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Impact of food distribution on lifetime of a forager with or without sense of smell
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Modeling foraging via basic models is a problem that has been recently investigated from several points of
view. However, understanding the effect of the spatial distribution of food on the lifetime of a forager has not
been achieved yet. We explore here how the distribution of food in space affects the forager’s lifetime in several
different scenarios. We analyze a random forager and a smelling forager in both one and two dimensions. We
first consider a general food distribution, and then analyze in detail specific distributions including constant
distance between food, certain probability of existence of food at each site, and power-law distribution of
distances between food. For a forager in one dimension without smell we find analytically the lifetime, and for a
forager with sense of smell we find the condition for immortality. In two dimensions we find based on analytical
considerations that the lifetime (T ) scales with the starving time (S) and food density ( f ) as T ∼ S4 f 3/2.
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I. INTRODUCTION

Optimization of foraging for food spread in space is a prob-
lem that has been widely studied [1–4]. Many studies claim
that stochastic search yields optimal results [5–7] and that
random walks or Lévy flights can be used to model the forager
behavior [8–12]. Several models for a forager’s movement
behavior have been proposed including some that are based
on stimuli, memory, and cues from fellow foragers [4,13–15].

Recent work has suggested a new model where a forager
performs a random walk, however, the food is explicitly con-
sumed until the forager starves to death [16,17]. In this model,
the forager begins at some point on a lattice where each site
contains a unit of food. The forager then moves and eats the
food at the discovered site, leaving no remaining food in this
site. It continues to move throughout the region either return-
ing to sites without food or eating food at newly visited sites.
If the forager walks S steps without finding food and eating,
it starves to death. Notably, this process leads to inherent de-
sertification [18,19], as the forager eventually creates a desert
of visited sites among which it could move until starvation.
It was shown [16] that the lifetime of a forager, T , in one
dimension scales linearly with its starving time, S, the number
of steps it can walk without food. In two dimensions, however,
it scales approximately as T ∼ S2. Later work expanded this
model to cases where the food renews after some time [20],
where the forager eats only if it is near starvation [21,22], and
where the forager walks preferentially in the direction of a
nearby site with food [23,24].

Another recent study [25] has extended the starving forager
models to a forager with an explicit sense of smell that extends
to potentially longer ranges [26]. The contribution of an indi-
vidual food site to the overall smell in a given direction decays
with its distance d from the forager. While actual patterns
of odor diffusion are turbulent and vary in time in highly
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complex ways [27], it can assumed to be simplified by consid-
ering two realistic cases: power-law decay with distance and
exponential decay of smell. Power laws have been suggested
in the context of odor regarding perceptions and concentra-
tions, see for example the Steven’s Law [28,29]. Similarly, in
real applications, guidelines for setback distances for odorous
agricultural factories, have been applied based on a power-
law decay of concentration with distance [30]. We note also
that both power-law and exponential decay have been exper-
imentally found for odor patterns depending on the type of
wind, threshold concentration, and other conditions [27]. We
therefore consider in this paper both cases in order to better
understand the possible behavior of our model. We assume
here that the likelihood of the forager to walk in each direction
is proportional to the total smell in that direction. In Sanhedrai
et al. [25] it was shown that when there is a long-range smell
in one dimension, then under some conditions the probability
to live forever exists. This study [25] as all above studies,
considered the case where initially all the space is full of food.

In contrast to previous studies that analyzed lattices in
which food was at every site, here we analyze the more re-
alistic scenario where food is not everywhere. We consider
a general food distribution in space and also analyzed in
detail several specific distributions, and examine how different
distributions impact the lifetime of the forager. We find that
for a smelling forager [25] in one dimension, the chance of
immortality highly depends on food distribution. Moreover,
for a forager walking in two dimensions we find that the
existence of long-range smell increases the forager’s lifetime
dramatically from T ∼ S2 to T ∼ S4. We also find for the life-
time of a random forager in one dimension a general scaling
function that includes the density of food.

II. RANDOM FORAGER IN ONE DIMENSION

We aim in this section to find out how the distribution
of food in space influences the lifetime of forager in one
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FIG. 1. Illustration of forager in one dimension. (a) Here all food
is on the right of forager (filled circles), whereas on the left there is a
semi-infinite desert. Between food there are distances, l , distributed
according to P(l ). The forager walks randomly. We assume that the
forager just ate the food in its initial position, hence it can walk
S steps without eating. This case is studied in Sec. II. (b) In this
scenario food is located in both directions. Here we study in detail
the case of forager with long-range smell in Sec. III.

dimension, see illustration in Fig. 1. First, we consider a
forager walking randomly on a one-dimensional (1D) infinite
lattice. The forager hops to one of its two neighboring sites at
each time step. For getting full analytic solution we analyze
the case of a semi-infinite desert. In this scenario, at the be-
ginning there is food only at one side of the forager, while the
other side is a semi-infinite desert. We assume that between
positions of food there is a distance l distributed according to
an arbitrary distance distribution P(l ), and the forager walks
randomly. If the forager makes S steps without reaching any
food it starves and dies.

We are interested in the following quantities, the mean
lifetime of the forager, T , and N , the expectation value of
number of meals the forager consumed during its lifetime.
We study also τ , the expected time between meals given the
next meal occurs. To this end, we should first evaluate F (t ),
the likelihood of the forager to get food for the first time at
step t after it ate. It is well known [31,32] that the generating
function of F (t, l ), the first passage time probability to be at
x = 0 starting at x = l , is

F (z, l ) = α(z)l , (1)

where

α(z) = 1 − √
1 − z2

z
. (2)

Then, we consider x = 0 as the site with the closest food and
x = l as the site where the last meal happened.

Next, we note that the probability that the closest food is at
distance l given that the forager just ate is P(l ). Thus, the first
passage time probability, F (t ), is

F (t ) =
∞∑

l=1

P(l )F (t, l ), (3)

resulting in,

F (z) =
∞∑

l=1

P(l )F (z, l ) =
∞∑

l=1

P(l )α(z)l = G(α(z)), (4)

where

G(x) =
∞∑

l=1

P(l )xl , (5)

is the generating function of the distance distribution P(l ).
Note that if the distance l is always one, then G(x) = x,

and F (z) = α(z), which converges to the well-known result
for the scenario where space is filled with food [24].

After having F (z), following the steps in Ref. [24] (see
also Appendix A) we obtain for the average number of meals,
N , and for the average time between meals, τ ,

N = E (S)

1 − E (S)
, (6)

τ = π (S)

E (S)
. (7)

Thus, the average lifetime is

T = τN + S = π (S)

1 − E (S)
+ S, (8)

where E (S) is derived from the generating function E (z) =
F (z)/(1 − z), and the generating function of π (S) is �(z) =
zF ′(z)/(1 − z), where F (z) is given in Eq. (4).

To conclude, given the distribution of food in space P(l ),
we find the lifetime, T , and the number of meals, N . The term
which depends directly on P(l ) and determines T and N is
G(x). In the next Secs. we discuss three specific cases of food
distribution having three different functions for G(x).

A. Asymptotic behavior for large S

For finding the behavior of N , τ, T for large S we analyze
the asymptotic behavior of Eqs. (6), (7), and (8) by expanding
the corresponding generating functions in the limit z → 1 and
using the Tauberian theorems [33–35]. For a more detailed
analysis see Appendix B. We show that for the leading term,
the only property of food distribution which matters is the
mean distance between food, 〈l〉, in case it is finite. We de-
note the density of food by f = 1/〈l〉. We wish to get F (z),
Eq. (4), which determines all quantities. Because F (z) =
G(α(z)) we treat first α(z), and then G(x). An expansion of α

where z → 1 gives, α(z) ∼ 1 − √
2
√

1 − z. Therefore, we an-
alyze G(x) for x → 1. G(1) = 1 due to normalization, and if
the mean distance, 〈l〉, is finite, G′(1) = 〈l〉, and then using
Taylor expansion,

G(x) ∼ 1 − 〈l〉(1 − x). (9)

Having G(x) we obtain

F (z) = G(α(z)) ∼ 1 − 〈l〉(1 − α(z)) ∼ 1 − 〈l〉
√

2
√

1 − z.
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Using this, we can derive all other quantities (see Appendix
B) and obtain,

N ∼
√

π

2

1

〈l〉
√

S ∼
√

π

2
f
√

S,

τ ∼
√

2

π
〈l〉

√
S ∼

√
2

π

1

f

√
S,

T = N τ + S ∼ 2S. (10)

In Appendix B we find that the limit of large S is obtained
when S is large relative to the average distance between food
units 〈l〉 such that

√
S 	 〈l〉, or in term of the density S 	

(1/ f )2. The effect of f on the limit of large S is shown in
Fig. 9(d).

Next, we analyze the case in which 〈l〉 is infinite, and
we assume that the distance distribution behaves according
to P(l ) ∼ l−(1+β ), where 0 < β < 1 such that 〈l〉 = ∞, then
unlike Eq. (9),

G(x) ∼ 1 − A(1 − x)β. (11)

This result leads to

F (z) = G(α(z)) ∼ 1 − A(1 − α(z))β ∼ 1 − 2β/2A(1 − z)β/2,

which provides

N ∼ �(β/2)

2β/2A
Sβ/2,

τ ∼ β2β/2A

2�(2 − β/2)
S1−β/2,

T ∼
(

�(1 + β/2)

�(2 − β/2)
+ 1

)
S. (12)

Next we consider an edge case where β = 1, which presents
an infinite average distance between food as well. In this case
we get a logarithmic correction, as follows:

G(x) ∼ 1 + 1

ζ (2)
(1 − x) ln(1 − x). (13)

Using this we obtain

N ∼ �(1/2)
√

2ζ (2)

√
S

ln S
,

τ ∼ 1

�(1/2)
√

2ζ (2)

√
S ln S, (14)

T ∼ 2S.

The conclusions are that in the asymptotic limit of large
S the behavior depends if the mean distance between food
locations is finite or infinite. In the finite average case in-
terestingly, while the food distribution does not affect the
exponents of scaling relations, it does change the prefactors,
as follows, N ∼ f S1/2, τ ∼ f −1S1/2 and T ∼ S of Eq. (10),
where f = 1/〈l〉 is the food density.

However, food distribution with power-law tail, P(l ) ∼
l−(1+β ), where β < 1 (where 〈l〉 diverges), yields exponents
which depend on the distribution, i.e., N ∼ Sβ/2 and τ ∼
S1−β/2 rather than S1/2, while the scaling of T ∼ S1 is con-
served. The prefactor of T , however, depends on β, Eq. (12).
Where β = 1 a logarithmic correction appears, and N ∼√

S/ ln S and τ ∼ √
S ln S, Eq. (14).

FIG. 2. Random forager in one dimension. Comparison between
constant distance between food and random food distribution. (a) Re-
sults of the forager’s lifetime for random spread of food, Tf , from
theory (lines), Eqs. (4), (8) and (18), and simulations (symbols) aver-
aged over 103 realizations, show good agreement. In our simulations,
whenever the forager approaches the edge of the system we add new
sites in this direction, therefore we obtain identical behavior as an
infinite lattice. (b) Results of forager’s lifetime for a constant distance
between food units, TL . Lines represent the theory, Eqs. (4), (8), and
(16), and symbols are simulation results. Good agreement can be
observed. (c) Phase diagram that compares which food distribution
for the same 〈l〉 (same amount of food) is better and yields longer
lifetime of the forager. Above the black line the random spread gives
longer life, Tf , while below the line, where S is significantly larger
than 〈l〉, the constant distance enables longer lifetime, TL . In (c) the
lifetimes are calculated excluding the last walk which is always S
steps for any food distribution.

B. Examples of several distance distributions

1. Uniform distance between food locations

Here we consider the case where l , the distance between
food locations, is uniform, l = L. Namely,

P(l ) = δl,L. (15)

In this case

G(x) =
∞∑

l=1

δl,Lxl = xL. (16)

Note that when L = 1, then G(x) = x, and we recover the case
of food is everywhere [24].

Substituting Eq. (16) in Eq. (4), we have the theory for the
constant distance between food, shown in Fig. 2.

The scaling for large S is, according to Eq. (10), T ∼
S, N ∼ L−1S1/2, τ ∼ LS1/2.
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FIG. 3. Random forager in one dimension with random (uniform) and power-law food distributions. In the upper panels we show results
of theory for random uniform spread of food, Eqs. (4),(6)–(8), and (18). One can see that the scaling relations for large S in Eq. (10) are valid,
(a) N ∼ f S1/2, (b) τ ∼ f −1S1/2, and (c) T ∼ S. Analysis of the behavior for small values of f is presented in the Appendix in Fig. 9. In the
lower panels, (d),(e),(f), we show results of simulations for power-law distribution of distance between food, P(l ) = Al−(1+β ). The results agree
well with the theoretical scaling (dashed lines) found in Eq. (12), N ∼ Sβ/2, τ ∼ S1−β/2, T ∼ S, for β < 1, and with the scaling in Eq. (10),
N ∼ S1/2, τ ∼ S1/2, T ∼ S, for β > 1. The results of simulations have been averaged over 103 realizations. Note that in (f) for β = 0.6 the
factor T/S is close to 1.5 instead of 1.99 as found in Eq. (12). This is since the analytical approximation in Eq. (12) should be valid only for
much larger S.

2. Random spread of food with likelihood f of having
food in each site

Here we assume that randomly each site has food with
probability f . Hence, the chance that an arbitrary food unit
has, at a certain direction, the closest food at distance l , is

P(l ) = f (1 − f )l−1. (17)

Thus, Eq. (17) is the normalized distance distribution between
food. The average distance is related to the density by 〈l〉 =
1/ f . Thus,

G(x) =
∞∑

l=1

f (1 − f )l−1xl = f x

1 − (1 − f )x
. (18)

Note that when f = 1, then G(x) = x, and we recover the case
of food is everywhere [24].

Substituting Eq. (18) in Eq. (4) provides the theory for
random spread of food, shown in Figs. 2 and 3.

The scaling for large S is, according to Eq. (10), T ∼
S, N ∼ f S1/2, τ ∼ f −1S1/2.

For this food distribution, Eq. (17), we analyze in
Appendix C also the behavior of T, τ, N in the limit of small
f for given S, and we get T ∼ f , N ∼ f and τ ∼ const , see
Fig. 9.

In Fig. 2 we also study which way to spread the food in
space is better for the forager to live longer. Given the same
amount of food we compare the results of lifetime between
random spread of food and a constant distance between food.
The black line in the phase diagram, Fig. 2(c), distinguishes
between the two cases. For parameters below this line it is

better to have a constant distance while above this line random
distribution of food increases the lifetime of the forager. One
can see that if S 	 〈l〉 then constant distance between food
leads to a longer life time because random distribution will
create at some place a long gap which causes starving. On the
other hand, if 〈l〉 ≈ S then random spread is better, because
l might be many times lower than 〈l〉 ≈ S, and thus the for-
ager will probably get to cross this desert, unlike in constant
distance L ≈ S where the forager will starve very fast.

3. Power-law distribution of distances between food units

If the spread of food is uniformly random, the distances
between food are distributed exponentially as shown above,
Eq. (17). In reality in many cases food is clustered such
that most distances are short but few are long, what can be
described by a power-law distribution of distances between
food locations. Therefore, we assume now that P(l ) fulfills

P(l ) = Al−(1+β ), (19)

where A = 1/ζ (1 + β ), and ζ is Riemann zeta function.
In this case the generating function is

G(x) = A
∞∑

l=1

l−(1+β )xl = Li1+β (x)

ζ (1 + β )
, (20)

where Li1+β (x) is the polylogarithm of order 1 + β. Substitut-
ing Eq. (20) into Eq. (4) provides the theory for a power-law
distribution of distances between food units.

For β > 1 follows 〈l〉 < ∞, and for β � 1 follows 〈l〉 =
∞. We analyzed above both cases for the asymptotic
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behavior for large S yielding Eqs. (10) and (12). For β > 1,
the average is finite, and the scaling is N ∼ S1/2,τ ∼ S1/2

and T ∼ S, while for β < 1, N ∼ Sβ/2, τ ∼ S1−β/2, T ∼ S.
For β = 1, we obtain logarithmic corrections to the scaling,
N ∼ √

S/ ln S, τ ∼ √
S ln S and T ∼ S, Eq. (14). Results for

this power-law distribution and the scaling relations are pre-
sented in Fig. 3.

III. SMELLING FORAGER IN ONE DIMENSION

In this chapter we study the case where each unit of food
generates a smell felt by the forager and direct him towards
the food. We assume that the smell decays with the distance
from its source. All smell to the forager’s right is summed up
to FR, and all smell to the left, to FL. Then, the probability to
go right, pR, or left, pL, is determined according to FR and FL

simply by

pR,L = FR,L

FR + FL
. (21)

Note that the probabilities pR,L are normalized by the total
smell, and hence depend only on the ratio between the strength
of smell in both directions, and not on their absolute value.
Therefore, fast decay of smell causes more significant bias
towards the direction with closer food because the strength of
smell in the other direction is relatively much weaker.

Food is distributed all over a 1D infinite lattice, with some
distance distribution P(l ) between food locations. Here, given
P(l ), we focus on the question whether the forager has a non-
zero probability to live forever, p∞, or it is certainly mortal. To
study this question we analyze two decay functions of smell,
power-law decay and exponential decay.

A. Power-law decay of smell

Here we assume the decay of smell with distance is accord-
ing to d−α , where d is the distance between the locations of
the forager and the food units which are the sources of smell.
Note that if α � 1 the total smell to each side diverges, and
thus the forager walks completely randomly, a case that has
been discussed above. Therefore, we consider here only the
case α > 1 and investigate the impact of smell.

We want to explore whether immortality exists. The reason
that immortality might be possible is that as long as the forager
propagates in one direction, its bias to this direction gets
stronger because of the effect of smell. The question is if, and
in which conditions, this intensification is significant enough,
and the forager would live forever.

We define P(l ) to be the distribution of distances between
food units locations. In order to explore immortality, we treat
separately two cases: (i) limited: the original distance between
food cannot be larger than S according to P(l ), and (ii) unlim-
ited: the distance between food can be longer than S according
to P(l ). We first analyze these two types of distributions gen-
erally, and then consider the specific examples discussed in
the previous section under the corresponding category.

(i) Limited: The case where the distance between food
cannot be larger than S

For this case, we find that there is an immortality phase
which is dependent on the value of α. There is a critical value
αc below which the forager will die at finite time with prob-
ability 1, and above which there is a nonzero chance to live
forever. This αc, as we will show, depends on the distribution
of food. In order to find αc, we follow the steps in Ref. [25]
and adjust them to our model as follows.

First, we define some useful quantities. p∞ is the prob-
ability to live forever. φ(D) is the chance to get the next
meal, given the forager just ate and left behind a desert of
size D without food. pD is the probability to step towards the
desert. We will focus on large D because we are interested
here in long time walks, which is needed for determining if
the lifetime can be infinite.

Our goal is to determine if the probability to live forever,
p∞, is zero. Since p∞ is the probability to always reach the
next meal, hence

p∞ =
∞∏

n=1

φ(Dn), (22)

where n counts the meals, and Dn is the size of the desert
before the nth meal. Note that Dn+1 = Dn + ln is satisfied
where ln is distributed according to P(l ).

In order to find φ(D), we study first pD. After a long time of
walking there is a large desert of size D in one direction, thus
the likelihood to step towards the desert is small and estimated
[25] by

pD ∼ D1−α. (23)

Next, we denote φ(D, l ) as the likelihood to get a next meal
given the next food is at distance l , and the desert on the other
side is of size D. We consider long times for which D is very
large, hence pD is small, and thus the chance to starve 1 −
φ(D, l ) is small. Its leading term comes from the possibility
with a minimum number of steps, k, towards the desert among
S steps, such that the forager does not get the next food. This
k, in our model with food distribution, depends on l , thus we
denote it by kl . It was shown in Ref. [25] that the chance not
to escape a desert is

1 − φ(D, l ) ∼ pkl
D. (24)

Here, kl satisfies

(S − kl ) − kl � l − 1, (25)

or

kl �
S − l + 1

2
. (26)

Because kl is minimal,

kl =
⌈

S − l + 1

2

⌉
. (27)

The next step is to find φ(D), the desert escape probability
without knowing the distance l from the next food. We denote
l∗ as the maximal possible distance between food according
to P(l ). In this section, l∗ � S because Pr(l > S) = 0.
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Then, the likelihood to get a next meal, φ(D), where l is
not given, using Eq. (24), is

1 − φ(D) =
∞∑

l=1

[1 − φ(D, l )]P(l )

=
l∗∑

l=1

[1 − φ(D, l )]P(l ) ∼
l∗∑

l=1

pkl
DP(l ). (28)

Because pD is very small, the dominant term in the sum is the
one with the minimal exponent kl , which is for the largest l ,
i.e., l∗. Thus, recalling Eq. (23), we get

1 − φ(D) ∼ pkl∗
D ∼ D(1−α)kl∗ . (29)

Now we can evaluate p∞ using Eqs. (22) and (29),

p∞ =
∞∏

n=1

φ(Dn) = exp

( ∞∑
n=1

ln (φ(Dn))

)

∼ exp

(
−

∞∑
n=1

D(1−α)kl∗
n

)
. (30)

Thus, p∞ = 0 if and only if the sum in the exponent diverges.
Because the differences between Dn are bounded by S, the
sum diverges simply when,

(1 − α)kl∗ � −1. (31)

Thus,

αc = 1 + 1

kl∗
= 1 + 1⌈

S−l∗+1
2

⌉ , (32)

and p∞ = 0 if α � αc, i.e., the forager will definitely die at
finite time, while for α > αc there is a nonzero chance to
survive forever.

This result is not trivial because the naive guess might be
that αc should be determined by the average distance, 〈l〉,
however we find that the maximal distance, l∗, is the quantity
determining αc.

After treating the case of general distribution we consider
the simplest example obeying the condition l � S which al-
ready was discussed in the previous section.

1. Constant distance between food units. For a constant
distance between food units such that l = L � S, Eq. (32)
simply takes the form

αc = 1 + 1⌈
S−L+1

2

⌉ . (33)

Note that while in general critical exponents are not sensitive
to microscopic characteristics and change only with dimen-
sion or symmetry changes [36,37], here the critical exponent
is governed both by a quantitative feature of the forager
(S) and by a quantitative feature of the spread of food in
space (L).

In Fig. 4(a) we show the results for αc of theory and simula-
tions for a constant distance between food, L = 3. Figure 4(b)
shows the result of Eq. (33). Of course where L > S the
forager is mortal, however, for L � S each point has a critical
value of the exponent α above which the forager is immortal.

FIG. 4. Smelling forager with a constant distance between food
and power law decay of smell. (a) Results of theory (line between
two phases) and simulations (symbols) for forager in one dimen-
sion with power-law decay of smell, and food is distributed with a
constant distance, L = 3, between food units. The theory is taken
from Eq. (33), and the simulations have been performed over 108

realizations, where αc is determined by the maximal value of α for
which there was no forager which lived forever in any realization,
i.e., in all 108 realizations the forager died. The deviation between
theory and simulations is reasonable because the theory finds when
the probability to live forever is completely zero, whereas the simu-
lations find when the probability is small enough such that it does not
appear in the finite number of realizations, and thus it happens for a
slightly larger value of α. (b) Shows the dependence of αc on L and
S according to Eq. (33). Where L > S of course the forager dies after
one walk and it is mortal for any value of α. The color represents the
value of αc required for immortality which changes with L and S.

In our computer simulations, we summed up the smell until
far distance such that increasing the range does not affect the
value of FR or FL (smell forces) to a precision of 10−4.

(ii) Unlimited: The case where the distance between food units
can be larger than S

At this scenario, we show that there is no chance to live
forever because after each eating there is a nonzero probability
that l > S, and when this happens the forager will certainly
die. Hence there is no immortality phase, and the lifetime
T is finite for any α. Where α is large such that the forager
walks almost certainly towards the closest food, we can find
the lifetime T .

First, we prove that the forager is mortal in this case. Let us
observe the forager after creating a desert larger than S. After
each meal the likelihood to eat again is φ(D). The distance to
next food, l , is random and sampled from P(l ). If l > S it will
not eat again for sure. It is easy to see that φ(D) � 1 − Pr(l >

S), and that Pr(l > S) is nonzero, and independent on D or
on time.

Then, we approach to find p∞, the chance to live forever,
according to Eq. (22),

p∞ =
∞∏

n=1

φ(Dn) �
∞∏

n=1

[1 − Pr(l > S)] = 0. (34)

Namely, the forager will certainly die in a finite time for any
value of S and α.

Since the lifetime is finite, we wish to calculate the average
number of meals, N , for large α. We assume that α is large
such that the forager steps always towards the closest food.
Hence, the only chance to die is if l > S. Therefore, the
chance to reach the next meal is φ = 1 − Pr(l > S), and from
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the average of geometric distribution follows

N = 1

Pr(l > S)
. (35)

Next, we study the scaling derived from Eq. (35) for two
examples of distance distributions discussed above, random
and power law since they fall under the category of the case
where l can be larger that S.

1. Random spread of food in space. In this case we assume
there is a likelihood f of having food in each site. The result
is that the distribution of distance between food is geometrical

P(l ) = f (1 − f )l−1. (36)

It is clear that Pr(l > S) > 0. Thus, there is no immortality
regime. Let us find Pr(l > S),

Pr(l > S) =
∞∑

l=S+1

P(l ) = f
∞∑

l=S+1

(1 − f )l−1 = (1 − f )S.

(37)
Therefore, based on Eq. (35), N for large α is,

N =
[

1

(1 − f )

]S

. (38)

The average time between meals is smaller than 〈l〉 because
it is an average given l � S. However, it is on the order of
magnitude of 〈l〉. Therefore, T = N τ + S obeys the same
scaling as N .

Thus, for large α,

T ∼ [1/(1 − f )]S, (39)

namely the mean lifetime increases exponentially with S.
2. Power-law distribution of distances between food units.

Here, we assume that P(l ) satisfies

P(l ) = Al−(1+β ). (40)

In this case,

Pr(l > S) =
∞∑

l=S+1

Al−(1+β ) ≈ A
∫ ∞

S+1
l−(1+β )dl

= A

β
(S + 1)−β. (41)

Therefore, plugging this in Eq. (35),

N ∼ Sβ. (42)

Here τ might be dependent strongly on S because the tail is
not neglected, so it matters where it is cut,

τ =
S∑

l=1

lAl−(1+β ) ≈ A
∫ S

1
l−βdl = A

1 − β
(S1−β − 1)

∼
{

S1−β, 0 < β < 1
1, β > 1

. (43)

Therefore,

T = N τ + S ∼
{

S, 0 < β < 1
Sβ, β > 1

. (44)

FIG. 5. Sketches of theory results for lifetime of smelling forager
in one dimension. (a) If the maximal possible distance between
food (l∗) is not greater than the starving time (S), then there is αc

above which the average lifetime is infinite. Its value depends on l∗

according to Eq. (32). (b) If the distance between food can be larger
than S, there is no immortality regime. However, the lifetime has a
saturation for large α, and in this region the scaling of T (S) is found
for power-law distribution of distance between food, Eq. (44), and for
random spread of food, Eq. (39). For α < 1 the total smell diverges,
and hence the walk is random, thus the scaling is as in Eqs. (10)
and (12).

Summary of all cases

We denote l∗ as the maximal l with nonzero probability.
When l∗ � S, then there is αc above which p∞ > 0, there-
fore T = ∞, and αc depends on the distance distribution as
αc = 1 + 1/�(S − l∗ + 1)/2. Therefore, T (α) is an increas-
ing function that diverges at αc as illustrated in Fig. 5(a).

When l∗ > S, then T < ∞ for any α. Then we get that
T (α) is an increasing function with α, starting at the com-
pletely random case (α < 1) where the scaling is T ∼ S as in
Eqs. (10) and (12) and approaching a saturation where α is
large such that the forager always tends towards the closest
food. Then the scaling is a power law or exponential as in
Eqs. (39) and (44). See Fig. 5(b).

B. Exponential decay of smell

Here we assume the decay of smell with distance is accord-
ing to exp(−λd ). The results for this case can be studied using
the same formalism as in Sec. III A for power-law decay.

For unlimited food distribution that allows l > S, the anal-
ysis to obtain Eq. (39) is the same for exponential and
power-law decays, hence the forager is mortal. The analysis of
Eq. (44) is valid for exponential decay with large λ the same
as for power-law decay with large α.

For limited food distribution where all l < S, similar steps
as in power law decay can be performed to obtain Eq. (30).
Then, for exponential decay of smell, the sum in the exponent
is exponential, therefore it converges for any λ > 0. Thus, in
contrast to Eq. (32) where we get critical αc, in the case of
exponential decay of smell there is no critical λ, and p∞ > 0
for any λ > 0, and the mortal regime vanishes. The intuitive
explanation is that since fast decay causes more significant
bias towards close food, and for the power-law function which
decays fast enough (α > αc), we get immortality, exponential
decay which is faster than any power-law decay also provides
immortality for any λ > 0.
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FIG. 6. Illustrations of forager in two dimensions. (a) The forager dies when it creates a loop and goes inside. The loop should be large
enough such that after it eats most of the food inside and find itself at the middle of desert, it does not succeed escaping the desert in S
steps. At this situation, the long-range smelling forager and one with short range are very different but can be mapped. While the long- range
smelling forager goes directly towards the closest food (blue straight line), the short-range one walks randomly (red random path). Typically
the random walker reaches a distance of ∼√

S in S steps, while the direct walk reaches a distance S. Hence the short-range smelling forager
should have starving time of S2 to die at the same trap as the long-range smeller forager with starving time of S. Therefore, we obtain Eq. (45).
(b) Illustration of a constant distance between food in the 2D lattice where L = 2. The filled circles represent food, while the white empty ones
represent empty sites. Theory for this case is given in Eqs. (48) and (52). Simulation results of this case are shown in Fig. 8. (c) Illustration of
uniform random spread of food in two dimensions with density f ≈ 1/2. Simulation results for this scenario are presented in Fig. 8.

IV. FORAGER IN TWO DIMENSIONS

In this section we analyze a forager walking in a 2D
infinite lattice. We consider several types of walk and com-
pare between them, random walk, short-range smell (the
forager detects only sites in distance one), long-range smell,
and complete bias towards smell. We also consider several
distributions of food in space, food is everywhere, food is
located in constant distances, and random spread of food with
density f .

A. Space is full of food

We define a forager with short-range smell as one that if
there is food in a site next to it, it steps towards food with
probability 1. However the forager does not consider food
that are at distances more then 1. Such a forager has been
investigated in Refs. [23,24], and it was shown that it dies
because of traps it creates to itself, i.e., when the forager closes
a loop, it might go inside at the next step, and then eat all food
inside, until it finds itself at the middle of a desert without food
which it created. Then, since there is no close food it walks
randomly. If the loop of the trap is large enough the forager
might starve before it reaches the edge of its self made desert,
see Fig. 6(a).

In contrast, a smelling forager senses also far food. Let us
consider a forager that steps with probability 1 to the direction
of the closest food. We call this forager the perfect smelling
forager. This forager walks in two dimensions exactly the
same as the short-range smell forager we mentioned above,
except that if it finds itself in a middle of a desert it does not
walk randomly but walks certainly towards the closest food,
see Fig. 6(a).

We next consider the relation between these two cases,
short-range smelling and perfect smelling. We argue, using a
rigorous mapping, that perfect smelling with starving time S,

is similar to a short-range smelling forager with starving time
S2. The reason is that the short-range smelling forager walks
randomly inside the trap, and therefore reaches in S steps
a distance of order

√
S, while the perfect smelling forager

moves in a straight line, thus reaches a distance S in S steps,
see Fig. 6(a). The conclusion is that if the function of lifetime
of a short-range smelling forager is known to be Tshort (S), then
for the lifetime of the perfect smelling forager,

Tperfect (S) ∼ Tshort (S
2). (45)

Computer simulations suggest, as presented in Fig. 7(b),
that for greedy forager with short-range smell the mean life-
time scales similar to a random forager [16] approximately as

Tshort ∼ S2. (46)

Thus, according to our prediction in Eq. (45), the mean
lifetime of a forager with long range smell should scale
approximately as

Tperfect ∼ S4, (47)

and indeed this result is supported in Fig. 7(c).
The meaning of Eqs. (45)–(47) is that the difference be-

tween short- and long-range of smell is dramatic, the exponent
changes from 2 to 4 and the life-time increases tremendously
for perfect smelling forager. The result of Eq. (47) will serve
us in the next chapter where we study a forager with long-
range smell in two dimensions with food distribution in space.

B. Space is not full of food

Here we consider a forager in two dimensions given some
distribution of food in space. We focus on forager walking
according to its sense of smell. We explore two distributions
of food in space, constant distance L between food, Fig. 6(b),
and random uniform spread of food with density f , Fig. 6(c).
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FIG. 7. Lifetime in two dimensions where the space is full with food. We show the scaling between lifetime, T , and starving time, S, at
three cases: (a) random walk, (b) short-range smell (steps towards food only if distance is one), and (c) perfect smelling forager (steps towards
the closest food). It can be seen that for random forager and short-range smelling forager the scaling is about T ∼ S2 when S is getting large,
while perfect smelling forager has scaling of about T ∼ S4. This confirms our theoretical argument that the transformation from short-range
smell to perfect smelling should be expressed by S → S2, see Fig. 6(a) and Eq. (45). The insets suggest that the exponents smaller than 2 and
4 are due to finite size systems, and when S increases they reach the values 2 and 4, respectively.

1. Constant distance between food locations

Let food located in two dimensions at points (nL, mL)
where m and n are all the integers, and L is the dis-
tance between neighboring food units. The forager starts at
point (0, 0) and its steps to right/left/up/down have size 1.
We call this scenario a constant distance L between food in
two dimensions, see Fig. 6(b).

Now, let us consider a smelling forager with a power-law
decay of smell, d−α , with large exponent α, or exponential
decay, e−λd , with large λ, namely the bias towards the food
is very high and the forager walks almost always towards the
closest food. We note that in this case, the walk is same as
for constant distance L = 1 (food is everywhere), except that
each step now is replaced by L straight steps. Therefore,

Tspread(S, L) = L · Tspread(S/L, 1) = LTfull (S/L), (48)

where Tfull is the life-time of smelling forager in space full
with food. Thus, assuming a smelling forager in full space
scales with S as,

Tfull (S) ∼ Sγ , (49)

then

Tspread(S, L) = LTfull (S/L) ∼ L(S/L)γ = L1−γ Sγ , (50)

or in a different shape, the scaling of T , S and L, for perfect
smelling forager in two dimensions with constant distance

between food, is

T

L
∼

(S

L

)γ

. (51)

This scaling is supported in Fig. 8(a) where it can be seen
that all points of different S and L, where S/L is large, lay
on the same curve when plotting T/L vs S/L, which validates
the scaling we predicted theoretically in Eq. (48). Using com-
puter simulations we find that T ∼ Sγ for large S, and γ ≈ 4.
Hence, for a large ratio S/L, we expect

Tspread(S, L) ∼ L−3S4. (52)

In terms of the density of food f , rather than the distance
between food L, using the simple relation

f = 1/L2,

we obtain the scaling

Tspread(S, f ) ∼ f
γ−1

2 Sγ ≈ f 3/2S4. (53)

Note that this scaling is valid for large S/L, or, for large S
√

f ,
i.e., for f 	 S−2.

2. Random uniform spread of food in space

Here we assume that at each site in 2D square lattice there
is food with likelihood f . This probability f is, therefore,
the density of food, see the illustration in Fig. 6(c). The
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FIG. 8. Forager in two dimensions where space is not full with food. (a) Here the distance between food units is constant, L, and the forager
walks perfectly according to smell, i.e., towards the closest food. We show that the scaling with the distance L is T/L and S/L when S/L is
large, hence all points lay approximately on one curve. This supports Eq. (48) derived from theoretical considerations. This scaling allows us
to obtain T ∼ L−3, see Eq. (52). The dashed line represents the expected approximated slope according to the result of Fig. 7(c). (b) Here food
is distributed randomly with density f , see Fig. 6(c). The forager walks perfectly according to smell. We examine in this case the scaling of T
vs f . One can see that the approximated scaling in Eq. (53), T ∼ f 3/2, found for constant distances, is approximately valid also for a uniform
random food distribution.

forager walks according to a long-range smell with high bias,
such that it steps towards the closest food. In Fig. 8(b) we
show the results of the lifetime of such a forager for differ-
ent values of density f . One can see that the approximated
scaling we found for a constant distance between food in the
previous section, Eq. (53), T ∼ f 3/2, using the combination
of simulations results and theoretical considerations, works
well also for different cases of food distribution in space.

V. DISCUSSION

We have studied a forager that walks in space where food
is distributed in several fashions, a constant distance between
food units, uniform random distribution, and power-law dis-
tribution of distances. We have considered foraging both in
one and two dimensions. Moreover, we have treated a few
types of forager’s walk; random, according to short-range
smell and according to long-range smell. We studied two cases
of long-range smell. Smell decaying exponentially and as a
power law. We found new scaling relations between forager’s
lifetime, number of meals, the starving time and the density
of food in one and two dimensions. We also found how the
immortality of a long-range smelling forager in one dimension
depends on the distribution of food in space.

Further work could compare these results to experimental
measurements, which also might lead to additional extensions
to the model such as exploring cases incorporating the fact
that food often appears in patches [38]. Likewise, multiple
foragers living in the region could be considered with all of
them depleting food sources [15]. Another interesting future
direction can be to explore how the results here change if
the forager performs a Lévy flight instead of constant steps
with length 1, since it has been shown that Lévy flights
may importantly change foraging efficiency in asymmetric
landscapes [39]. Further theoretical studies could investigate
how different embedded spaces affect our results, for instance,
lattices of higher dimensions and random networks.
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APPENDIX A: DERIVATION OF N , τ, T USING F (z)

In this Appendix we summarize what is relevant to us for
derivation of N , τ and T based on Ref. [24]. After having the
generating function F (z), we define E (S) as the probability
of a random forager to escape the desert, namely to get food
before starving, given it starves after S steps without food, and
it just ate. One should note that

E (S) =
S∑

t=1

F (t ), (A1)

what implies regarding the generating functions

E (z) = F (z)

1 − z
. (A2)

Next, we find the distribution of N , number of meals which is
a geometric distribution,

pN = (1 − E )EN . (A3)

Hence for the average, N = 〈N〉,

N = E

1 − E
. (A4)

Then, to evaluate τ , we note that

τ =
∑S

t=1 tF (t )∑S
t=1 F (t )

=
∑S

t=1 tF (t )

E (S)
≡ π (S)

E (S)
. (A5)
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Therefore, we approach to find π (S) via its generating func-
tion, which obeys

�(z) = zF ′(z)

1 − z
. (A6)

Finally, for the lifetime of the forager we obtain

T (S) = τN + S = π (S)

E (S)

E (S)

1 − E (S)
+ S = π (S)

1 − E (S)
+ S.

(A7)

To summarize, given the distribution of food in space P(l ),
we find G(x), which provides F (z). Using the last one, we
find N , τ, T .

APPENDIX B: ASYMPTOTIC BEHAVIOR WHERE S IS
LARGE IN ONE DIMENSION

We analyze for general distance distribution between food
P(l ) the asymptotic behavior of T,N and τ for large S. For
this goal we observe the limit z → 1 and use the Taube-
rian theorems [33–35]. α(z) fulfills α(1) = 1. Close to 1
α(z) ∼ 1 − √

2
√

1 − z. In cases for which the mean distance,
〈l〉, is finite, G′(1) = 〈l〉. In addition, G(1) = 1. Therefore,
for x → 1

G(x) ∼ G(1) + G′(1)(x − 1) = 1 − 〈l〉(1 − x). (B1)

Hence, for z → 1

F (z) = G(α(z)) ∼ 1 − 〈l〉(1 − α(z)) ∼ 1 − 〈l〉
√

2
√

1 − z.
(B2)

Hence,

E (z) = F (z)

1 − z
∼ 1

1 − z
−

√
2〈l〉√

1 − z
. (B3)

Thus,

E (S) ∼ 1 −
√

2〈l〉
�(1/2)

1√
S

= 1 −
√

2〈l〉√
π

1√
S
. (B4)

Hence,

N = E

1 − E
∼

√
π

2

1

〈l〉
√

S. (B5)

In addition,

�(z) = zF ′(z)

1 − z
∼

√
2〈l〉

2(1 − z)3/2
. (B6)

Therefore,

π (S) ∼
√

2〈l〉
2�(3/2)

√
S =

√
2〈l〉√
π

√
S. (B7)

And thus,

τ = π

E
∼

√
2〈l〉√
π

√
S. (B8)

Then,

T (S) = π (S)

1 − E (S)
+ S ∼ (

√
2〈l〉/√π )

√
S

(
√

2〈l〉/√π )/
√

S
+ S = 2S.

(B9)

1. The condition for large S

The expansion we performed above is valid for the limit
S → ∞, namely much larger than any other quantity of the
problem. However, we want to find out what can be regarded
as large S. For this purpose, we go back to Eq. (B4), and
recognize that we assumed

1 	
√

2〈l〉√
π

1√
S
. (B10)

Assuming this we can expect the next terms are negligible.
Therefore, we extract the condition for large S relative to other
quantity of the problem,

√
S 	 〈l〉. (B11)

In terms of food density f = 1/〈l〉 we obtain

S 	 (1/ f )2. (B12)

Figure 9(d) shows how the limit of large S changes with
different densities f , when T/S approaches to a constant value
slower for small f .

2. Power-law distance distribution

Here we consider power law distance distribution P(l ) =
Al−(1+β ) between food units, where A = 1/ζ (1 + β ), and ζ

is the Riemann zeta function. The generating function of this
distribution is

G(x) = A
∞∑

l=1

l−(1+β )xl = Li1+β (x)

ζ (1 + β )
, (B13)

where Li1+β (x) is the polylogarithm of order 1 + β. Here 〈l〉
is not finite in all cases, and one should separate the treatment
into two cases. The expansion of polylogarithm around 1 is

Li1+β (x) ∼
⎧⎨
⎩

ζ (1 + β ) − ζ (β )(1 − x), β > 1
ζ (1 + β ) + �(−β )(1 − x)β, 0 < β < 1
ζ (2) + (1 − x) ln(1 − x), β = 1

.

(B14)
For β > 1, the mean distance is finite, and we already ob-
tained the asymptotic behavior in this case above.

For β < 1 we analyze the asymptotic behavior in large
S. To this end, we expand the relevant functions in the limit
z → 1. At z → 1, α(z) ∼ 1 − √

2
√

1 − z, and therefore

F (z) = G(α(z)) = Li1+β (α(z))
ζ (1 + β )

∼ 1 + �(−β )

ζ (1 + β )
(2(1 − z))β/2 ∼ 1 − C(1 − z)β/2.

(B15)

Next, for the generating function of E (S),

E (z) = F (z)

1 − z
∼ 1

1 − z
− C(1 − z)β/2−1. (B16)

Thus,

E (S) ∼ 1 − C

�(β/2)
S−β/2. (B17)
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FIG. 9. Random forager in one dimension with uniform random food distribution. (a)–(c) We can see the two limits of small densities f
and large ones. (a) The quantity N is linear with f while (b) τ approaches to a constant for small f and then scales as 1/ f when f tends to
1, and (c) T is linear with f for small f and then approaches to a constant. (d) The linear scaling of T versus S is valid for large S where it
is large relative to the average distance between food units such that

√
S 	 〈l〉, which in terms of f becomes S 	 (1/ f )2. Therefore T/S is

getting constantly slower for small values of f . However, this figure shows the nonleading correction while in Fig. 3(c) one can see only the
effect of the leading term.

Hence,

N = E

1 − E
∼ �(β/2)

C
Sβ/2. (B18)

In addition, for the generating function of π (S)

�(z) = zF ′(z)

1 − z
∼ Cβ

2(1 − z)2−β/2
. (B19)

Therefore,

π (S) ∼ Cβ

2�(2 − β/2)
S1−β/2. (B20)

Then

T (S) = π (S)

1 − E (S)
+ S ∼ Cβ

2�(2 − β/2)
S1−β/2 �(β/2)

C
Sβ/2+S

=
(

�(1 + β/2)

�(2 − β/2)
+ 1

)
S. (B21)

In the edge case β = 1, we get at z → 1

F (z) = G(α(z)) = Li2(α(z))
ζ (2)

∼ 1

+ 1

ζ (2)

√
2(1 − z) ln

√
2(1 − z)

∼ 1 + C
√

1 − z ln(1 − z).

(B22)

Next, for the generating function of E (S),

E (z) = F (z)

1 − z
∼ 1

1 − z
+ C

ln(1 − z)√
1 − z

. (B23)

Thus,

E (S) ∼ 1 − C

�(1/2)

ln S√
S

. (B24)

Hence,

N = E

1 − E
∼ �(1/2)

C

√
S

ln S
. (B25)

In addition, for the generating function of π (S)

�(z) = zF ′(z)

1 − z
∼ −C ln(1 − z)

2(1 − z)3/2
. (B26)

Therefore,

π (S) ∼ C

2�(3/2)

√
S ln S. (B27)

Then

T (S) = π (S)

1 − E (S)
+ S ∼ 2S. (B28)

APPENDIX C: ASYMPTOTIC BEHAVIOR FOR SMALL f
FOR A RANDOM FORAGER WITH RANDOM SPREAD

OF FOOD

Let us analyze Eq. (18) in the limit of small density f ,

F (z) = G(α(z)) f
α

1 − α + f α

= f α

1 − α

1

1 + f α/(1 − α)
∼ f α

1 − α
−

(
f α

1 − α

)2

∼ f
α

1 − α
. (C1)

Consequently,

E (z) = F (z)

1 − z
∼ f

α

1 − α

1

1 − z
. (C2)

Thus,

E ∼ f . (C3)

Hence,

N = E

1 − E
∼ f . (C4)

For π (S) we get

�(z) = zF ′(z)

1 − z
∼ f

z

1 − z

(
α(z)

1 − α(z)

)′
. (C5)

Therefore,

π ∼ f . (C6)
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As a result,

τ = π

E
∼ Const . (C7)

For the lifetime

T − S = τN ∼ f . (C8)

[1] D. W. Stephens and J. R. Krebs, Foraging Theory (Princeton
University Press, Princeton, NJ, 1986).

[2] G. H. Pyke, Optimal foraging theory: A critical review, Annu.
Rev. Ecol. Syst. 15, 523 (1984).

[3] O. Bénichou, C. Loverdo, M. Moreau, and R. Voituriez, Inter-
mittent search strategies, Rev. Mod. Phys. 83, 81 (2011).

[4] T. Mueller, W. F. Fagan, and V. Grimm, Integrating individ-
ual search and navigation behaviors in mechanistic movement
models, Theor. Ecol. 4, 341 (2011).

[5] A. Oaten, Optimal foraging in patches: A case for stochasticity,
Theor. Popul. Biol. 12, 263 (1977).

[6] R. F. Green, Stopping rules for optimal foragers, Am. Nat. 123,
30 (1984).

[7] A. M. Hein and S. A. McKinley, Sensing and decision-making
in random search, Proc. Natl. Acad. Sci. U.S.A. 109, 12070
(2012).

[8] G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, E. J.
Murphy, P. A. Prince, and H. E. Stanley, Lévy flight search
patterns of wandering albatrosses, Nature (London) 381, 413
(1996).

[9] G. M. Viswanathan, S. V. Buldyrev, S. Havlin, M. G. E. Da
Luz, E. P. Raposo, and H. E. Stanley, Optimizing the success of
random searches, Nature (London) 401, 911 (1999).

[10] O. Bénichou, M. Coppey, M. Moreau, P. H. Suet, and R.
Voituriez, Optimal Search Strategies for Hidden Targets, Phys.
Rev. Lett. 94, 198101 (2005).

[11] M. A. Lomholt, K. Tal, R. Metzler, and K. Joseph, Lévy strate-
gies in intermittent search processes are advantageous, Proc.
Natl. Acad. Sci. U.S.A. 105, 11055 (2008).

[12] A. M. Edwards, R. A. Phillips, N. W. Watkins, M. P. Freeman,
E. J. Murphy, V. Afanasyev, S. V. Buldyrev, M. G. E. da Luz,
E. P. Raposo, H. E. Stanley et al., Revisiting Lévy flight search
patterns of wandering albatrosses, bumblebees and deer, Nature
(London) 449, 1044 (2007).

[13] C. Bracis, E. Gurarie, B. Van Moorter, and R. A. Goodwin,
Memory effects on movement behavior in animal foraging,
PLoS ONE 10, e0136057 (2015).

[14] M. Vergassola, E. Villermaux, and B. I. Shraiman, infotaxis as a
strategy for searching without gradients, Nature (London) 445,
406 (2007).

[15] R. Martínez-García, J. M. Calabrese, T. Mueller, K. A. Olson,
and C. López, Optimizing the Search for Resources by Sharing
Information: Mongolian Gazelles as a Case Study, Phys. Rev.
Lett. 110, 248106 (2013).

[16] O. Bénichou and S. Redner, Depletion-Controlled Starvation of
a Diffusing Forager, Phys. Rev. Lett. 113, 238101 (2014).

[17] O. Bénichou, M. Chupeau, and S. Redner, Role of depletion
on the dynamics of a diffusing forager, J. Phys. A 49, 394003
(2016).

[18] J. F. Reynolds, D. M. S. Smith, E. F. Lambin, B. L. Turner, M.
Mortimore, S. P. J. Batterbury, T. E. Downing, H. Dowlatabadi,
R. J. Fernández, J. E. Herrick et al., Global desertification:

Building a science for dryland development, Science 316, 847
(2007).

[19] H. Weissmann and N. M. Shnerb, Stochastic desertification,
Europhys. Lett. 106, 28004 (2014).

[20] M. Chupeau, O. Bénichou, and S. Redner, Universality classes
of foraging with resource renewal, Phys. Rev. E 93, 032403
(2016).

[21] C. L. Rager, U. Bhat, O. Bénichou, and S. Redner, The advan-
tage of foraging myopically, J. Stat. Mech. (2018) 073501.

[22] O. Bénichou, U. Bhat, P. L. Krapivsky, and S. Redner, Opti-
mally frugal foraging, Phys. Rev. E 97, 022110 (2018).

[23] U. Bhat, S. Redner, and O. Bénichou, Does greed help a forager
survive? Phys. Rev. E 95, 062119 (2017).

[24] U. Bhat, S. Redner, and O. Bénichou, Starvation dynamics of a
greedy forager, J. Stat. Mech. (2017) 073213.

[25] H. Sanhedrai, Y. Maayan, and L. M. Shekhtman, Lifetime of
a greedy forager with long-range smell, Europhys. Lett. 128,
60003 (2019).

[26] W. F. Fagan, E. Gurarie, S. Bewick, A. Howard, R. S. Cantrell,
and C. Cosner, Perceptual ranges, information gathering, and
foraging success in dynamic landscapes, Am. Nat. 189, 474
(2017).

[27] A. Celani, E. Villermaux, and M. Vergassola, Odor Landscapes
in Turbulent Environments, Phys. Rev. X 4, 041015 (2014).

[28] S. S. Stevens, The psychophysics of sensory function, Am. Sci.
48, 226 (1960).

[29] C. M. McGinley, T. D. Mahin, and R. J. Pope, Elements of
successful odor/odour laws, Proc. WEFTEC 2000, 937 (2000).

[30] T. T. Lim, A. J. Heber, Ji-Qin Ni, R. Grant, and A. L. Sutton,
Odor impact distance guideline for swine production systems,
Proc. WEFTEC 2000, 773 (2000).

[31] W. Feller, An Introduction to Probability Theory and its Appli-
cations, Vol. I (Wiley, New York, 1968).

[32] S. Redner, A Guide to First-Passage Processes (Cambridge
University Press, Cambridge, 2001).

[33] W. Feller, An Introduction to Probability Theory and its Appli-
cations, Vol. II, 2nd ed. (Wiley, New York, 1971).

[34] G. H. Weiss, Aspects and Applications of the Random Walk
(North Holland, Amsterdam, 1994).

[35] G. H. Hardy, Divergent Series (American Mathematical Soci-
ety, Providence, RI, 2000), Vol. 334.

[36] H. E. Stanley, Phase Transitions and Critical Phenomena
(Clarendon Press, Oxford, 1971).

[37] A. Bunde and S. Havlin, Fractals and Disordered Systems
(Springer-Verlag, New York, 1991).

[38] G. A. Nevitt, M. Losekoot, and H. Weimerskirch, Evidence
for olfactory search in wandering albatross, diomedea exulans,
Proc. Natl. Acad. Sci. U.S.A. 105, 4576 (2008).

[39] F. Bartumeus, E. P. Raposo, G. M. Viswanathan, and M. G. E.
da Luz, Stochastic optimal foraging: Tuning intensive and ex-
tensive dynamics in random searches, PLoS ONE 9, e106373
(2014).

012114-13

https://doi.org/10.1146/annurev.es.15.110184.002515
https://doi.org/10.1103/RevModPhys.83.81
https://doi.org/10.1007/s12080-010-0081-1
https://doi.org/10.1016/0040-5809(77)90046-6
https://doi.org/10.1086/284184
https://doi.org/10.1073/pnas.1202686109
https://doi.org/10.1038/381413a0
https://doi.org/10.1038/44831
https://doi.org/10.1103/PhysRevLett.94.198101
https://doi.org/10.1073/pnas.0803117105
https://doi.org/10.1038/nature06199
https://doi.org/10.1371/journal.pone.0136057
https://doi.org/10.1038/nature05464
https://doi.org/10.1103/PhysRevLett.110.248106
https://doi.org/10.1103/PhysRevLett.113.238101
https://doi.org/10.1088/1751-8113/49/39/394003
https://doi.org/10.1126/science.1131634
https://doi.org/10.1209/0295-5075/106/28004
https://doi.org/10.1103/PhysRevE.93.032403
https://doi.org/10.1088/1742-5468/aace2d
https://doi.org/10.1103/PhysRevE.97.022110
https://doi.org/10.1103/PhysRevE.95.062119
https://doi.org/10.1088/1742-5468/aa7dfc
https://doi.org/10.1209/0295-5075/128/60003
https://doi.org/10.1086/691099
https://doi.org/10.1103/PhysRevX.4.041015
https://doi.org/10.2175/193864700785303141
https://doi.org/10.2175/193864700785303303
https://doi.org/10.1073/pnas.0709047105
https://doi.org/10.1371/journal.pone.0106373

