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Postprocessing techniques for gradient percolation predictions on the square lattice
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In this work, we revisit the classic problem of site percolation on a regular square lattice. In particular,
we investigate the effect of quantization bias errors on percolation threshold predictions for large probability
gradients and propose a mitigation strategy. We demonstrate through extensive computational experiments that
the assumption of a linear relationship between probability gradient and percolation threshold used in previous
investigations is invalid. Moreover, we demonstrate that, due to skewness in the distribution of occupation
probabilities visited the average does not converge monotonically to the true percolation threshold. We identify
several alternative metrics which do exhibit monotonic (albeit not linear) convergence and document their

observed convergence rates.
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I. INTRODUCTION

For statistical mechanics problems dealing with transport
properties and particle connectivity, percolation theory is an
important resource in predicting composite behavior and dis-
persion in random media and provides a tool for linking
microstructure and macroscopic material properties [1]. It is
often described in terms of the critical parameter at which
bulk connectivity is established, the percolation threshold p,.
Below the percolation threshold, large connected components
do not exist.

Percolation is a well-studied physical phenomena because
of its broad applicability, including the physical percolation
of fluids through rock [2—4], as well as resistor networks [5],
disease spread [6], and many problems in material science
[7,8]. Studies of these phenomena often focus on either lattice
or continuum systems. Lattice percolation is described by reg-
ular or irregular networks, where sites or bonds are occupied
with some probability p, and occupied sites form connected
pathways. Here we will focus on site percolation on a regular
square lattice.

For certain lattice systems, such as bond percolation on a
square lattice or site percolation on a triangular lattice, the
percolation threshold may be determined analytically. How-
ever, for many other lattice systems the percolation threshold
must be estimated numerically. Many techniques have been
developed over the years for evaluating the percolation thresh-
old in lattice systems including hull gradient [9—16], planar
crossing [17-21], histogram Monte Carlo [22], invaded cluster
algorithms [23,24], toroidal wrapping [4,25,26], cylindrical
correlation [27], dynamic programming [28], and transfer
matrices [29].

For simulations on finite-sized lattices the results must be
extrapolated to an infinitely large lattice. This is typically
done by taking advantage of known critical exponents for the
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given universality class [20,25,30]. For gradient percolation,
an analogous problem presents itself in the need to extrapolate
results to a gradient-free lattice. Unfortunately, this conver-
gence rate is not known to be related to the known critical
exponents.

It has been common practice when estimating the perco-
lation threshold via gradient percolation to evaluate to high
statistical precision p} for decreasing values of Vp, where
p; is the average value of p sampled during the hull walk.
For large values of Vp these have been observed to con-
verge approximately linearly to p. [11,16]. However, they do
not converge precisely linearly, and additional unconsidered
sources of error can complicate the estimation of the true con-
vergence rate. Consider, for example, the results in Fig. 1. On
a linear scale, the percolation threshold p? appears to converge
linearly to the known value p. as Vp — 0. However, non-
linear behavior is occurring for small probability gradients.
In fact, when examined more closely (insert), the percolation
threshold is observed to overshoot the known value, suggest-
ing that data commonly used for extrapolation are outside the
asymptotic regime.

In this work, we consider extremely small occupation prob-
ability gradients (as low as 655360~"). Smaller occupation
probability gradients should provide more accurate estimates
of the percolation threshold if commonly made assumptions
regarding convergence hold. Previous work using the gradient
hull method to predict percolation thresholds has used occupa-
tion probability gradients as low as 320~! [11], 4000~ [12],
10000~" [14], 12800~ [10], 16400~" [16], and 100000~
[15]. A linear extrapolation of Vp — 0 has been used in all
cases. In this work, we consider significantly smaller occupa-
tion probability gradients and demonstrate that the assumed
linear convergence rate as Vp — 0 is incorrect.

II. METHODS

A. Frontier walk

We calculate percolation thresholds using the gradient
percolation method [12]. In this method, lattice sites in the

©2021 American Physical Society
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FIG. 1. Convergence of the percolation threshold p! to the
known limit p, for site percolation on a square lattice is apparently
linear. However, for small probability gradients (inset), the behavior
is nonlinear and even nonmonotonic.

x-y plane are occupied with a probability p = p(y), where p
is chosen to vary linearly with y. The occupation probability
gradient creates an extended frontier between the percolating
and nonpercolating regions. The resulting frontier is roughly
perpendicular to the gradient of p (parallel to the x axis).
The frontier is generated and traversed using a self-avoiding
hull-generating walk, according to the rule that an occupied
site will be traversed by the walk and a unoccupied site will
reflect the walk as in [9]. Periodic boundary conditions are
used on the right and left edges of the domain to reduce the
size of the computational domain without limiting the length
of the walk.

Each simulation begins with an empty blank lattice. Sites
are neither occupied nor unoccupied until encountered by the
walk with the exception of sites in the left- and right-most
columns which are initialized to ensure that the walk proceeds
from left to right. The right-most column is initialized as
unoccupied while the left-most column is initialized as half
occupied and half unoccupied. The walk begins in the middle
of the left-most column at the first occupied site facing away
from the last unoccupied site.

The walk proceeds by looking to the left and determining
if that site is occupied or unoccupied according to a random
draw and the occupation probability of that site. The ith row
of sites on the lattice has a single occupation probability given
by p; = p(yi) = p(yo) + iV p. If the adjacent site is occupied,
the walk advances to the new site updating its direction. If
the adjacent site is unoccupied, the walk direction is rotated
90° to the right and the process is repeated. Once the walk
reaches the right edge of the computational domain, periodic
boundary conditions are used to wrap it back to the left side.
Sites one column to the right of the current walk position are
progressively reset to blank, allowing the walk to backtrack
up to the width of the computational domain The width is
required to be sufficiently large that the walk never backtracks
to a column which has already been reset. The walk is deter-
mined to have made one pass through the domain when the
left-most column is reset.

A single simulation consists of 501 passes through the
domain, with the data from the first pass being discarded to
eliminate any effect from the initialization procedure. The
width of the walk scales as Vp*’ and the height of the
computational domain is adjusted to always be approximately
an order of magnitude larger than the expected width of the
walk so that the walk never impacts the top or bottom bound-
ary. The width of the computational domain is set to 2048
for Vp > 1/40960, 4096 for 1/40960 > Vp > 1/163 840,
and 8192 for smaller gradients. The width of the domain is
increased for especially small gradients to guarantee that the
width of the computational domain is always greater expected
hull width.

The parameters of each simulation are the occupation prob-
ability gradient Vp and the minimum occupation probability
po = p(yo). Each simulation produces a count, N; for the
number of times each row was visited during the simulation.
The quantity > . % with Niots = Y _; N; has been used as an
approximation for the percolation threshold [11,12,16].

B. Quantization bias errors

The occupation probability of the sites visited is approxi-
mately normal,

p~N(u,o?). 1)

The average value of p sampled during the walk is an estimate
of the percolation threshold p. [11]. However, it is generally
a biased estimate because the discrete nature of the lattice
implies that, in general, ), 11\\,’[0’; -+ W, especially for large
probability gradients.

Within a given simulation, only p € pu: = {po, p1, ...}
values of the occupation probability may be observed, where
pi = po + iVp. Because only occupation probabilities cor-
responding to integer lattice rows may be observed, the
distribution of the observed occupation probabilities becomes

iG{O,l,-~-,Nrows_1}

pdf (p) = w(n, o2, p)s(p — po),

(2)
with
5 p+3Vp )
wirotpy= [ pdtea® pidp
p—3Vp
2 1 2 1
=\ u,o ,p—i—EVp —d\u,o ,p—EVp s
3)

where w is the mass probability function, § is the delta func-
tion, and & is the cumulative probability distribution function.
Using the discrete probability distribution function, the ex-
pected mean m is determined to be

1
2 § 2 §
m(u’aa apo)z UJ(/_L,U s)’i)Pi% ]vlpl
i Ntotalvp i
“)

The bias introduced by the discrete lattice | — m]| is a func-
tion of the minimum occupation probability p(yg), with | —
m| =0 {uw, u+ Vp/2} O par # 9.

The bias error introduced by the use of a discrete lattice is
analogous to bias errors due to finite resolution measurements
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[31]. The results of the simulations are more rightly viewed
as samples from this discrete distribution than the underlying
continuous distribution for p (although for sufficiently small
values of V p, this distinction becomes unimportant).

C. Dithering

Dither is the intentional application of noise (with the
intent of randomizing quantization error) commonly used in
the processing of digital images [32,33] and audio recordings
[34,35]. Here, we apply dither by randomly varying py in
order to randomize the bias errors introduced by the use of
a discrete lattice with nonzero V p. Without dither, py would
be fixed, i.e., po = po. With dither py ~ U (po, p1).

Because the expected value of the discrete distribution,
m, is a function of py, it may be possible to eliminate the
quantization bias error through dither. Again, the jth simu-
lation produces a set of data points (p!, N/). Without dither,
pl = pi = po + iVpforall j. With dither, each p! is different.
For each simulation, the expected value m; may be computed
through Eq. (4). The variation in m is now due to both the
dither and the stochastic nature of the underlying hull walk
process.

D. Distribution fitting

With or without dither, determining the central tendency u
of the sample comes down to a question of distribution fitting.
We will examine seven options, which we will denote pnom,

HUMLE> UMD1> KMD2> ~MDoos HMeds aNd fiMode- The first, unom,
uses the approach which has been used in all prior studies.

1. Method of moments

In all previous investigations of percolation thresholds us-
ing gradient percolation, quantization bias errors have been
ignored. The samples generated from the discrete distribu-
tion have been assumed to have been drawn from the true
distribution. The expected value of the discrete probability
distribution is used as the estimate of the percolation thresh-
old, which is equivalent to fitting a normal distribution to the
data through the method of moments (MoM) [36]:

1 N
J o ay LYocc
J ZN,'P,-NN,—-,

MMoM,j =
total total
1 o 2
UD%[OM, PN Z (N! pl — 1imom, ;)™ )

total i

Each simulation yields an expected value pmom, ; and many
simulations can be combined by simple averaging, since vari-
ations in Ny, are negligible and not correlated with the
variations in pmom, > €-8-,

Niims

1
MMoM = MMoM,  » (6)
j=1

Nsims .
where the width of the walk taken is proportional to the
standard deviation o and may similarly be found by averaging
the computed os.

2. Maximum likelihood

An alternative method for distribution fitting is maximum
likelihood estimation (MLE) [37]. In this approach, the values
for the parameters ; and o; are sought that maximize the
likelihood (or equivalently the log-likelihood) of the observed
data for each simulation j. For the continuous normal distri-
bution, the log-likelihood is given by

J

N,
In(L(p;,0))) = —%ml In (Znajz)

1 i 2
N 297 Z (N pl = )" (7
Joi

total

Differentiating and equating to zero yields

N.jpj
MMLE,; = Z #

i total
1 P 2
GI\Z/ILE,j =N Z (N/p! — me.j) " (3)
total
which is equivalent to the estimates obtained by MoM.
For the discrete distribution described in Sec. II B, the log-
likelihood is given by

In(L(w, o)) = Y Niln[w(u, o>, p)l, ©)
where w is given by Eq. (3). Similarly to MoM, variations in
Nyt are negligible and not correlated with the variations in
1, such that

UMLE = JAMLE, - (10

Nsims

For the results and discussion to follow, we will refer to
the minimum likelihood estimate for the discrete distribution

given by Eq. (10) as pmLE.

3. Minimum discrepancy

Another alternate estimate for u may be recovered by
minimizing the discrepancy || Nlm[:?v,; —w(p, o2, pp)ll, where
[I-]l is an arbitrary vector norm. From Eq. (3), the probabil-
ity mass function for the jth simulation is given by P(p =

pi) = w(p, o2, p{ ). The empirical probability mass function

. N J
is given by P(p = p) =

The discrepancy between the probability mass function and
empirical probability mass function is given by

D(u,0) = ||P— P, (11)

where ||-|| is an arbitrary vector norm. The parameters u
and o> may be determined as the values which minimize
the discrepancy. For example, using the Euclidean norm, the
objective function is defined as

D(uj,07) = IIP = Pll2

j 2

N: .
- Z(N—j le —w(u, oz,P‘f)) . (12

i total
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FIG. 2. Uncertainty in fyp, after 5.12 x 10'° steps (50 000 sim-
ulations of width 2048 or 25 000 simulations of width 4096).

Minimizing the objective function gives an estimate for
and ajz, and this process is repeated for each simulation. The
final estimate for p is found by averaging

N.
1 sims
MMDn = —— Y [MDn.j> (13)
Nsims =1

where n is either 1, 2, or oo depending on the norm used.

E. Median and mode

Due to the presence of skewness in the data, the classi-
cal statistical methods described in Secs. Il D 1 and II D 2
consistently underestimate the location of the distribution
peak, resulting in some distinctly undesirable consequences,
namely competing convergence rates that combine to yield

100¢
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5 Maximum Likelihood ”
© 401t * Median
% Mode
E _vp3/7
S
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107 ‘
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FIG. 3. Proportionality between o and Vp* for all distribution
fitting procedures.
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FIG. 4. Variation of unom,; With py for a large probability gradi-
ent, Vp = 1271,

the nonmonotonic convergence behavior seen in Fig. 1. Non-
monotonic convergence behavior may be avoided by using the
median or mode as the measure of central tendency (rather
than the mean) and the root-mean-square deviation about the
median or mode as a corresponding approximation of the hull
width. In this way, two alternative definitions of x and o are
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FIG. 5. Variation of puymoem,; With pg for a slightly smaller proba-
bility gradient, Vp = 407!,
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defined, with

UMed,j = (M),

M={p: Z Nij= Z N,]
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FIG. 7. Distribution of occupation probabilities of sites visited
during all simulations with Vp = 16~!. Asymmetric tails result in a
leftward shift of the mean relative to the median.
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vpi.

and
UMode,j = pé, &= argmaxiNij ,
| New ,
Ul\z/lode,j = NT Z (P{ - MMode,j) : (15)

total i=1

In Eq. (14), we use (-) to denote the average over the set.

F. Error estimation

The uncertainty in p is determined by examining the vari-
ance of p;. The samples p; are observed to be normally
distributed about p regardless of the method used to compute
(. The uncertainty in p is given by its standard error,

N.
1 sims
SEy= |———— ) I —nl. (16)
a Nsims(Nsims - 1) =1 !
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3
+ Data
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FIG. 9. Convergence of upom t0 Unmed a8 Vp — 0 is approxi-
mately linear.
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FIG. 10. Variation of error |u(Vp) — p.| with Vp on the square
lattice with von Neumann connectivity.

When using the method described in Sec. II D 3, the uncer-
tainty in u is observed to scale approximately with V p?-136()
as shown in Fig. 2. This exponent is not known to be related to
any of the known critical exponents for this lattice geometry.

III. RESULTS

As a case study, consider the canonical example of site
percolation on a two-dimensional square lattice with nearest
neighbor (von Neumann) connectivity. This system has been
studied extensively in the literature [12,25,29,38-40] and the
percolation threshold is known with high precision to be p, &~
0.592746 050792 1 [29]. Each of our simulations consists of
a frontier walk traversing the domain 501 times. We perform
a large number of simulations with occupation probability
gradients ranging from 8! to 655 360~!. For each simulation,
the number of sites visited per pass through the computational
domain is proportional to the width of the domain W and re-
lated to the probability gradient through the fractal dimension
of the hull walk [10]:

N total
w

In the simulations, we use the pcg64_k1024 random number
generator [41].

Equation (17) relates the total number of sites generated
per lattice width to the probability gradient Vp, where v =
4/3 describes the divergence of the correlation length and
D =1+ 1/v is the fractal dimension of the frontier [42].

x Vp™ ¥ = Vp P, (17)

TABLE I. Convergence rates of u — p,.

Rate (r) 95% confidence interval
Median 0.9864 0.9856 0.9873
Mode 0.8462 0.8421 0.8504
oo-norm 0.8279 0.8239 0.8320
2-norm 0.8263 0.8228 0.8298
1-norm 0.8176 0.8062 0.8291

TABLE II. Published estimates for the site percolation threshold
on a two-dimensional square lattice with von Neumann connectivity.

Method Estimate

Hull gradient [10] 0.5929 +3 x 107
Hull gradient [11] 0.592802 +1 x 107°
Hull gradient [12] 0.592745 +2 x 107°
Planar crossing [17] 0.5930 +1x 107
Planar crossing [18] 0.5927460 +5 x 1077
Histogram MC [22] 0.5928 +1x 10~
Toroidal wrapping [25]  0.59274621 +13 x 1078
Toroidal wrapping [4] 0.59274621 +13 x 1078
Planar crossing [19] 0.5927464 +5 x 1077
Toroidal wrapping [26]  0.927 +1x 107
Cyl. correlation [27] 0.5927465 +4 x 1077
Planar crossing [20] 0.59274603 +9 x 1078
Planar crossing [21] 0.59274598 +4 x 1078
Dyn. programming [28]  0.59274605095 +15 x 1071

Transfer matrices [29] 0.59274605079210 42 x 10~
£ Median 0.592746 +1 x 1075
= Mode 0.592745 +£7 x 107
E 1-norm 0.59274 +8 x 1073
2-norm 0.5927463 +8 x 107°
0o-norm 0.5927469 +1 x 1073

In the present numerical investigation, the exponent oy is
experimentally determined to be approximately 0.429, which
is consistent with the theoretical value of 3/7.

The width of the percolation hull has been shown to scale
as Vp~*/7 based on correlation length arguments [10]. Note
that this width is in lattice units. In concentration units,
the width (Pmax — Pmin) Scales as Vp*/7, as shown in Fig. 3.
The scaling of the hull width with Vp remains consistent
regardless of which distribution fitting procedure is utilized.

Figure 4 shows the effect that quantization bias errors can
have for large probability gradients and the effectiveness of
using dither to randomize the effect and produce a reasonably
normal output. Since the lattice offset is an arbitrary simula-
tion parameter, it is desirable for the resulting distribution to
be independent of that choice (no horizontal variation). Un-
fortunately, for large probability gradients this is not the case.
For smaller probability gradients (see Fig. 5), the effect is
significantly reduced. The dependence of uom, j ON pg decays
very rapidly as Vp — 0. While dithering is an effective tech-
nique for eliminating the bias associated with quantization, a
prudent alternative approach is likely to restrict simulations to
such sufficiently small probability gradients that the effect is
negligible. If large probability gradients are unavoidable, the
minimum discrepancy distribution fitting procedure success-
fully eliminates the quantization bias effect even for large Vp
as shown in Fig. 6.

While not pictured here, the results using the MLE distri-
bution fitting procedure are indistinguishable from those using
MoM. Both approaches define the central tendency using the
mean occupation probability of the sites visited. This is in
contrast to the median and mode approaches as well as the
minimum discrepancy approach, which appear to be more
robust to to skewness in the distribution than the mean-based
MoM and MLE approaches.
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TABLE III. Uncertainty and error in percolation threshold estimates for various values of V p using classical statistical methods.

MoM mean MLE mean Median Mode
vp! Nootal Skewness U= pe /L uncert. U= pe puncert.  u—p. guncert. [ —p. [ UNCert.
8 4x 10" —12x107' —13x1072 1x10° —13x103 1x10° 13x107" 1x10* 14x10%2 1x10*
9 4x 10" —11x107" —13x102 1x10°® —13x102 1x10% 1.1x107" 1x10™* 13x10%2 1x10~*
10 4x 10" —11x107" —13x107 8x1077 —13x107 8x1077 1.0x107" 9x107° 1.1x10%2 9x107?
11 Sx 10" —1.1x107' —13x10% 8x1077 —13x107 8x1077 93x102 8x10° 1.1x10%2 8x 1073
12 S5x 10" —1.0x 107" —12x107% 7x1077 —12x10% 7x1077 86x102 8x10° 98x 103 8x107°
13 5x 10" —1.0x107" —1.1x107% 7x1077 —1.1x10"% 7x1077 79x1072 7x107° 92x103 7x107°
14 Sx 10" —99x 102 —1.1x10% 7x1077 —11x107 7x1077 73x102 7x10° 85x103 7x107°
15 5x 10" —96x102 —1.0x10% 7x1077 —10x1023 7x1077 68x102 6x10° 80x103 6x107°
16 S5x 10" —94x102 —94x10* 7x1077 —-94x10* 7x1077 64x102 6x10° 75x103 6x107°
17 6x 10" —92x102 —-89x10* 7x1077 —89x10* 7x1077 6.0x102 5x10° 73x10% 5x10°°
18 6x 10" —89x102 —84x10* 7x1077 —-84x10* 7x1077 57x1072 5x107° 7.0x103 5x107°
19 6x 10" —87x102 —79x10* 7x1077 —-79x10* 7x1077 54x1072 5x107° 6.7x1073 5x107°
20 6x 10" —85x%x102 —75x10* 7x1077 —=75x10* 7x1077 51x10%2 5x107° 64x103 5x10°
21 6x 10" —84x102 —-7.1x10™* 7x1077 —71x10™* 7x1077 49x1072 4x107° 6.1x107% 4x107°
22 6x 101" —82x102 —68x10* 7x1077 —68x10* 7x1077 47x10%2 4x10° 58x103 4x10>°
23 6x 10" —80x102 —64x10"* 7x1077 —65x10* 7x1077 45x1072 4x107° 56x107% 4x107°
24 6x 10" —79x1072 —6.1x10™* 7x1077 —62x107* 7x1077 43x1072 4x107° 54x107% 4x107°
25 6x 101" —78x102 —59x10* 7x1077 —=59x10* 7x107 41x10%2 4x10° 52x103 4x10>°
40 8x 10" —63x1072 —34x10* 6x1077 —34x10* 6x1077 26x10%2 2x10° 35x103 2x107?
50 9x 10" —57x102 —27x10™* 6x1077 —27x10* 6x1077 21x1072 2x107° 29x107% 2x107°
80 1x102 —47%x102 —15x10* 6x1077 —=15%x10"* 6x107 13x10%2 1x107° 20x103 1x10°°
100 1x102 —42x10%2 —1.1x10* 6x1077 —11x10"* 6x1077 1.0x1072 9x10° 1.6x103 9x10°
160 1x102% —34x102 —-59x107° 5x1077 —-59x10° 5x107 65x103% 6x10° 1.1x10% 6x10°
200 2x 102 —31x102 —44x107° 5x1077 —44x107° 5x107 52x103 5x10° 9.1x10* 5x10°
320 2x 102 —25x%x1072 —22x107° 5x1077 —=22x107° 5x1077 33x103 3x10° 60x10* 4x10°
400 2x 102 —23x102 —-1.6x107° 5x1077 —16x10° 5x1077 26x1072 2x10° 51x10™* 3 x10°°
640 3x 102 —19x%x102 —66x10° 4x1077 —66x10° 4x107 1.7x103 1x10° 34x10* 3x10°
800 3x 102 —17x102 —-36x10° 4x1077 —=36x10° 4x1077 13x103 1x10° 28x10* 3x10°
960 3x10”% —1.6x1072 —26x10° 4x1077 —-26x10"° 4x1077 1.1x1072 1x10°® 24x10™* 3x10°°
1280 3x 102 —14x102 —13x10° 4x107 —13x10° 4x107 84x10* 8x107 19x10* 2x10°
1600 4 %102 —13x 1072 4.1 x 1077 4 x 1077 4.0 x 1077 4%x1077 67x10* 7x1077 1.6x107* 2x10°°
1920 4x102% —12x102 82x1077 4x1077 81x107 4x1077 56x10* 6x1077 13x10* 2x10°°
2240 4%x102 —1.1x 102 3.7 x 1077 4 x 1077 3.7 x 1077 4%x1077 48x 10 5x1077 12x10* 2x10°°
2560 5x10% —1.0x 1072 1.1 x 107 4 x 1077 1.1 x 107° 4%x1077 42x10* 5x1077 1.0x107* 2x10°°
3200 5x 102 —94x103 98x107 3x1077 9.8 x 1077 3x1077 34x10* 5x1077 88x10° 2x10°°
5120 6x 1022 —77x%x1073 1.4 x 107 3 x 1077 1.4 x 107 3x 1077 21x107% 4x1077 57x10° 2x10°°
6400 7x102% —7.0x 1073 6.1 x 1077 3 x 1077 6.2 x 1077 3x1077 1.7x107* 3x1077 50x10° 2x10°°
10240 8x 10?2 —57x1072 82x1077 3x107 81x107 3x1077 1.1x10* 3x1077 33x10° 2x10°°
12800 9x10? —52x103 95x1077 3x1077 9.4 x 1077 3x 1077 87x107° 3x1077 26x10° 2x10°°
20480 1 x 108 —43x1073 8.8 x 1077 3 x 1077 8.8 x 1077 3x1077 55%x107° 3x1077 1.8x10° 1x10°°
25600 1x10% —39x103 25x1077 3x1077 2.4 x 1077 3x1077 44x107° 3x1077 14x10° 1x10°°
40960 1x10% —3.0x1072 8.6x1077 2x1077 8.6 x 1077 2x 1077 28x%x107° 2x1077 93x10°% 1x10°°
51200 3x 102 —29x1073 2.4 x 1077 2 x 1077 2.3 x 1077 2x1077 22x1075 2x1077 79x10°% 9x 1077
81920 4 x10¥ —22x107 34x107 2x1077 3.3 x 1077 2x1077 14x107° 2x1077 43x10° 8x 1077
163840 5 x 108% —1.7x 1073 3.1 x 1077 1x 1077 3.0 x 1077 1x1077 72x107° 1x1077 3.1x10° 7x1077
327680 6 x 10 —1.4x 1073 1.2 x 1077 4 %1078 1.2 x 1077 4x10% 37x10°% 5x10% 1.8x10° 3x 1077
500000 7 x 10 —1.1x1072 92x10° 4x107% —79x107"" 4x10% 24x10° 4x10% 13x10°% 3x 1077
655360 8 x 10" —9.5x 10~ 19x107% 4x1078 1.9 x 1078 4%x10% 18x10° 4x10% 1.1x10° 3x1077

Despite the fact that the results of each simulation consis-
tently pass the Anderson-Darling normality test [43,44], there

is notable negative skewness

X (N pl - o)

(N

otal

1)01\3/10M, j

(18)

in the data. For large probability gradients, this skewness
is due to the walk encountering sites with an occupation

probability of 1 more often than sites with an occupation
probability of O (since p. > 1/2) as shown in Fig. 7. For
smaller probability gradients, the walk does not impact these

hard boundaries, yet the skewness remains as seen in Fig. 8.

Note that the skewness decays proportionally to the hull width
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TABLE IV. Uncertainty and error in percolation threshold estimates for various values of V p using the minimum discrepancy criteria.

1-norm 2-norm oo-norm
vp! W — Pe W uncertainty w— Pe [ uncertainty W — P /4 uncertainty
8 4.8 x 1073 1x107 59 x 1073 8 x 1077 7.7 x 1073 2 x 107
9 4.6 x 1073 1x 107 52 x 1073 8 x 1077 6.8 x 1073 4 x107°
10 2.9 x 1073 7 x 107° 4.7 x 1073 8 x 1077 6.1 x 1073 3x10°°
11 3.2x 1073 3x 107 43 x 1073 8 x 1077 55 %1073 2 x 107
12 40x 1073 4 x107° 4.0 x 1073 8 x 1077 52 x 1073 2 x 107°
13 4.6 x 1073 5% 107 3.7 x 1073 8 x 1077 4.8 x 1073 2 x 107
14 22 x 1073 4 x107° 3.5x 1073 8 x 1077 4.6 x 1073 1x107°
15 2.4 x 1073 5% 10°° 33 x 1073 7 x 1077 43 x 1073 1x10°°
16 2.4 x 1073 4 x107° 3.1x 1073 7 x 1077 4.1 x 1073 9x 1077
17 2.9 x 1073 4 x107° 2.9 x 1073 7 x 1077 3.9 x 1073 9 x 1077
18 1.8 x 1073 4 x107° 2.8 x 1073 7 x 1077 3.7 x 1073 1x10°°
19 1.6 x 1073 2% 107° 2.7 x 1073 7 x 1077 3.5x 1073 1x107°
20 1.7 x 1073 1x107° 2.6 x 1073 7 x 1077 3.4 x 1073 1x10°°
21 1.9 x 1073 2% 10°° 2.5x 1073 7 x 1077 3.2 x 1073 8 x 1077
22 2.0x 1073 2x107° 2.4 x 1073 7 x 1077 3.1 x 1073 8 x 1077
23 1.8 x 1073 2 x 1076 23 x 1073 7 x 1077 3.0 x 1073 8 x 1077
24 2.0x 1073 2% 10°° 22 x 1073 7 x 1077 2.9 x 1073 8 x 1077
25 1.4 x 1073 2% 107° 2.1 x 1073 7 x 1077 2.8 x 1073 8 x 1077
40 1.0 x 1073 9 x 1077 1.4 x 1073 7 x 1077 1.9 x 1073 7 x 1077
50 9.1 x 1074 9 x 1077 1.2 x 1073 6 x 1077 1.6 x 1073 7 x 1077
80 7.0 x 1074 8 x 1077 8.2 x 107 6 x 1077 1.1 x 1073 6 x 1077
100 5.4 x 1074 7 x 1077 6.9 x 107 6 x 1077 93 x 107 6 x 1077
160 3.6 x 10~ 6 x 1077 4.7 x 1074 5% 1077 6.4 x 107* 6 x 1077
200 3.1 x 10~ 6 x 1077 3.9 x 107 5% 1077 53x 107 6 x 1077
320 2.1 x 1074 5% 1077 2.7 x 1074 5% 1077 3.7 x 1074 5x 1077
400 1.8 x 107 5% 1077 22 x 1074 5% 1077 3.0x 107 5x 1077
640 12 x 107 5% 1077 1.5x 1074 4 x 1077 2.1 x 107 5% 1077
800 1.0 x 107 5% 1077 1.3 x107* 4 x 1077 1.7 x 107# 5x 1077
960 8.8 x 1073 5% 1077 1.1 x 107* 4 x 1077 1.5 %x 107* 5% 1077
1280 6.9 x 1073 4 x 1077 8.6 x 1073 4 x 1077 1.2 x 107 5% 1077
1600 5.9 x 1073 4 x 1077 7.3 x 1073 4 x 1077 9.7 x 1073 4 x 1077
1920 5.1 x 1073 4 x 1077 6.3 x 1073 4 x 1077 8.3 x 107° 4 x 1077
2240 44 %107 4 x 1077 5.4 x 1073 4 x 1077 7.2 x 1073 4 x 1077
2560 4.1 x 1073 4 x 1077 4.9 x 1073 4 x 1077 6.5 x 1073 4 x 1077
3200 3.4 x 1073 4 x 1077 4.1 x 1073 4 x 1077 5.4 x 1073 4 x 1077
5120 23 x 1073 4 x 1077 2.8 x 1073 3 x 1077 3.7 x 1073 4 %1077
6400 1.9 x 1073 3 x 1077 2.3 x 1073 3x 1077 2.9 x 1073 4 x 1077
10240 1.3 x 1073 3x 1077 1.5 x 1073 3x1077 2.0 x 1073 3x 1077
12800 1.1 x 107 3x 1077 1.3 x 107 3x 1077 1.7 x 1073 3x 1077
20480 7.6 x 1076 3 x 1077 8.9 x 107° 3x 1077 1.2 x 1073 3 x 1077
25600 5.9 x 107 3x 1077 7.0 x 107¢ 3x 1077 9.2 x 107 3x 1077
40960 45 %107 3x 1077 52 x 107 3x 1077 6.7 x 107° 3x 1077
51200 3.3x 107° 2 x 1077 3.9 x 107 2 x 1077 52 x 107 2 x 1077
81920 2.2 x 107 2 x 1077 2.7 x 107 2 x 1077 3.5x 107 2 x 1077
163840 1.3 x 107 1 x 1077 1.6 x 107 1 x 1077 2.0 x 107 2 x 1077
327680 7.4 x 1077 5x 1078 9.1 x 1077 5x 1078 1.1 x 1076 5% 1078
500000 4.5 x 1077 5% 1078 5.3 x 1077 4 x 1078 6.6 x 1077 5% 1078
655360 3.4 x 1077 4x1078 4.2 x 1077 4x 1078 5.5 x 1077 5% 1078

and that the shift uyeq — Umom converges consistently across
the entire range of Vp (Fig. 9), suggesting that both are related
to the asymmetric boundary effect.

It is well known that, of the proposed measures of central
tendency, the mean is most impacted by skewness. In this
case, the negative skewness of the data causes the mean to
be smaller than either the median or the mode. Crucially, for

this lattice geometry, the mean is sufficiently shifted by the
skewness to be below p, for even fairly small values of Vp
while the other measures are above p..

As Vp — 0 the skewness decreases proportional to Vp
and the resulting leftward shift of the mean is reduced as
shown in Fig. 9. The mean is observed to approach the median
approximately linearly as Vp — 0.

3/7
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Because p. is known so precisely for this system, the
convergence of |p. — u(Vp)| may be easily studied without
the added complication of determining p.. Figure 10 shows
the convergence of w to the true percolation threshold p. as
Vp — 0 for the various methods for computing the central
tendency. Note the steep dip in the error in the neighbor-
hood of Vp = 1280~" for the mean-based MoM and MLE
estimates, indicating where the error transitions from negative
to positive. To the right of this point, error introduced in the
distribution fitting procedure cancels the error from the finite
gradient producing unreliably accurate solutions. To the left of
this point, a slight divergence and then continued convergence
is observed, as the MoM and MLE values become sandwiched
between the minimum discrepancy values and p.. Although
the mean-based measures produce the most accurate estimates
of the percolation threshold for a given V p, the nonmonotonic
convergence behavior makes extrapolating to Vp = 0 using
these values, as has been done previously, invalid. Addition-
ally, the mean-based MoM and MLE values agree very well
with each other, indicating little benefit of treating the distri-
bution as discrete.

The median, mode, and minimum discrepancy values con-
verge monotonically to the true percolation threshold p, from
above according to a power law

w(Vp)=pc+cVp, (19)

as shown in Fig. 10. The mode and minimum discrepancy
values all display similar convergence rates r (see Table 1),
although the differences between them are statistically sig-
nificant. The convergence rates are known within the 95%
confidence intervals given in Table I. The median has a no-
ticeably faster convergence rate, but a larger error for a given
probability gradient over the wide range of probability gradi-
ents simulated.

While the minimum discrepancy metric using the 1-norm
generally provides the most accurate estimate of the percola-
tion threshold, it results in a significantly less well-behaved
optimization problem relative to the 2-norm or oco-norm,
which manifests itself in the jittery behavior observed at large
Vpin Fig. 10.

The mean-based MoM and MLE metrics are not power-
law convergent in the range of Vp frequently encountered in
gradient percolation studies. It is possible that they might be
power-law convergent for significantly smaller Vp, but it is
not possible to determine this from our data. Taken together,
the results of Figs. 8, 9, and 10 suggest that a fit of the form

umMoMm(VP) & pe 4+ ¢ Vp" + 2, Vp© (20)

might be appropriate. Unfortunately, the two power-law terms
are of opposite sign and similar magnitude, resulting in loss of
significance. As a result, our data are unable to conclusively
determine if Eq. (20) is accurate.

The three constants in Eq. (19) may be simultaneously fit
to the experimental data. Doing so produces the convergence
rates in Table I as well as the estimates of p. in Table II.

IV. CONCLUSIONS

We show that the average value of the occupation prob-
ability visited during a gradient percolation simulation is an
unreliable surrogate for the percolation threshold on the reg-
ular square lattice. While initially suspected to be related
to quantization effects, we demonstrate these effects to be
small for reasonably small occupation probability gradients.
For large probability gradients, dither may be an effective
tool for randomizing the quantization effects; however, when
metrics beyond the average occupation probability are used,
the dependence on lattice offset is essentially eliminated and
dither is likely unnecessary.

Unlike the average, the median, mode, and minimum dis-
crepancy metrics are all observed to converge monotonically
to the known value of the percolation threshold according to
a power law. The minimum discrepancy metric behaves very
similarly to the mode, both in terms of convergence rate and
absolute error as a function of probability gradient, with the
minimum discrepancy metric producing slightly more accu-
rate results but with a slightly slower convergence rate. Due
to the higher computational cost of computing the minimum
discrepancy metric, the mode is likely preferable for most
applications. The median has the fastest observed convergence
rate (approximately linear) and the largest observed absolute
error for a given probability gradient within the range consid-
ered. The net result of this is that all five approaches produce
similarly accurate and similarly uncertain predictions for the
extrapolated percolation threshold p, at Vp = 0 when fit with
a curve of the form u = p. 4+ cVp'.

Future work will seek to analytically derive relationships
for the observed convergence rates. It is suspected that these
rates should be related to the properties of the underlying
probability distribution and the known critical exponents. A
clue to these relationships may be found be examining how
these rates change for different lattice geometries.
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APPENDIX: DETAILED SIMULATION RESULTS

Here, we include detailed summaries of the experimental
results used in this paper. Table III includes the uncertainty
and error of percolation threshold predictions computed via
Egs. (5), (8), (14), and (15). Table IV includes the uncertainty
and error of percolation threshold predictions computed via
Eq. (13) for three common choices of n.
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