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Microscopic quantum generalization of classical Liénard oscillators

Srijan Bhattacharyya ,1 Arnab Ghosh ,1,* and Deb Shankar Ray2

1Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
2Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India

(Received 4 August 2020; accepted 28 December 2020; published 19 January 2021)

Based on a system-reservoir model and an appropriate choice of nonlinear coupling, we have explored the
microscopic quantum generalization of classical Liénard systems. Making use of oscillator coherent states and
canonical thermal distributions of the associated c numbers, we have derived the quantum Langevin equation of
the reduced system which admits single or multiple limit cycles. It has been shown that detailed balance in the
form of the fluctuation-dissipation relation preserves the dynamical stability of the attractors even in the case
of vacuum excitation. The quantum versions of Rayleigh, van der Pol, and several other variants of Liénard
oscillators are derived as special cases in our theoretical scheme within a mean-field description.
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I. INTRODUCTION

Dissipation is an intriguing issue in physical sciences [1].
Although its incorporation in dynamical problems from the
classical point of view is largely phenomenological, the ap-
proach turns out to be untenable because of its violation
of the uncertainty principle when the system is quantized.
The problem is circumvented by coupling the system to a
reservoir with infinite degrees of freedom kept at a finite
temperature, which allows the fluctuations of the reservoir to
act on the system inducing its dissipation or decay [2]. To
maintain thermal equilibrium of the system in contact with the
reservoir, fluctuation, and dissipation get connected through
the fluctuation-dissipation theorem [3]. The system-reservoir
model describing a dissipative quantum system lies at the
heart of the problems related to macroscopic quantum co-
herence [4], quantized tunneling in condensed matter physics
[5], relaxation processes in quantum optics [6], and magnetic
resonance spectroscopy [7], to name a few. An important note
in this context is that the dissipative term appearing in the
reduced stochastic equation of motion for the system is by
and large linear, arising out of linear coupling between the
system and the reservoir [8–10]. Introduction of nonlinearity
in the dissipative term in a classical system without any noise,
on the other hand, may lead to a complete modification of
the dynamics. Such nonlinearity in dissipation may result in
a force which acts on the system as an intrinsic source of
creation of the limit cycle [11], an asymptotically isolated
trajectory in phase space. The Liénard equation represents a
prototypical paradigm for such a classical nonlinear dissipa-
tive system of which two special cases are the van der Pol [12]
and Rayleigh oscillators [13]. The object of the present paper
is the search for a quantum analog of such classical Liénard
oscillators within the framework of system-reservoir theory.

*arnab@iitk.ac.in

The Liénard system is widely used in describing many os-
cillating circuits in the development of radio and vacuum tube
technologies [11–13]. The second order differential equation
describing the classical Liénard system is

ẍ + f (x)ẋ + g(x) = 0. (1)

If f (x) and g(x) satisfy the following conditions of Liénard’s
theorem: (i) f (x) and g(x) are continuously differentiable
functions for all x. (ii) g(−x) = −g(x) for all x. (iii) g(x) > 0
for all x > 0. (iv) f (−x) = f (x) for all x. (v) The odd function
F (x) = ∫ x

0 f (s)ds has exactly one positive zero at x = xs; is
negative for 0 < x < xs; is positive and nondecreasing for x >

xs; and f (x) → ∞ as x → ∞, then the system has, at least,
one unique stable limit cycle around its origin in the phase
plane [11]. The theorem assures that the odd function g(x)
acts as a restoring force that tries to reduce any displacement.
Although assumptions on the even function f (x) indicate that
it acts as a negative damping at small displacement and a
positive damping on large displacement. As a result, small
oscillations are forced up whereas large ones are damped
down. Thus, it is not difficult to anticipate that the system will
settle into a self-sustained oscillation of some intermediate
amplitude. Apart from monorhythmic models, such as van der
Pol or Rayleigh oscillators, the Liénard equation depending
on the form of the polynomial f (x), may admit birhyth-
mic solutions. The equation has been generalized further to
the Liénard-Smith-Levinson oscillator form that includes the
multiple limit cycles [14–16].

The aim of our present paper is to propose a microscopic
quantum description of the classical Liénard oscillator in the
system-reservoir model and subsequent generalization to its
several variants. To capture the nature of the Liénard system,
we have defined the interaction Hamiltonian containing ap-
propriate nonlinear coupling terms. The time evolution of the
dynamics is followed by the Heisenberg equation of motion
to obtain the operator Langevin equation for the reduced
system. Our approach is based on a c-number Langevin equa-
tion using harmonic oscillator coherent states and canonical
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thermal distribution of the associated c numbers for the reser-
voirs. The c-number Langevin equation plays a key role in
describing the noisy quantum Liénard system. van der Pol
and Rayleigh oscillators are also depicted with a quantum
noise term as model examples. Finally our proposal is gener-
alized for several model cases of Eq. (1). The noise and the
nonlinear dissipation originating from the system-reservoir
coupling are shown to follow a detailed balance in the form of
fluctuation-dissipation relation. This ensures that the overall
system (system + reservoir) is thermodynamically closed as
emphasized by Lindenberg and West [1]. If the noises are
of external nature due to the distinct origins of noise and
dissipation, they do not obey fluctuation-dissipation relation.
Systems lacking such detailed balance are shown to destroy
limit cycle oscillations.

The present paper is organized as follows: In Sec. II we
introduce the model Hamiltonian to derive reduced dynamics
for the system in terms of the operator Langevin equation. In
the next section oscillator coherent states are used to construct
quantum Langevin equation with c-number noise. Micro-
scopic realizations of the classical van der Pol and Rayleigh
oscillators are discussed in Sec. IV. Later on further gener-
alizations of the theoretical scheme for the arbitrary form of
classical Liénard systems are presented. Finally we conclude
in Sec. V.

II. QUANTUM ANALOG OF THE CLASSICAL
LIÉNARD OSCILLATOR

Our search for the microscopic description of the classical
Liénard oscillation is based on a quantum harmonic oscillator,
whose Hilbert space is given by Fock states |n〉, where n is the
number of quanta in that state. The form of the total system-
reservoir Hamiltonian is given by

Ĥ = h̄ω0â†â +
∑

k

h̄ωkn̂k + ih̄
∑

k

gk[(â†)n+1b̂k − ân+1b̂†
k],

(2)

where the first term is the unperturbed system Hamiltonian
ĤS = h̄ω0â†â, the second term represents the free reservoir
(bath) Hamiltonian ĤR = ∑

j h̄ω j n̂ j ≡ ∑
j h̄ω j b̂

†
j b̂ j , consist-

ing of a large number of harmonic oscillators, and the last
term describes the interaction Hamiltonian for n ∈ Z+. Here
â and b̂k are the annihilation operators for the system and
reservoir, respectively, which fulfill the following commuta-
tion relations:

[â, â†] = 1, [b̂m, b̂†
n] = δmn, [â, b̂k] = 0. (3)

The elementary exchange of energy between the system and
the reservoir consists of single quantum absorption from the
kth bath mode and the simultaneous creation of the (n + 1)
quanta of excitation in the system mode and vice versa.

Since our object here is to recover the dissipative dynamics
of the Liénard oscillation from the system-reservoir Hamil-
tonian Eq. (2) for which dissipation is always accompanied
by an internal quantum noise, we expect a modification for
Eq. (1) in the following form in a c-number description:

ẍ + f (x)ẋ + ω2
0x = η(t ). (4)

Here η(t ) is a Gaussian white δ-correlated quantum noise with
zero mean. In other words, we look for a connection between
the nonlinear dissipation f (x)ẋ and the stochastic noise term
η(t ) which allows the dynamical system to admit stable but
noisy limit cycle oscillations.

From Eq. (2), using the commutation relations [Eq. (3)],
we can easily evaluate the Heisenberg operator equations for
the system and bath degrees of freedom as

˙̂a(t ) = −iω0â(t ) + (n + 1)
∑

k

gk (â†)nb̂k (t ), (5)

and
˙̂b j (t ) = −iω j b̂ j (t ) − g jâ

n+1(t ), (6)

respectively. Formally integrating Eq. (6), we get

b̂ j (t ) = b̂ je
−iω j t − g j

∫ t

0
ân+1(t ′)e−iω j (t−t ′ )dt ′, (7)

where the first term is the free evolution of the bath operator,
whereas the second term is arising due to the interaction with
the system. Inserting Eq. (7) into Eq. (5), we find

˙̂a(t ) = −iω0â(t ) + (n + 1)
∑

k

gkb̂k (â†)n(t )e−iωkt

− (n + 1)
∑

k

g2
k (â†)n(t )

∫ t

0
ân+1(t ′)e−iωk (t−t ′ )dt ′.

(8)

Now introducing the slowly varying operator Â(t ) = â(t )eiω0t

in Eq. (8), which varies little over the inverse reservoir band-
width, we can take the system operator out of the integral
by substituting Â(t ′) � Â(t ) under the Markov approximation
[2]. Then replacing the remaining integral of t ′ by the usual δ

function [6], we finally arrive at the reduced operator equation
for the system which is given by

˙̂A(t ) = −γn+1(Â†)n(t )Ân+1(t ) + F̂n+1(t )(Â†)n(t ), (9)

and its Hermitian adjoint. The reduced dynamics described by
the operator Langevin Eq. (9) contains the usual dissipative
term,

γn+1 = (n + 1)
∑

k

g2
kπδ[ωk − (n + 1)ω0], (10)

as well as the noise term,

F̂n+1(t ) = (n + 1)
∑

k

gkb̂k exp[−i{ωk − (n + 1)ω0}t], (11)

which is multiplicative in nature. The noise operator in Eq. (9)
appears as a natural consequence of the system-reservoir cou-
pling. It is, thus, imperative that the Liénard system with a
microscopic basis must be internally noisy. Combining Eq. (9)
and its Hermitian adjoint we may further define a noise oper-
ator Ĝn+1(t ) = F̂n+1(t ) + F̂ †

n+1(t ).
The properties of the reservoir can then be calculated by

thermal averaging over appropriately ordered noise operators.
To this end we define the quantum statistical average of any
reservoir operator Ô as

〈Ô(t )〉qs = Tr[Ô exp(−ĤR/KT )]

Tr[exp(−ĤR/KT )]
, (12)
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where ĤR = ∑
j h̄ω j n̂ j at t = 0 and n̂ j denotes the number

operator for the jth bath mode.
Based on the above considerations, the noise properties of

the operator may be calculated by using the canonical thermal
distribution Eq. (12). The noise operator Ĝn+1(t ) depends on
bath operators b̂k and b̂†

k whose standard quantum mechanical
average over Fock states |n〉 is identically zero (〈n|b̂k|n〉 =
0 = 〈n|b̂†

k|n〉). Equation (12), therefore, immediately gives

〈Ĝn+1(t )〉qs = 0, (13)

and satisfies the following relation for the noise operators:


[〈F̂ †
n+1(t )F̂n+1(t ′) + F̂n+1(t )F̂ †

n+1(t ′)〉qs]

= (n + 1)2
∑

k

g2
k

〈(
2n̂B

k + 1
)〉

qs

× cos{[ωk − (n + 1)ω0](t − t ′)}

= (n + 1)2
∑

k

g2
k coth

(
h̄ωk

2KT

)

× cos{[ωk − (n + 1)ω0](t − t ′)}, (14)

where the cotangent hyperbolic factor in Eq. (14) can be
identified with the Bose-Einstein distribution,

〈
n̂B

k

〉
qs = 1

eh̄ωk/KT − 1
= n̄B(ωk ), (15)

using the following relation:

〈(
2n̂B

k + 1
)〉

qs = 2n̄B(ωk ) + 1 = coth

(
h̄ωk

2KT

)
. (16)

Equation (14) refers to the fluctuation-dissipation relation
for a bosonic bath, which guarantees that the overall system
is thermodynamically closed. In the subsequent sections we
show that the above detailed balance helps us to preserve the
dynamical stability of the limit cycle even in the presence
of noise. An external noise of even very weak intensity on
the other hand destroys the attractors. The plus one factor
in Eq. (16) is responsible for vacuum fluctuation which is
always present on the quantum scale even at absolute zero.
Its implication on the microscopic realization of limit cycles
will be analyzed in the following sections.

III. C-NUMBER DESCRIPTION OF THE QUANTUM
LANGEVIN EQUATION

The main purpose of this section is to construct a quan-
tum Langevin equation with c-number noise. As a first step,
we return to Eq. (9) and carry out the quantum mechani-
cal average 〈· · · 〉 over the initial product separable quantum
states of the system oscillator and the bath oscillators at t =
0, |α〉 |μ1〉 |μ2〉 · · · |μk〉 · · · |μN 〉 to obtain

〈 ˙̂A(t )〉 = −γn+1〈(Â†)n(t )Ân+1(t )〉 + 〈F̂n+1(t )〉〈(Â†)n(t )〉.
(17)

Here |α〉 refers to the initial coherent state of the system, and
{|μk〉} corresponds to initial coherent states of the bath opera-
tors. The rationale behind using harmonic oscillator coherent
states for the system and bath operators is to recast Eq. (17) as

a classical-looking Langevin equation for the reduced system
oscillator interacting with a bosonic bath.

Defining the following quantum mechanical averages for
the system and noise operators,

〈Â(t )〉 = α(t ), 〈Â†(t )〉 = α∗(t ), 〈Ĝn+1(t )〉 = ξn+1(t ),

(18)

Eq. (17) and its adjoint can be written as (see the Appendix)

α̇(t ) = −γn+1|α|2nα + fn+1(t )(α∗)n,

α̇∗(t ) = −γn+1|α|2nα∗ + f ∗
n+1(t )αn.

(19)

Here the c-number quantum noise ξn+1(t ) is given by

ξn+1(t ) = fn+1(t ) + f ∗
n+1(t ),

= (n + 1)
∑

k

gk[μk (0) exp{−i[ωk − (n + 1)ω0]t}

+μ∗
k (0) exp{i[ωk − (n + 1)ω0]t}], (20)

where μk and μ∗
k are the associated c numbers for the bath

operators. In deriving Eqs. (19) from Eq. (17), we only con-
sider normal ordering for the system operators. Instead for use
of a different ordering of the operators, we may end up with
altogether different (but equivalent [2]) forms for the nonlin-
ear damping. We will return to this point in the next section
when we discuss the quantum-classical correspondence for
the limit cycles within the framework of the same interaction
Hamiltonian under mean-field approximation [17–19].

Now to realize ξn+1(t ) as an effective c-number noise, we
introduce the ansatz that μk (0) and μ∗

k (0) in Eq. (20) are
distributed according to Wigner thermal canonical distribution
of Gaussian form [20] as follows:

W B
k [μk (0), μ∗

k (0)] = NB exp

{
− |μk (0)|2

2 coth
( h̄ωk

2KT

)
}

. (21)

Here NB is the normalization constant and coth ( h̄ωk
2KT ) is the

width of the distribution. For any arbitrary quantum mechani-
cal mean value of a bath operator 〈B̂k〉, which is a function of
μk (0) and μ∗

k (0), its statistical average can then be calculated
as

〈〈B̂k〉〉s =
∫

〈B̂k〉W B
k [μk (0), μ∗

k (0)]dμk (0)dμ∗
k (0). (22)

Using the ansatz of Eq. (21) and the definition of statistical av-
erage Eq. (22), one can show that the c-number noise ξn+1(t )
satisfies the following relations, respectively:

〈ξn+1(t )〉s = 0, (23)

and

〈ξn+1(t )ξ ∗
n+1(t ′)〉s = (n + 1)2

∑
k

g2
k coth

(
h̄ωk

2KT

)

× cos{[ωk − (n + 1)ω0](t − t ′)}. (24)

Equations (23) and (24) imply that the c-number noise ξn+1(t )
is zero centered and follows the fluctuation-dissipation rela-
tion as expressed in Eq. (14). Therefore, Eqs. (24) and (14)
are equivalent. In order to identify the connection between
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Eqs. (14) and (24), it is sometime convenient to write down
the fluctuation-dissipation relation in the following form:

〈ξn+1(t )ξ ∗
n+1(t ′)〉s = 
[〈F̂ †

n+1(t )F̂n+1(t ′)+ F̂n+1(t )F̂ †
n+1(t ′)〉qs],

= 2(n+1)γn+1 coth

[
(n + 1)h̄ω0

2KT

]
δ(t −t ′).

(25)

In deriving the above expression we have assumed that the
bath modes are closely spaced in frequency so that one may
replace the summation over k in Eq. (24) by an integral over ω

using the density of states ρ(ω) [6] which yields γn+1 = (n +
1)πg2[(n + 1)ω0]ρ[(n + 1)ω0]. Second, Eq. (25) depends on
the noise operator ordering but not on time ordering. This
indicates a clear-cut advantage of the c-number formalism
which allows us to bypass the operator ordering prescription
for the derivation of noise properties [21]. The c-number noise
ξn+1(t ) as characterized by Eqs. (23) and (24) is classical
looking in form but essentially quantum mechanical in nature.
Therefore, the essence of the microscopic origin of quantum
limit cycles can be captured in the present formalism quite
effectively in terms of the c-number description by simply
implementing the techniques of classical nonequilibrium sta-
tistical mechanics. The above formalism has been extensively
used in several earlier occasions in connection with quantum
optics, chemical dynamics, and multidimensional transition
state theory in the context of spin and bosonic baths [21–23].

IV. CONSTRUCTION OF THE QUANTUM LIÉNARD
SYSTEM; APPLICATION OF THE PROPOSED MODEL

We are now in a position to apply our method to various
nonlinear systems that produce limit cycle oscillations. Two
such classic examples are van der Pol and Rayleigh oscilla-
tors, whose basic equation of motions are

ẍ + ω2
0x − ε(1 − x2)ẋ = 0, (26)

and

ẍ + ω2
0x − ε(1 − ẋ2)ẋ = 0, (27)

respectively, where we assume ε > 0. A broad class of bi-
ological and chemical oscillations are modeled either in
terms of the Rayleigh or van der Pol oscillator or in terms
of their generalization [24–26]. According to Eq. (2), both
above models are subject to internal quantum noise satisfying
the fluctuation-dissipation theorem when derived from their
respective microscopic Hamiltonians. The form of the inter-
action for these specific examples simplifies to

ĤI = ih̄
∑

k

gk[(â†)2b̂k − (â)2b̂†
k], (28)

which is a special case of Eq. (2). From this interaction Hamil-
tonian [Eq. (28)], we proceed as in Sec. II and finally arrive
at the following operator Langevin equations for the reduced
system:

˙̂A(t ) = −γ2Â†(t )Â2(t ) + F̂2(t )Â†(t ), (29)

which is the generalized operator Eq. (9) for n = 1. If we
follow the usual normal ordering prescription discussed in

Sec. III, the resulting quantum dynamics becomes identical
to the generalized c-number Eq. (19) with n = 1:

α̇(t ) = −γ2|α|2α + f2(t )α∗. (30)

Substituting α and α∗ by

α = 1

2

(
x − iẋ

ω0

)
exp[−iω0t],

α∗ = 1

2

(
x + iẋ

ω0

)
exp[iω0t],

(31)

and collecting the terms of right order from Eq. (30), we have
the following differential equation for the system:

ẍ + γ2x2ẋ + ω2
0x = η2(x, ẋ), (32)

where

η2(x, ẋ) = iω0

2

[
f2

(
x + iẋ

ω0

)
e2iω0t − f ∗

2

(
x − iẋ

ω0

)
e−2iω0t

]
(33)

is the quantum noise term arising out of the system-reservoir
interaction. Equation (32) may be regarded as the simplest
representation of the quantum Liénard system [Eq. (4)] where
f (x) = εx2 and g(x) = ω2

0x. The typical phase portraits of the
system in the absence and presence of internal noise are shown
in Fig. 1. In general parameters γ2 and ε are proportional
to each other as we will establish shortly. For this simplest
possible case they turn out to be equal with proportionality
constant unity. We use the PYTHON code for random number
generators [27] to simulate white noise η2(x, ẋ) [28] satis-
fying Gaussian statistics. Throughout our paper we choose
ω0 = 1 for numerical calculations. In the presence of noise,
the stochastic trajectories neither collapse to a steady state
nor diverge. This implies that the detailed balance in the form
of fluctuation-dissipation [Eq. (24)] guarantees the dynamical
stability of motion [Fig. 1(b)]. In the numerical simulation
whereas the noise term maintains the fluctuation-dissipation
relation, the limit cycle retains its shape but becomes fuzzy
[Fig. 1(b)] due to noise. An average over the trajectories of
such a noisy limit cycle yields the identical stable cycle in-
ferred from the classical picture [blue lines in Figs. 1(b)–3(b)].
Numerical errors in computing the statistical average with the
steepest slope for the van der Pol oscillator is responsible
for slight mismatch of the averaged trajectory at corners of
Fig. 2(b). If the detailed balance in the form of Eq. (25) is
not maintained, i.e., when the noise is of external origin, the
limit cycle is destroyed in every case. This is illustrated in all
three examples [Figs. 1(c)–3(c)] when the noise is of external
origin.

Equations (29) and (30) are the quantum Liénard equations
in operator (and c-number) form. In order to recover the two
special cases of this system we proceed as follows: We first
note that the use of commutation relation [Â, Â†] = 1 in the
operator Eq. (29) leads to several other equivalent forms [2].
For example, if f (Â, Â†) = ÂÂ†, then use of the commuta-
tion relation [Â, Â†] = 1 implies f (Â, Â†) = ÂÂ† = Â†Â + 1.
These two operator forms are different, but they are equivalent
in view of that fact that they represent the same dynamical sys-
tem in distinct forms. In what follows, we may write Eq. (29)
as

˙̂A(t ) = −γ2(ÂÂ†Â − Â) + F̂2(t )Â†(t ). (34)

012118-4



MICROSCOPIC QUANTUM GENERALIZATION OF … PHYSICAL REVIEW E 103, 012118 (2021)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
ẋ
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FIG. 1. The phase space trajectories of the (a) classical and the
(b) quantum Liénard oscillators [Eq. (32)] with f (x) = εx2 are plot-
ted in the absence (a) and the presence (b) of intrinsic noise. The
average trajectory is shown (blue) in (b) for internal noise. (c) The
quantum Liénard oscillator in the presence of external noise: the
lack of detailed balance destroys the limit cycle oscillation. We set
ε = 0.01 and KT = 50 (arbitrary units).

More generally we may write for Eq. (9),

˙̂A(t ) = −γn+1

∑
p,q···r

φ(p, q · · · r)Âp(Â†)q · · · Âr

+F̂n+1(t )(Â†)n(t ). (35)

In the next step we derive the c-number equivalent of the
above operator equation such that it corresponds to the
specific classical Liénard form. This may be achieved by
appropriate operator ordering followed by performing average
with coherent states under the mean-field approximation. We
are then led to a desired form of c-number equivalent of
Eq. (35),

α̇ = −γn+1

∑
i, j

ψ (i, j)αi(α∗) j + fn+1(t )(α∗)n. (36)

A pertinent point is to be noted. Recognizing the right hand
side of Eq. (36) as a polynomial in c numbers, the term with its
highest power is sufficient for the existence of the limit cycle
as shown in Eq. (30). The inclusion of terms of lower power
is necessary to retain the shape of the limit cycle that con-
forms faithfully with its classical counterpart. The mean-field
approximation, therefore, allows us to establish a quantum-
classical correspondence. Furthermore, we emphasize that the
stability of the limit cycles and their numbers remain invariant
with respect to the inclusion of terms with lower power of the
polynomial. Based on these considerations Eq. (34) takes the
following form (for details see the Appendix):

α̇ = − γ2

m1
(m1|α|2 + m0)α + f2α

∗, (37)

which may correspond to Liénard systems for specific values
of m1 and m0. In what follows, we will show that van der Pol
and Rayleigh oscillators appear from it as special cases.

A. van der Pol oscillator

The van der Pol oscillator is a prototypical self-sustained
oscillator which has been used to model the dynamics of
a variety of classical [29] and biological processes, such as
heart [30], neurons [31], and circadian rhythms [32]. If we
substitute m1 = 1 and m0 = −1 in Eq. (37), we find

α̇(t ) = −γ2(|α|2 − 1)α + f2(t )α∗, (38)

and its complex conjugate where the c-number noise expres-
sion follows from generalized Eq. (20) for n = 1 as

f2(t ) = 2
∑

k

gkμk (0) exp[−i(ωk − 2ω0)t]. (39)

If we further replace α and α∗ in Eq. (38) by the usual
form [Eq. (31)] and neglect the high frequency terms, one may
obtain the following differential equation after a little bit of
rearrangement,

ẍ + γ2(x2 − 1)ẋ + ω2
0x = η2(x, ẋ), (40)

where by definition γ2 > 0.
The c-number Eq. (40) looks similar to the classical equa-

tion of the van der Pol oscillator which is simultaneously
driven by the c-number quantum noise. This quantum van
der Pol oscillator can, therefore, be regarded as a quantum
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harmonic oscillator with two types of dissipation: negative
(−ẋ) as well as nonlinear (x2ẋ) dampings, and an internal
noise—the combination of which leads to a noisy but self-
sustained limit cycle oscillation. The appearance of the limit
cycle indicates that for the system which follows the isolated
asymptotic trajectory, the gain in energy due to self-excitation
is equal to the loss of energy due to dissipation. On the
other hand, the Langevin equation derived from an equilib-
rium many body quantum system without any external noise
possesses time-reversal symmetry. The fluctuation-dissipation
relation thereby entails the detailed balance condition which
implies that the energy dissipated by the system on average
is equal to the energy gained by it through fluctuation of
the reservoir. The energy loss-gain in the former processes is
purely dynamical whereas that as a result of detailed balance
is statistical in nature.

Because of its simple form, such a quantum van der Pol
oscillator has recently gained significant interest for the real-
ization of synchronization phenomena on the quantum scale
[33–36]. Interestingly, an experiment with trapped ions may
serve as an ideal test bed for simulating collective dynam-
ics for such oscillators [37–40]. The phase space diagrams
for both the classical van der Pol oscillator and its quantum
counterpart with Gaussian white noise η2(x, ẋ) [Eq. (33)] are
plotted in Fig. 2 for illustration.

B. Rayleigh oscillator

Similar to the van der Pol oscillator, the Rayleigh oscillator
can also be obtained from the same interaction Hamilto-
nian Eq. (28) or in other words from the same generalized
c-number Langevin dynamics [Eq. (37)]. This immediately
suggests that both the noisy van der Pol and the Rayleigh
oscillators are equivalent to the simplest possible form of the
Liénard system [Eq. (30)] within a mean-field description.
Thus, the characteristic features of both oscillators can be
essentially captured by Eq. (32).

To recover the explicit form of the Rayleigh oscillator, we
substitute m1 = 3 and m0 = −1 in Eq. (37) so that we get

α̇(t ) = γ2

3
(1 − 3|α|2)α + f2α

∗, (41)

and its complex conjugate. To arrive at the standard form
of the Rayleigh oscillator equation from Eq. (41), instead of
Eq. (31), we now use the following substitution for α and α∗:

α = 1

2
(ω0x − iẋ) exp[−iω0t],

α∗ = 1

2
(ω0x + iẋ) exp[+iω0t].

(42)

This difference in the substitution can be traced back to
the dimensional relationship between the phase space dynam-
ical variables of the two oscillators as understandable from
Eqs. (26) and (27). With the help of Eqs. (42) and using
the same treatment as before, we finally reduce the following
equation of motion for the quantum Rayleigh oscillator,

ẍ + 1

3
γ2(ẋ2 − 1)ẋ + ω2

0x = η2(x, ẋ). (43)
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FIG. 2. The phase space trajectories of a (a) classical [Eq. (26)]
and a (b) quantum van der Pol oscillator [Eq. (40)] are plotted for
ε = 2 and KT = 0. It is shown that quantum fluctuations can retain
the general shape of the limit cycle oscillation even at absolute zero
(arbitrary units). The average trajectory is shown (blue) in (b) closely
resembles the classical one. (c) In the absence of detailed balance, an
external noise completely destroys the limit cycle.
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Similar to the van der Pol oscillator, the Rayleigh oscillator
has a close kinship with the parametric oscillation in pipe
organs as pioneered by Rayleigh [41] and in wave mixing in
nonlinear optics [42]. The phase space plots for the classical
Rayleigh oscillator and its quantum version with Gaussian
white noise η2(x, ẋ) [Eq. (33)] are depicted in Fig. 3. In
general, we find that average quantum dynamics agrees with
the phase boundary of the classical limit cycle even on the
microscopic scale.

C. Construction of generalized quantum Liénard oscillators

Let us now extend our formalism to construct a broader
class of Liénard oscillators. For this we adopt the follow-
ing recipe: First we resort to operator Langevin Eq. (9) and
discuss the first two cases [n = 1 and 2 of Eq. (9)] as il-
lustrative examples. Next we generalize the concept (see the
Appendix for the details) to construct the most generic form
of the Liénard oscillators that can be derived from our model
Hamiltonian Eq. (2).

(1) Case 1. f (x) = ε(a1x2 + a0). In the previous sec-
tion we have shown that a general form of f (x) = ε(a1x2 +
a0) can be obtained from the interaction Hamiltonian
ĤI = ih̄

∑
k gk[(â†)2b̂k − (â)2b̂†

k]. The respective c-number
Langevin dynamics is given by Eq. (37), and the corre-
sponding equation of motion takes the form of ẍ + ω2

0x =
−(γ2/m1)(m1x2 + m0)ẋ + η2(x, ẋ) where we may choose m1

and m0 so that it is consistent with the values of a1, a0, and
ε of f (x). Essentially one sets ε = (γ2/m1), then m1 and
m0 become identical to a1 and a0, respectively. This can be
regarded as a representation of the Liénard system in a quan-
tum scenario with the friction coefficient f (x) = ε(a1x2 + a0)
such that our desired system exhibits a single quantum limit
cycle.

(2) Case 2. f (x) = ε(a2x4 + a1x2 + a0). Let us now con-
sider the most general form of f (x) with the next highest
order power in accordance with Liénard’s theorem. In a sim-
ilar spirit one can show that the above form of f (x) can be
obtained from the Hamiltonian,

ĤI = ih̄
∑

k

gk[(â†)3b̂k − (â)3b̂†
k], (44)

which corresponds to n = 2 of the generalized interaction
Hamiltonian [Eq. (2)]. From the operator Langevin equations
Eq. (9), one carries out the same procedure to derive the
c-number Langevin equations for n = 2 (see the Appendix),

α̇ = − γ3

m2
[m2|α|4 + m1|α|2 + m0]α + f3(α∗)2. (45)

Following the standard substitution as given in Eq. (31) we
find

ẍ + ω2
0x = − γ3

m2

[m2

2
x4 + m1x2 + m0

]
ẋ + η3(x, ẋ). (46)

This is the relevant quantum version of the Liénard system
with f (x) = ε(a2x4 + a1x2 + a0) where we have to choose
the values of m2, m1, and m0 judiciously such that it matches
with the known form of f (x). Some of the choices of
{m2, m1, m0} are shown in Table I. Note that in each case
the value of ε varies as γ3/m2. It was shown by Rychkov
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FIG. 3. (a) The phase space trajectories of a (a) classical
[Eq. (27)] and a (b) quantum Rayleigh oscillator [Eq. (43)] are
plotted for the parameters ε = 1 and KT = 10 (arbitrary units). The
statistical average over noisy trajectories in (b) is identical to its
classical counterpart. (c) An external noise breaks the stable limit
cycle.
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TABLE I. Some of the choices of {m2, m1, m0} are shown.

Examples m2 m1 m0 f (x)

1 2 1 −1 ε(x4 + x2 − 1)
2 2 −1 0 ε(x4 − x2)
3 2 0 −1 ε(x4 − 1)

[43] that the number of limit cycles is at most 2 for f (x) =
ε(a2x4 + a1x2 + a0). Now extrapolating the form of the above
two cases we may generalize the formula by the method of
mathematical induction to an arbitrary polynomial f (x) as
given below:

(3) Case 3. f (x) = anx2n + an−1x2n−2 · · · + a1x2 + a0. Let
us now consider the most general form of an even func-
tion f (x). From the operator equation of motion (9) one can
evaluate the following equations for the c-number Langevin
dynamics (see the Appendix),

α̇ = −γn+1

mn
[mn|α|2n + mn−1|α|2n−2 · · · + m1|α|2 + m0]α

+ fn+1(α∗)n, (47)

α̇∗ = −γn+1

mn
[mn|α|2n + mn−1|α|2n−2 · · · + m1|α|2 + m0]α∗

+ f ∗
n+1α

n, (48)

where m0, m1, . . . mn are independent of one another. Pro-
ceeding in a similar way, it is possible to construct the
following dynamical equation of motion for the system,

ẍ + ω2
0x = −γn+1

mn
(anx2n + an−1x2n−2 · · · + a1x2 + a0)ẋ

+ ηn+1(x, ẋ), (49)

where

a j = mj

2 jCj+1
j, ∀ j = 1, 2 · · · n and a0 = m0. (50)

The above equation gives us the relation between different
mj’s with a j’s. Note that for n = 1 (Case 1), a j = mj irre-
spective of all j.

According to Refs. [16,44–46] the system of Liénard-
Smith-Levinson form with f (x), a polynomial of highest
degree 2n where the coefficients an, an−1 · · · a1 alternate in
sign, can support at most n numbers of limit cycles. Equation
(49) can be interpreted as a quantum generalization of the
Liénard oscillator with the most general form of f (x) which
may have at most n numbers of limit cycles. Phase portraits
of a system with multiple limit cycles in both classical and
quantum scenarios are plotted in Fig. 4. Classically, any noisy
limit cycle at T = 0 does not make any sense, but quantum
mechanically, due to vacuum fluctuation, one can have sta-
ble limit cycle oscillation even at absolute zero. This is a
pure quantum phenomenon which does not have any classical
analogs. As an extension of the Liénard-Smith-Levinson form
of oscillators, the generalized Rayleigh family of oscillators
[13,47,48] can also be constructed from the above prescription
(see the Appendix).
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FIG. 4. The phase space trajectories of the (a) classical and the
(b) quantum Liénard systems with f (x) = 0.005 ∗ x6 − 0.144 ∗ x4 +
x2 − 1 [16] are plotted for ε = 0.01. In both cases we have two
stable (blue line) and one unstable (green dotted line) limit cycles.
Pure quantum fluctuations at T = 0 may lead to noisy but stable
oscillations even for the two stable limit cycles (arbitrary units).

V. CONCLUSIONS

In this paper we have presented a generalized microscopic
quantum description of the classical Liénard system. Our
approach is based on two essential elements. First, the inter-
action Hamiltonian consisting of suitable nonlinear coupling
terms serves as a universal paradigm for the description of
several variants of the Liénard system with appropriate noise
and nonlinear dissipation. Second, the harmonic oscillator co-
herent states facilitate the use of the c-number description for
the reduced oscillator equation of motion. The major findings
of our paper are as follows:

(i) A classical Liénard system without any noise is purely a
nonlinear dynamical oscillator which depending on the speci-
ficity of nonlinear dissipation admits single or multiple limit
cycles. As opposed to it, the quantum noise appears in the
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dynamics as a consequence of the system-reservoir frame-
work of our microscopic model and carries the signature of
pure quantum effects.

(ii) The effect of quantum noise makes the stable limit
cycle fuzzy; however, it does not lose its stability in the sense
that the limit cycle trajectory neither collapses to a steady
state nor diverges. The noninterference of the two energy
balance processes is characteristic of the internal noise of a
thermodynamically closed system. Thus, the detailed balance
through the nonlinear fluctuation-dissipation relation keeps
the dynamical stability of the limit cycle preserved. In con-
trast, the external noise tends to destroy the limit cycle or, in
general, the dynamical stability of the Liénard system.

(iii) Within the framework of a mean-field description the
stability and the number of limit cycles are invariant under the
addition of terms of lower orders to the polynomial whereas
their inclusion is crucial for retaining the shape of the limit
cycle oscillation. As a result, despite the fact that van der
Pol and Rayleigh represent two distinct oscillators with the
single limit cycle at the classical level, they can be constructed
from the same microscopic interaction Hamiltonian within the
mean-field theory. In fact a large number of Liénard systems
(both van der Pol and Rayleigh families of cycles) differing
in the form of their nonlinear damping can be derived from
the same microscopic Hamiltonian at the mean-field level. In
all such cases the number of limit cycles is determined by
the highest power of the polynomial governing the nonlinear
dissipation as dictated by the Liénard theorem.
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APPENDIX

1. Derivation of Eq. (19)

Since A|α〉 = α|α〉 and 〈α| A† = 〈α| α∗, Eq. (17) can be
written as

α̇ = −γn+1α
n+1(α∗)n + fn+1(t )(α∗)n

= −γn+1|α|2nα + fn+1(t )(α∗)n
. (A1)

One can similarly write for the operator Langevin equation
Â†(t ),

˙̂A†(t ) = −γn+1(Â†)n+1(t )Ân(t ) + F̂ †
n+1(t )Ân(t ), (A2)

as

〈 ˙̂A†(t )〉 = −γn+1〈(Â†)n+1(t )Ân(t )〉 + 〈F̂ †
n+1(t )〉〈Ân(t )〉.

(A3)
Following the same steps as in Eq. (A1), we obtain

α̇∗(t ) = −γn+1(α∗)n+1
αn + f ∗

n+1(t )αn

= −γn+1|α|2nα∗ + f ∗
n+1(t )αn.

2. Derivation of Eq. (37)

Consider the operator Langevin equation (29) which is also
the special case of generalized Langevin Eq. (9) for n = 1.
Taking the average on both sides of the equation with the
initial product separable coherent states of the system and bath
oscillators |α〉 |μ1〉 |μ2〉 · · · |μN 〉 one finds

α̇ = − γ2

m1
(m1+m0)〈α|Â†Â2|α〉 + γ2

m1
m0〈α|Â†Â2|α〉+ f2α

∗,

(A4)

where we have split −γ2〈α|Â†Â2|α〉 into two terms by in-
troducing two dimensionless numbers m0 and m1. m0 and
m1 can assume positive or negative values depending on the
specificity of the case and are independent of each other.
This choice is determined by the characteristic polynomial
of classical nonlinear damping. Rewriting the above equation
(A4) we have

α̇ = − γ2

m1
(m1 + m0)|α|2α + γ2

m1
m0〈α|Â(Â†Â − 1)|α〉 + f2α

∗

≈ − γ2

m1
(m1 + m0)|α|2α + γ2

m1
m0〈α|Â|α〉〈α|(Â†Â − 1)|α〉

+ f2α
∗

= − γ2

m1
(m1 + m0)|α|2α + γ2

m1
m0(|α|2 − 1)α + f2α

∗

= − γ2

m1
(m1|α|2 + m0)α + f2α

∗. (A5)

In deriving Eq. (A5) it has been assumed 〈Â(Â†Â − 1)〉 ≈
〈Â〉〈(Â†Â − 1)〉, which is a valid approximation within the
mean-field theory. This corresponds to neglect the higher
order quantum correlation in the dynamics of nonlinear
dissipation; quantum noise due to the heat bath, however,
completely unaffected.

3. Derivation of Eq. (45)

Setting n = 2 in Eq. (9) and averaging with
|α〉 |μ1〉 |μ2〉 · · · |μk〉 · · · |μN 〉, we write down the c-number
Langevin equation within the mean-field approximation as

α̇ = − γ3

m2
(m2 + m1)〈α|(Â†)2Â3|α〉 + γ3

m2
m1〈α|(Â†)2Â3|α〉

+ f3(α∗)2

= − γ3

m2
(m2 + m1)|α|4α + γ3

m2
m1〈α|Â†(ÂÂ† − 1)Â2|α〉

+ f3(α∗)2

≈ − γ3

m2
(m2 + m1)|α|4α + γ3

m2
m1〈α|Â†Â|α〉〈α|Â†Â2|α〉

− γ3

m2
m1〈α|Â†Â2|α〉 + f3(α∗)2

= − γ3

m2
(m2 + m1)|α|4α + γ3

m2
m1|α|4α

− γ3

m2
(m1 + m0)〈α|Â†Â2|α〉

+ γ3

m2
m0〈α|(ÂÂ†Â − Â) + f3(α∗)2
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≈ − γ3

m2
m2|α|4α − γ3

m2
(m1 + m0)|α|2α

+ γ3

m2
m0〈α|Â|α〉〈α|Â†Â − 1|α〉 + f3(α∗)2

= − γ3

m2
m2|α|4α − γ3

m2
(m1 + m0)|α|2α

+ γ3

m2
m0(|α|2 − 1)α + f3(α∗)2

= − γ3

m2
(m2|α|4 + m1|α|2 + m0)α + f3(α∗)2. (A6)

Here the mean-field approximation has been applied twice to
obtain Eqs. (A6) or (45). m2, m1, and m0 are the integers to
be chosen as per requirement of the form of the polynomial
describing nonlinear dissipation.

4. Derivation of Eq. (47)

Following the same procedure as above, it may be antic-
ipated that we can put n = k in Eq. (9) and generate terms,
such as |α|2kα, |α|2k−2α · · · up to |α|2α using c-number for-
malism. The basis of this assumption lies in the previous
two cases. Therefore, we can presume the structure for n = k
within the purview of the mean-field approximation as fol-
lows:

α̇ = −γk+1〈α|(Â†)kÂk+1|α〉 + fk+1(α∗)k

= −γk+1

lk
(lk||α|2k + lk−1|α|2k−2 · · · . + l1|α|2 + l0)α

+ fk+1(α∗)k, (A7)

where the coefficients lk, lk−1 . . . , l1 and l0 may or may not
be interrelated.

Now having obtained the above equation for n = k, if we
show that the same structure holds for n = k + 1, we may
claim that we prove our desired result Eq. (47). For that we go
back to Eq. (9), take n = k + 1, and carry out the averaging

with respect to coherent states as before

α̇ = −γk+2〈α|(Â†)k+1Âk+2|α〉 + fk+2(α∗)k+1

= − γk+2

mk+1
(mk+1 − m)〈α|(Â†)k+1Âk+2|α〉

− γk+2

mk+1
m〈α|(Â†)k (ÂÂ† − 1)Âk+1|α〉 + fk+2(α∗)k+1

≈ − γk+2

mk+1
(mk+1 − m)|α|2k+2α

− γk+2

mk+1
m〈α|(Â†)kÂ|α〉〈α|Â†Âk+1|α〉

+ γk+2

mk+1
m〈α|(Â†)kÂk+1|α〉 + fk+2(α∗)k+1

= − γk+2

mk+1
(mk+1 − m)|α|2k+2α − γk+2

mk+1
m|α|2k+2α

+ γk+2

mk+1

m

lk
{lk|α|2k + lk−1|α|2k−2 · · · + l1|α|2 + l0}α

+ fk+2(α∗)k+1 (A8)

= − γk+2

mk+1
(mk+1 − m)|α|2k+2α − γk+2

mk+1
m|α|2k+2α

− γk+2

mk+1
(mk|α|2k + mk−1|α|2k−2 · · · + m1|α|2 + m0)α

+ fk+2(α∗)k+1 (A9)

= − γk+2

mk+1
(mk+1|α|2k+2 + mk|α|2k · · · + m1|α| + m0)α

+ fk+2(α∗)k+1. (A10)

Here we use Eq. (A7) in Eq. (A8). Further defining

mj = − l j

lk
m, ∀ j = 0, 1, 2 · · · k. (A11)

In Eq. (A9) we obtain Eq. (A10). Thus, we find the same
structure for n = k + 1 as for n = k. Therefore, by the method
of mathematical induction we have proved that the structure
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FIG. 5. The phase space trajectories of the (a) classical and the (b) quantum versions of a generalized Rayleigh oscillator for polynomial
ẋ6 + ẋ4 − ẋ2 − 1 are plotted for ε = 1.5. We have put KT = 20 for plotting the quantum case (arbitrary units).
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assumed in Eq. (47) is true for all n ∈ Z+. A similar technique
can be followed to derive its complex conjugate equation.

5. Rayleigh family of quantum oscillators

From c-number Langevin Eqs. (47) and (48) we construct
the following form of the quantum equation with the help of
substitution (42):

ẍ + γn+1

mn
{βnẋ2n + βn−1ẋ2n−2 · · · + β1ẋ2 + β0}ẋ + ω2

0x

= ωn−1
0 ηn+1. (A12)

Equation (A12) can be considered as a quantum analog of the
generalized Rayleigh family of oscillators [13,47], where

β j = mj j
2 jCj+1(2 j + 1)

, ∀ j = 1, 2, . . . n and β0 = m0.

(A13)
The family of oscillators could also support at most n num-
bers of limit cycles, where 2n is the highest degree of the
polynomial [48]. The phase space trajectories of a represen-
tative example of such a generalized Rayleigh oscillator is
shown in both the (a) classical and the (b) quantum pictures in
Fig. 5.
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