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Efimov effect at the Kardar-Parisi-Zhang roughening transition
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Surface growth governed by the Kardar-Parisi-Zhang (KPZ) equation in dimensions higher than two under-
goes a roughening transition from smooth to rough phases with increasing the nonlinearity. It is also known that
the KPZ equation can be mapped onto quantum mechanics of attractive bosons with a contact interaction, where
the roughening transition corresponds to a binding transition of two bosons with increasing the attraction. Such
critical bosons in three dimensions actually exhibit the Efimov effect, where a three-boson coupling turns out to
be relevant under the renormalization group so as to break the scale invariance down to a discrete one. On the
basis of these facts linking the two distinct subjects in physics, we predict that the KPZ roughening transition in
three dimensions shows either the discrete scale invariance or no intrinsic scale invariance.
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I. INTRODUCTION

The Kardar-Parisi-Zhang (KPZ) equation for surface
growth [1],

∂h

∂t
= ν∇2h + λ

2
(∇h)2 +

√
D η, (1)

has been a paradigmatic model in nonequilibrium statistical
physics [2–6]. Here, h = h(t, r) represents a height of d-
dimensional surface, which grows under a white Gaussian
noise obeying 〈η(t, r)〉 = 0 and

〈η(t, r)η(t ′, r′)〉 = δ(t − t ′)δ(r − r′). (2)

The roughness of surface is characterized by the asymptotic
scaling of the height-difference correlation function,

〈[h(t, r) − h(0, 0)]2〉 ∼ r2χ F
( t

rz

)
, (3)

where χ is the roughness exponent and z is the dynamical
exponent. The surface is said to be smooth for χ < 0 and
rough for χ > 0. In one dimension, these scaling exponents
can be determined exactly to find that the surface is always
rough with χ = 1/2 and z = 3/2 [1], which has also been
confirmed experimentally [7].

Physics in higher dimensions is even richer. While the
nonlinear term proportional to λ in Eq. (1) is relevant below
two dimensions, it turns irrelevant above two dimensions [1].
Therefore, the surface growth for a sufficiently small λ < λ∗
is governed by the linear Edwards-Wilkinson equation [8],
which finds the surface to be smooth with χ = 1 − d/2 < 0
and z = 2 (smooth phase in Fig. 1). However, with increasing
the nonlinearity, there exists a phase transition at λ∗, called
the roughening transition, at which the surface is marginally
rough with χ = 0 and z = 2 [9–11]. Then, the surface turns
rough for a larger λ > λ∗ (rough phase in Fig. 1), where the
scaling exponents were numerically estimated in Ref. [12]
among others at χ ≈ 0.395(5) for d = 2, χ ≈ 0.29(1) for
d = 3, χ ≈ 0.245(5) for d = 4, and χ ≈ 0.22(1) for d = 5,

with z = 2 − χ imposed by the “Galilean” invariance [13].
On the other hand, there have been a number of claims that
d = 4 is an upper critical dimension beyond which the surface
is only marginally rough with χ = 0 [14–26], although it
contradicts numerical simulations of models belonging to the
KPZ universality class [27–40]. The very existence of the up-
per critical dimension has been one of the most controversial
issues regarding the KPZ equation.

What we shall argue in this paper is that already in three
dimensions some peculiarity possibly emerges at the rough-
ening transition. Our argument is based on the facts that the
KPZ equation can be mapped onto quantum mechanics of
attractive bosons with a contact interaction [41] and that such
three bosons exhibit the Efimov effect in three dimensions so
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FIG. 1. Schematic phase diagram in the plane of the dimension-
ality d and the nonlinearity g2 = Dλ2/(4ν3). It consists of smooth
(χ = 1 − d/2 < 0, z = 2) and rough (χ > 0, z = 2 − χ ) phases
separated by the roughening transition at which χ = 0 and z = 2
(single line). It is to be predicted in this paper that there is a finite
interval including d = 3 but not d = 2, 4 (double line) where the
roughening transition shows either the discrete scale invariance or no
intrinsic scale invariance.
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as to break the scale invariance down to a discrete one [42,43].
Although each of them is well known in each community,
it may not in the other community. Therefore, we shall first
describe these subjects in a brief but self-contained manner in
Secs. II and III, respectively, and then draw our conclusion in
Sec. IV.

II. FROM KPZ TO ATTRACTIVE BOSONS

Let us first regularize the white noise obeying Eq. (2) by
replacing it with a colored noise,

〈η(t, r)η(t ′, r′)〉� = δ(t − t ′)V�(r − r′), (4)

where V�(r) is assumed to have a finite range set by 1/� with
lim�→∞ V�(r) = δ(r), such as V�(r) = (�/

√
π )d e−(�r)2

. A
solution to Eq. (1) for a given configuration of η is denoted
by hη and we are interested in its ensemble average over the
Gaussian noise,

〈O(h)〉� ≡
∫
DηO(hη )

× exp

[
−1

2

∫
dtdrdr′η(t, r)V −1

� (r − r′)η(t, r′)
]
.

(5)

Formally, hη can be expressed by

O(hη ) =
∫
DhO(h)

×
∏
t,r

δ

[
∂h

∂t
− ν∇2h − λ

2
(∇h)2 −

√
D η

]
, (6)

where the δ functions single out h solving Eq. (1) and the Ja-
cobian determinant is unity if the time derivative is understood
as Itô’s forward differential operator [44]. By exponentiating
the δ functions at the expense of introducing an auxiliary field
h̄,

O(hη )

=
∫
DhDh̄O(h)

× exp

[
−

∫
dtdr ih̄

{
∂h

∂t
− ν∇2h− λ

2
(∇h)2−

√
D η

}]
,

(7)

the functional integration over η in Eq. (5) can be performed
to obtain the path integral representation of the correlation
function,

〈O(h)〉� =
∫
DhDh̄O(h) e−S�[h,h̄], (8)

with the action provided by

S�[h, h̄] =
∫

dtdr ih̄

[
∂h

∂t
− ν∇2h − λ

2
(∇h)2

]

− D

2

∫
dtdrdr′ih̄(t, r)V�(r − r′)ih̄(t, r′).

(9)

This is the field theoretical formulation of stochastic differ-
ential equations à la Martin, Siggia, Rose, Janssen, and De
Dominicis [45–47].

We then apply the Cole-Hopf transformation,

h(t, r) = 2ν

λ
ln φ(t, r), ih̄(t, r) = λ

2ν
φ̄(t, r)φ(t, r), (10)

which eliminates the nonlinear term in Eq. (9) and leads to

S�[φ, φ̄]

=
∫

dτdr φ̄(τ, r)

(
∂

∂τ
− ∇2

2

)
φ(τ, r)

− g2

4

∫
dτdrdr′φ̄(τ, r)φ(τ, r)V�(r− r′)φ̄(τ, r′)φ(τ, r′).

(11)

Here, τ ≡ 2νt and g2 ≡ Dλ2/(4ν3) > 0 are introduced so that
the resulting action becomes identical to the imaginary-time
action for attractive bosons interacting with a finite-range
potential. Therefore, we find that the role of an attraction
between bosons is played by the nonlinearity of the KPZ
equation, g2, which is adopted as the vertical axis of Fig. 1.

In order to recover the original KPZ equation with the
white noise, we take the limit of � → ∞, where the above
action is reduced into the local form of

S�[φ, φ̄] →
∫

dτdr
[
φ̄

(
∂

∂τ
− ∇2

2

)
φ

− g2

4
(φ̄φ)2 − g3

36
(φ̄φ)3 + · · ·

]
. (12)

Naively, only the two-boson contact interaction proportional
to g2 should be present, but higher-order terms allowed
by symmetries may be generated by integrating out short-
distance degrees of freedom. Such higher-order terms are
usually neglected by considering them to be irrelevant under
the renormalization group (RG). However, the three-boson
contact interaction proportional to g3 actually turns out to be
relevant in three dimensions, as we shall show below. We note
that the first quantized form of attractive bosons also follows
from the KPZ equation with the replica method, where the
number of replicas corresponds to that of bosons [41,48,49].

III. RENORMALIZATION GROUP ANALYSIS

The renormalizations of g2 and g3 can be performed ex-
actly to all orders in their perturbations [50]. For later use, the
boson propagator from Eq. (12) in the Fourier space is denoted
by

G(K ) = −1

ik0 − k2/2
, (13)

where K = (k0, k) is a set of frequency and wave vector.

A. Two-boson coupling

We first study the renormalization of the two-boson cou-
pling g2. The two-boson scattering amplitude T2(K ) with
center-of-mass K is obtained by summing up a geometric
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FIG. 2. Diagrammatic equation for the two-boson scattering am-
plitude. The single line represents the boson propagator in Eq. (13),
the dot the two-boson coupling g2, and the double line the scattering
amplitude in Eq. (14).

series of diagrams depicted in Fig. 2,

T2(K ) =
[

1

g2
−

∫
dd+1P

(2π )d+1

G(K/2 + P)G(K/2 − P)

2

]−1

.

(14)

After performing the integration over p0 with the residue theo-
rem, the integration over p under a sharp-cutoff regularization
|p| < � leads to

1

T2(K )
= �d−2

ĝ2
− �d−2

(d − 2)(4π )d/2�(d/2)

− �(1 − d/2)

2(4π )d/2

(
k2

4
− ik0

)d/2−1

+ O

(
k2

�4−d

)
.

(15)

Here, a dimensionless coupling ĝ2 ≡ �d−2g2 is introduced.
We now determine the cutoff dependence of ĝ2 by requir-

ing the scattering amplitude to be cutoff independent at low
frequency and wave vector for d < 4, where O(k2/�4−d ) in
Eq. (15) is negligible. From the Callan-Symanzik equation,(

∂

∂�
+ ∂ ĝ2

∂�

∂

∂ ĝ2

)
T2(K ) = 0, (16)

the β function immediately reads

�
∂ ĝ2

∂�
= (d − 2)ĝ2 − ĝ2

2

(4π )d/2�(d/2)
, (17)

where two fixed points are found. One is the infrared (IR)
fixed point at ĝ2 = 0 simply describing free bosons and
the other is the ultraviolet (UV) fixed point at ĝ∗

2 = (d −
2)(4π )d/2�(d/2) > 0 for d > 2. The latter describes critical
bosons, where a bound state of two bosons is formed with
zero binding energy. Therefore, there exists a transition from
unbound (ĝ2 < ĝ∗

2) to bound (ĝ2 > ĝ∗
2) bosons with increas-

ing the attraction. It is this binding transition of two bosons
for d > 2 that corresponds to the roughening transition (see
Fig. 1). The above RG equation is indeed consistent with that
obtained by the dynamical RG method applied to the KPZ
equation [9,10].

The two-boson scattering amplitude at the UV fixed point
has the scaling form of

T ∗
2 (K ) = − 2(4π )d/2

�(1 − d/2)

(
k2

4
− ik0

)1−d/2

, (18)

which is scale invariant under the dynamical exponent of
z = 2. Unless this scale invariance is broken by the higher-
order terms in Eq. (12), such critical bosons also enjoy the
nonrelativistic conformal invariance [51–55].

=

+=

+ t3t3T3 T3

t3

FIG. 3. Diagrammatic equations for the three-boson scattering
amplitudes. The single and double lines represent the same as in
Fig. 2, the square the three-boson coupling g3, and t3 and T3 are the
tree and full scattering amplitudes in Eqs. (20) and (19), respectively.

B. Three-boson coupling

We then turn to the renormalization of the three-boson
coupling g3 at the binding transition g2 = ĝ∗

2/�
d−2. The

three-boson scattering amplitude between a boson and a pair
of bosons from their initial (K/3 + P, 2K/3 − P) to their final
(K/3 + P′, 2K/3 − P′) is denoted by T3(K ; P, P′). Such a full
scattering amplitude solves an integral equation depicted in
Fig. 3,

T3(K ; P, P′)

= t3(K ; P, P′) +
∫

dd+1P′′

(2π )d+1
t3(K ; P, P′′)

× G(K/3 + P′′)T ∗
2 (2K/3 − P′′)T3(K ; P′′, P′), (19)

with the tree scattering amplitude provided by

t3(K ; P, P′) = G(K/3 − P − P′) + g3

9g2
2

, (20)

where lim�→∞ g2
∫

dd+1P/(2π )d+1[G(K/2 + P)G(K/2 −
P)]/2 = 1 following from Eqs. (14) and (15) is applied.
Because nonanalyticity in the lower-half plane of p′′

0
arises only from a pole of G(K/3 + P′′), the integration
over p′′

0 can be performed with the residue theorem,
which sets ip′′

0 = (k/3 + p′′)2/2 − ik0/3. Similarly,
by setting external ip0 = (k/3 + p)2/2 − ik0/3 and
ip′

0 = (k/3 + p′)2/2 − ik0/3, Eq. (19) is reduced into an
integral equation solved by the on-shell scattering amplitude
T3(K ; p, p′) ≡ T3(K ; P, P′)|ip(′)

0 =(k/3+p(′) )2/2−ik0/3. Finally, the
projection onto the s-wave component,

T (0)
3 (K ; p, p′)

≡ �(d/2)√
π �(d/2 − 1/2)

∫ π

0
dθ ′ sind−2 θ ′ T3(K ; p, p′),

(21)

brings the integral equation into

T (0)
3 (K ; p, p′)

= t (0)
3 (K ; p, p′)− 4 sin(πd/2)

π

∫ �

0
d p′′ p′′d−1 t (0)

3 (K ; p, p′′)

×
(

3p′′2

4
+ k2

6
− ik0

)1−d/2

T (0)
3 (K ; p′′, p′), (22)
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FIG. 4. RG flow of the dimensionless three-boson coupling ĝ3

toward IR (arrow) at varying spatial dimensions d . While a pair of IR
(blue) and UV (red) fixed points exists for 2 < d < 2.30 or 3.76 <

d < 4, they disappear for 2.30 < d < 3.76.

under a sharp-cutoff regularization |p′′| < � with

t (0)
3 (K ; p, p′) = 2F1

(
1
2 , 1; d

2 ; p2 p′2
(p2+p′2+k2/6−ik0 )2

)
p2 + p′2 + k2/6 − ik0

+ ĝ3

�2
.

(23)

Here, a dimensionless coupling ĝ3 ≡ �2g3/(9g2
2) is intro-

duced.
We now determine the cutoff dependence of ĝ3 by re-

quiring the scattering amplitude to be cutoff independent at
low frequency and wave vector. This can be performed only
numerically, but we find that our accurate numerical solution
agrees well with the approximate analytical solution presented
in Ref. [56] up to relative differences of 8%. The resulting RG
flow of ĝ3 is shown in Fig. 4, where two distinct behaviors are
found. For 2 < d < 2.30 or 3.76 < d < 4 [57], there exists
a pair of IR and UV fixed points and the former corresponds
to no three-boson interaction, while the latter to the binding
transition of three bosons beyond which their bound state is
formed. However, the two fixed points collide with each other
at d = 2.30 or 3.76 and then disappear into the complex plane
for 2.30 < d < 3.76. In particular, the RG equation for d = 3
can be obtained as

�
∂ ĝ3

∂�
= −1 + s2

0

2

(
ĝ2

3

c
+ c

)
+ 1 − s2

0

2
ĝ3, (24)

where s0 
 1.00624 and c 
 0.878658 are numerical con-
stants [58–60]. Because the β function is strictly negative, ĝ3

keeps on growing toward IR even when it vanishes at UV.
Therefore, the scale invariance under z = 2 as well as the
nonrelativistic conformal invariance at the binding transition
of two bosons is actually lost for 2.30 < d < 3.76 as a conse-
quence of the fixed-point annihilation [56,61].

Even more interestingly, the above RG equation for d = 3
can be integrated, leading to a limit cycle solution of

ĝ3 = c
1 − s0 tan(s0 ln �/�∗)

1 + s0 tan(s0 ln �/�∗)
, (25)

where �∗ is an integration constant [58–60]. Although ĝ3

varies under a continuous change of �, it does not under a
discrete change of � → e−πn/s0� (n ∈ Z) so as to obey the
discrete scale invariance. In particular, an infinite sequence of
divergences under RG in the three-boson coupling indicates
an infinite sequence of three-boson binding energies, En ∝
e−2πn/s0�2

∗, which is known as the Efimov effect [42,43].
While such discrete scale invariance for three bosons persists
for four bosons as well [62], whether it persists for an arbitrary
number of bosons or not remains unestablished.

IV. CONCLUSION

We now know that the KPZ equation can be mapped onto
quantum mechanics of attractive bosons with a contact inter-
action, where the roughening transition above two dimensions
corresponds to the binding transition of two bosons. On the
other hand, we also know that such critical bosons exhibit
the Efimov effect for 2.30 < d < 3.76, where the three-boson
coupling turns relevant under RG so as to break the scale
invariance down to a discrete one as a consequence of the
fixed-point annihilation. What does this imply in turn for the
roughening transition? Because the full scale invariance under
z = 2 is lost in Eq. (12), the asymptotic scaling of Eq. (3) with
χ = 0 and z = 2 is no longer expected. Instead, depending on
whether the discrete scale invariance persists for an arbitrary
number of bosons or not, we predict that the KPZ roughening
transition in three dimensions shows either the discrete scale
invariance or no intrinsic scale invariance, as indicated in
Fig. 1. Further descriptions of each possibility are as follows.

If the discrete scale invariance persists in Eq. (12) at the
critical point of g2, i.e., all higher-order terms denoted by
dots are irrelevant, it should be reflected in the roughening
transition as well. Therefore, the asymptotic scaling of Eq. (3)
is to be replaced with

〈[h(t, r) − h(0, 0)]2〉 ∼ Fs0

(
ln r�∗,

t

r2

)
, (26)

where Fs0 (ln r�∗, t/r2) = Fs0 (ln r�∗ + π/s0, t/r2) is a peri-
odic function of its first argument obeying the discrete scale
invariance under r → eπn/s0 r 
 (22.7)nr and t → e2πn/s0t 

(515.)nt . This is indeed a fascinating possibility, where the
Efimov effect emerges at the KPZ roughening transition!

On the other hand, if the discrete scale invariance is bro-
ken by some relevant higher-order term in Eq. (12) at the
critical point of g2, there should be no asymptotic scaling
intrinsic to the roughening transition. Therefore, depending
on from which side it is approached, the asymptotic scaling

012117-4



EFIMOV EFFECT AT THE KARDAR-PARISI-ZHANG … PHYSICAL REVIEW E 103, 012117 (2021)

of Eq. (3) is to be discontinuous at the roughening transition
either with χ = −1/2 and z = 2 (smooth side) or with χ > 0
and z = 2 − χ (rough side). This is a kind of first-order phase
transition and may be considered as a nonequilibrium analog
of the weak first-order phase transition as a consequence of
the fixed-point annihilation [63,64].

It is needless to say that our prediction should be tested
with accurate numerical simulations toward the roughening
transition in three dimensions [65–70] or more rigorous math-
ematical approaches [71–73]. Because the KPZ equation is
equivalent to the stochastic Burgers equation and a directed
polymer in a random medium [1], our prediction equally
applies to these problems, where the roughening transition
corresponds to turbulent and pinning transitions, respectively.

Our observation of the relevant three-boson coupling, which is
formally translated into η2 added to Eq. (1), also raises a ques-
tion about the well-definedness of the KPZ equation specific
to three dimensions. Finally, we conclude that the possible
connection between the two seemingly distinct subjects, the
KPZ equation in nonequilibrium statistical physics and the
Efimov effect in quantum few-body physics, uncovered in this
paper deserves further studies.
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