensions, we
also observe that α < αs still satisfies for the large temporal
correlation region in the most physically relevant dimension.

Figure 12 exhibits the surface morphology of the (2+1)-
dimensional BD model driven by correlated noise located
at different growth time regions. Similar to the (1+1)-
dimensional case, for the small noise correlation exponent
θ (θ = 0.05), the growth surfaces appear as self-affine frac-
tal structures at different growth regimes, as shown in
Figs. 12(a)–12(c). However, for large correlation exponents
θ (θ = 0.45), one can see from Figs. 12(d)–12(f) that, as
growth time increases, mound sizes can be clearly observed
and many little mounds tend to merge into large mounds. We
suppose that, when θ gradually approaches 0.5, the mounded
surface of the BD model in (2+1) dimensions may eventually
evolve into the shaped of one isolated faceted pattern in the
long time limit.

In order to investigate the crossover effect for the self-affine
to the mounded pattern in (2+1) dimensions, we display the
surface morphology with different θ . We find that there ex-
ists a critical threshold θτ between θ = 0.20 and θ = 0.35.
Interestingly, we observe from Fig. 13 that when θ = 0.20,
the saturated surfaces display self-affine, and there are no
obvious mounds. However, one can find the mounds in the

saturated growth regime with θ = 0.35. The differences of
surface morphology imply that there is a critical threshold θt

for the appearance of mounded shaped surfaces in the BD
model, and also closely related to anomalous scaling [18].
Therefore, (2+1) dimensions have similar properties to the
(1+1)-dimensional case, and there exists the critical threshold
in (1+1) dimensional cases, both linear Edwards-Wilkinson
(EW) and nonlinear KPZ growth systems, in the presence of
temporally correlated noise (θτ ≈ 1/4) [18,43]. These results
discussed above also imply that the critical threshold in the
stochastic growth model driven by the temporally correlated
noise is universal, which is independent on the substrate di-
mensions.

IV. CONCLUSION

In this work, we have studied numerically the BD model
with temporal correlations in (1+1) and (2+1) dimensions.
Our results show that, in the (1+1)-dimensional case, the criti-
cal exponents are consistent with SCE predictions in the small
θ region, and are in agreement with FRG in the large θ region.
We find that surface morphology is obviously changed with
temporal correlations, however, αloc equals α, which implies
that the whole growth in the BD model subject to long-range
temporally correlated noise still satisfies the self-affine fractal
statistically. For the (2+1)-dimensional case, we have ob-
tained the values of scaling exponents in the whole θ region.
As a special case, when θ → 0, our results are consistent

012121-10



EXTENSIVE NUMERICAL SIMULATIONS OF SURFACE … PHYSICAL REVIEW E 103, 012121 (2021)

with the existing numerical and theoretical predictions. When
θ > 0, we find that temporal correlations affect evidently the
scaling behavior during the whole growth regions, and unfor-
tunately, our results are not close to the existing theoretical
predictions of both NLO and DRG approaches. It should be
noted that, based on the existing dynamic scaling classifica-
tions [31], the scaling properties of surface growth are divided
into four types by comparing the values of α, αloc, αs, i.e.,
(i) α = αloc = αs; (ii) α �= αloc = αs; (iii) α = αs, αloc = 1;
(iv) α �= αs, αloc = 1. However, our results exhibit nontrivial
scaling behavior in the BD model with temporal correlations,
more precisely, α ≈ αloc < αs in (1+1) dimensions and α <

αs in the (2+1)-dimensional case in the temporal correlated
BD model.

As the typical model of the KPZ university class, the BD
model with Gaussian white noise exhibits normal scaling
behavior. However, the BD model driven by the temporally
correlated noise reveals nontrivial dynamic properties. Strong
temporal correlations in both (1+1) and (2+1) dimensions

significantly change surface morphology and critical expo-
nents. In the presence of the long-range temporal correlations,
there are still differences between the BD and KPZ systems.
For example, we do not need to binarize noise into 0 or 1 in
the discretized KPZ equation. It remains unclear that how it
affects the growth process when introducing the binarization
of the correlated noise in the discrete models. So further
investigation of the temporal correlated growth system is still
necessary. Furthermore, we believe that our results can be of
great interest for other problems involving the same univer-
sality class of the temporal correlated KPZ growth and other
growth systems.
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