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Kinetic broadening of size distribution in terms of natural versus invariant variables
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We study theoretically the size distributions of nanoparticles (islands, droplets, nanowires) whose time evolu-
tion obeys the kinetic rate equations with size-dependent condensation and evaporation rates. Different effects
are studied which contribute to the size distribution broadening, including kinetic fluctuations, evaporation,
nucleation delay, and size-dependent growth rates. Under rather general assumptions, an analytic form of the
size distribution is obtained in terms of the natural variable s which equals the number of monomers in the
nanoparticle. Green’s function of the continuum rate equation is shown to be Gaussian, with the size-dependent
variance. We consider particular examples of the size distributions in either linear growth systems (at a constant
supersaturation) or classical nucleation theory with pumping (at a time-dependent supersaturation) and compare
the spectrum broadening in terms of s versus the invariant variable ρ for which the regular growth rate is size
independent. For the growth rate scaling with s as sα (with the growth index α between 0 and 1), the size
distribution broadens for larger α in terms of s, while it narrows with α if presented in terms of ρ. We establish
the conditions for obtaining a time-invariant size distribution over a given variable for different growth laws. This
result applies for a wide range of systems and shows how the growth method can be optimized to narrow the size
distribution over a required variable, for example, the volume, surface area, radius or length of a nanoparticle.
An analysis of some concrete growth systems is presented from the viewpoint of the obtained results.
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I. INTRODUCTION

The rate equation (RE) approach is widely used for
understanding and modeling the time evolution of the size dis-
tributions (SDs) of different nanoparticles including surface
islands, droplets, clusters, molecular chains, and semicon-
ductor nanowires (NWs) in different environments [1–30].
It is common to compare the measured SDs to the Poisson
distribution whose variance σ 2 equals the mean size 〈s〉 [31].
In the specific case of vertical semiconductor NWs grown
by the vapor-liquid-solid method [31–38], we are interested in
the SD f (s, τ ) over the dimensionless length s (measured in
the number of monolayers) which depends on the dimension-
less time τ = t/tg, where tg is the time required to deposit one
monolayer of material from vapor. If semiconductor mono-
layers are added randomly and independently of the nanowire
length, the Poisson SD is observed with the variance σ 2 =
〈s〉 = τ . Without one specific effect of nucleation antibunch-
ing originating from a limited amount of material available
for growth from a nanosized droplet [36–39], the Poisson
SD is the best case regarding the nanowire length unifor-
mity. Poissonian broadening of the SD originates from kinetic
fluctuations described by the second derivative with respect
to size in the continuum Fokker-Planck RE [8,21,31,32,37].
Other effects such as a nucleation delay for NWs emerging
from a substrate [31,32,37], surface diffusion of adatoms from
the nanowire sidewalls (yielding the nanowire growth rate
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ds/dτ ∝ s for large enough s) [33,34], and desorption of
material from the catalyst droplet [35] contribute to the SD
spreading larger than Poissonian. The asymptotically widest
Polya (or gamma) SD with σ 2 ∝ 〈s〉2 is observed for NWs
growing by surface diffusion of adatoms [33]. Interestingly,
the Polya SD and its more complex modification accounting
for the nucleation delay [34] obeys the Vicsek-Family scaling
property [13] which has been widely discussed in connec-
tion with epitaxial surface islands [3,6,7,16]. For a variety of
growth systems, including droplets [5] and aerosols [19] in
vapors, surface islands [2,4,8], Stranski-Krastanov quantum
dots [17,18,24,26], and NWs [32–38,40,41], it is highly desir-
able to achieve the narrowest possible SD in terms of a given
variable.

Recently, we have presented an analytic form of the contin-
uum SD in linear growth systems at a constant supersaturation
of a mother phase (such as vapor for vapor-liquid-solid NWs)
and without [31]. Here, we generalize this approach to include
systems with evaporation and time-dependent supersaturation.
In the case of open systems with pumping, the large time
asymptotic behavior of supersaturation is determined by the
growth law and the time dependence of the material influx
[21]. We obtain an analytic form of the SD in terms of the nat-
ural variables s and τ . For the growth law of the form ds/dτ ∝
sα at large enough s, with the growth index α ranging from
0 to 1, Green’s function of the continuum RE is shown to
be Gaussian, with the mean size and variance being critically
dependent on the growth index α and the evaporation rate. The
SDs are additionally broadened by the nucleation delay. We
consider two systems, with either constant or time-dependent
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supersaturation ζ , with an emphasis put on the SD broadening
caused by different effects. The resulting analytic SDs over the
natural variable are then compared to those rewritten in terms
of the so-called invariant size variable for which the regular
growth rate is size independent [dr/dτ = 1 in linear growth
or dρ/dτ = ζ (τ ) in systems with a time-dependent supersat-
uration ζ ]. Such a variable was introduced earlier in classical
nucleation theory (CNT) by Kuni et al. in Refs. [5,12,14],
where it was argued that the SD over this variable is not
affected by kinetic fluctuations. By comparing the SDs in
terms of the natural versus invariant variables, we find that
the broadening trends are directly opposite. In particular, the
natural SD broadens with increasing α, while the invariant SD
narrows with increasing α, with the Poisson SD resumed for
both variables only at α = 0. Therefore, the choice of a size-
dependent variable is very important for theoretical analysis
as well as practical use of the SDs. Furthermore, we establish
the conditions for obtaining a time-invariant size distribution
over a given variable for different growth laws. For example,
one can finely tune the growth conditions to achieve the SD
narrowing for a required parameter such as the total number
of monomers in the nanoparticle, its surface area, radius, or
length.

II. GENERAL METHOD

We consider reaction chains As + A1 ↔ As+1 or AsB +
A1 ↔ As+1B for homogeneous or heterogeneous growth,
respectively, where As is a homogeneous nanoparticle con-
taining s monomers, AsB is a heterogeneous nanoparticle
containing s monomers and one foreign nucleus B, both grow-
ing by attaching (condensation) and losing (evaporation) free

monomers A1. The condensation and evaporation rate con-
stants are denoted W +

s and W −
s+1, respectively. They depend

on s and may depend on time. The set of REs for the discrete
SD fs(τ ) writes [1,2,4–12]

d fs(τ )

dτ
= W +

s−1 fs−1(τ ) + W −
s+1 fs+1(τ ) − [W +

s + W −
s ] fs(τ ),

(1)

with τ = t/tg as the dimensionless time in the units of the
characteristic growth time tg. For large enough s, this is re-
duced to one Fokker-Planck RE for the continuum SD f (s, τ ),

∂ f (s, τ )

∂τ
= − ∂

∂s
{[W +(s) − W −(s)] f (s, τ )}

+ 1

2

∂2

∂s2
{[W +(s) + W −(s)] f (s, τ )}, (2)

which is the central object in what follows. Here, the variable
s becomes continuum.

Assuming for the moment the time-independent rate
constants (the time dependence will be included later), we in-
troduce the invariant size by the general definition [12,21,22]

r =
∫ s

0

ds′

W +(s′) − W −(s′)
, (3)

which is reduced to the one in Ref. [31] in the absence of
evaporation [W −(s) = 0]. The new SD over r is given by

g(r, τ ) = [W +(s) − W −(s)] f (s, τ ). (4)

From ds/dτ = W +(s) − W −(s), we obtain dr/dτ = 1,
the size-independent regular growth rate for r, which explains
the term “invariant variable.” Using this SD, Eqs. (2)–(4)
yield the new RE of the form

∂g(r, τ )

∂τ
= − ∂

∂r

{
g(r, τ ) − 1

2

1

W +(r) − W −(r)

∂

∂r

[
W +(r) + W −(r)

W +(r) − W −(r)
g(r, τ )

]}
. (5)

In what follows, we assume that

∂

∂r

[
1

W +(r) − W −(r)

]
� 1, (6)

which is the usual case [31]. Then Eq. (5) simplifies to

∂g(r, τ )

∂τ
= −∂g

∂r
+ 1

2

∂2

∂r2

[
1

y(r)
g(r, τ )

]
, (7)

with

y(r) = [W +(r) − W −(r)]2

W +(r) + W −(r)
. (8)

Here, the condensation-evaporation rate constants should
be expressed in terms of r using Eq. (3). Clearly, y(r) =
W +(r) at W − = 0, the case considered earlier in Ref. [31].
According to Refs. [21,22], if the variance of the SD increases
with time slower than the mean size squared, we can further
simplify the continuum RE using y(r) ∼= y(τ ) with high accu-
racy. For the RE

∂g(r, τ )

∂τ
= −∂g

∂r
+ 1

2y(τ )

∂2g(r, τ )

∂r2
, (9)

the exact Green function is given by the Gaussian [21]

G(r, τ ) = 1√
2πψ (τ )

exp

[
− (r − τ )2

2ψ (τ )

]
(10)

with the mean invariant size τ . The variance of this Green
function is obtained by solving the equation

dψ

dτ
= 1

y(τ )
, ψ (τ = 0) = 0, (11)

where y is defined in Eq. (8).
To return to the natural size, we introduce the mean natural

size of Green’s function according to [31]

ds̄

dτ
= W +(s̄) − W −(s̄), s̄(τ = 0) = 0. (12)

Using dψ/dτ = (dψ/ds̄)(ds̄/dτ ), Eq. (11) for the vari-
ance takes the form

dψ

ds̄
= W +(s̄) + W −(s̄)

[W +(s̄) − W −(s̄)]3 , ψ (s̄ = 0) = 0. (13)
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Integration gives

ψ (s̄) =
∫ s̄

0
ds

W +(s) + W −(s)

[W +(s) − W −(s)]3 . (14)

From

τ =
∫ s̄

0

ds

W +(s) − W −(s)
(15)

and Eq. (3) we get

r − τ =
∫ s

s̄

ds′

W +(s′) − W −(s′)
∼= s − s̄

W +(s̄) − W −(s̄)
. (16)

The approximate expression again holds for the SDs whose
variance increases much slower than the mean size squared
and was checked for validity by numerical tests in Ref. [31]
without evaporation. In the presence of evaporation, the cor-
responding results will be given in Sec. III. From Eq. (4),
Green’s function in terms of the natural variable s is obtained
by

F (s, s̄) = G(s, s̄)

W +(s) − W −(s)
. (17)

Using Eqs. (10), (16), and (17), our general result for
Green’s function becomes

F (s, s̄) = 1√
2πD(s̄)

exp

[
− (s − s̄)2

2D(s̄)

]
. (18)

Here, the variance of Green’s function in terms of the
natural variables is given by

D(s̄) = [W +(s̄) − W −(s̄)]2
∫ s̄

0
ds

W +(s̄) + W −(s̄)

[W +(s̄) − W −(s̄)]3 . (19)

This is reduced to D(s̄) = [W +(s̄)]2
∫ s̄

0 ds/[W +(s)]2 at
W − = 0, which is the result of Ref. [31] in the absence of
evaporation.

Thus, the general recipe for obtaining the analytic SD for
a concrete growth system [characterized entirely by the size-
dependent rate constants W ±(s) ] is the following. Green’s
function is the Gaussian given by Eq. (18). The mean size
of Green’s function depends on time as given by Eq. (15),
which should be inverted for a given rate constant to yield
explicitly s̄(τ ). The variance of Green’s function depends
on the mean size as given by Eq. (19). Its integration gives
explicitly D(s̄) or D(τ ). This completes the determination of
Green’s function. The real SD is then obtained by convolution
of this Green function with a time-dependent nucleation rate
[22,31,32,37]. In heterogeneous nucleation such as nucleation
of vapor-liquid-solid NWs on a dissimilar substrate, the nu-
cleation rate is often given by exponential decay [31,37],
while in homogeneous nucleation with a time-dependent su-
persaturation under a material influx it is double exponential
[14,18,22,42]. Some examples will be considered in the next
sections. It is clear however that even if the nucleation stage is
long, it can only add a constant variance to the one present in
Green’s function. It will be shown below that D(s̄) increases
with s̄ for most systems (excluding the one influenced by
nucleation antibunching [37]) and hence tends to infinity at
s̄ → ∞. Therefore, the asymptotic broadening of the SD in
the large time limit is determined entirely by Green’s function,

while the influence of the nucleation-induced broadening can
be significant only for small enough particles.

III. LINEAR GROWTH SYSTEMS

The regular growth rate of NWs growing by surface diffu-
sion is given by

dL

dt
= V

(
1 + 2L

R

)
(1 − β ) if L < �,

dL

dt
= V

(
1 + 2�

R

)
(1 − β ) if L � �. (20)

Here, L is the nanowire length and R is its radius, V is
the effective deposition rate in nm/s, � is the effective dif-
fusion length of sidewall adatoms [33,34,43,44], and β is the
fraction of atoms evaporated from the droplet or transferred
from the droplet to the nanowire sidewalls by downward dif-
fusion [43,44]. Of course, NWs can grow only when β < 1.
Equations (20) show that the axial growth rate is a linear
function of L for short enough NWs with L < � which
collect adatoms from their entire length, while it becomes
independent of length for longer NWs with L � �. The depo-
sition rate V is time independent, corresponding to a constant
supersaturation of vapor with respect to the solid state. In-
troducing s = L/h, which equals the number of monolayers
of height h in a nanowire, Eq. (20) for short NWs can be
put as

ds

dτ
= (1 + γ s)(1 − β ),

with an obvious definition for γ . It is easy to see that γ � 1
in the typical cases, which justifies the assumption of the
variance being much smaller than the mean size squared.
This is an example of the linear growth system at a constant
supersaturation of vapor in which the regular growth rate is
a linear function of s and becomes proportional to s for large
enough s.

We now consider a more general model,

ds

dτ
= (1 + γ s)α (1 − β ), 0 � α � 1, (21)

where α is the growth index determined by the material trans-
port mechanism [21,31], γ � 1 determines the strength of
surface diffusion relative to the direct influx, and β remains
as the relative evaporation rate. For this model, we have
W +(s) − W −(s) = (1 + γ s)α (1 − β ) and W +(s) + W −(s) =
(1 + γ s)α (1 + β ). Integrating Eqs. (3) and (15), we obtain

r = 1

γ (1 − β )(1 − α)
[(1 + γ s)1−α − 1],

τ = 1

γ (1 − β )(1 − α)
[(1 + γ s̄)1−α − 1]. (22)

We can infer s(r) and s̄(τ ) as follows:

s = 1

γ
{[1 + γ (1 − β )(1 − α)r]1/(1−α) − 1},

s̄ = 1

γ
{[1 + γ (1 − β )(1 − α)τ ]1/(1−α) − 1}. (23)
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FIG. 1. Variance vs mean size of Green’s function obtained from
Eqs. (26) and (27) at γ = 0.1, β = 0.3 and different α shown in the
legend (full lines), compared to the came systems without evapora-
tion (dashed lines). The variance increases with the growth index α

and with the evaporation coefficient β. Yellow line shows the Poisson
variance which correspond to the minimum broadening of the SD and
is observed at α = β = 0.

For α = 1, this converges to

s = 1

γ

(
eγ (1−β )r − 1

)
, s̄ = 1

γ

(
eγ (1−β )τ − 1

)
at α = 1,

(24)
showing that the mean size increases exponentially with time.
On the other hand, the mean size becomes linear in time when
γ → 0, corresponding to the length-independent growth rate
for NWs [35]:

s̄ = (1 − β )τ at γ = 0. (25)

It is easy to integrate Eq. (19) for the variance, giving

D(s̄) = 1 + β

1 − β

1

γ (1 − 2α)
[1 + γ s̄ − (1 + γ s̄)2α], α �= 1/2,

(26)

D(s̄) = 1 + β

(1 − β )γ
(1 + γ s̄)ln(1 + γ s̄), α = 1/2. (27)

At β = 0, this is reduced to the result of Ref. [31] in the
absence of evaporation. At γ = 0, we resume the result of
Ref. [35] for self-catalyzed III–V NWs whose axial growth
rate is driven by the direct impingement and evaporation of a
group V element. As expected, enhanced evaporation always
broadens the SD.

Figure 1 shows the variance versus mean size of Green’s
function at a fixed γ = 0.1, β = 0.3 and typical α = 0, 1/3,
1/2, 2/3, and 1, compared to the same systems in the absence
of evaporation. As discussed in detail in Ref. [31], α = 0 is
the case of the adsorption-induced growth of NWs or surface
islands growing on a two-dimensional (2D) substrate in the
diffusion regime, α = 1/3 corresponds to three-dimensional
(3D) droplets fed from a 3D vapor in the diffusion regime or
3D Stranski-Krastanov islands growing from a metastable 2D
wetting layer in the ballistic regime, α = 1/2 is typical for
2D surface islands growing in the ballistic regime, α = 2/3

corresponds to 3D droplets fed from a 3D vapor in the ballistic
regime, and α = 1 is the case of NWs growing by surface dif-
fusion of adatoms. Poisson SD corresponds to the minimum
width of the SD and is observed only when α = 0 and β = 0,
that is, at a size-independent growth rate ds/dτ = 1 with-
out evaporation. All other SDs in linear growth systems are
broader than Poissonian, with the variance increasing toward
larger growth index α and higher evaporation rate β.

We now consider the typical SD shapes in heterogeneous
growth, where the nucleation rate can often be approximated
by [31,32,34,35,37]

J (τ ) = be−bτ . (28)

Here, b = tg/tinc is the ratio of the characteristic growth
time of large nanoparticles tg over the incubation time tinc

required to attach the very first monomer to a nucleation
seed, for example, to nucleate the very first nanowire mono-
layer from a catalyst droplet resting on a dissimilar substrate.
Heterogeneous nucleation is difficult when b � 1. Following
the general rule [31], the SD is given by

f (s, τ ) =
∫ τ

0
dτ ′F (s, τ ′)J (τ − τ ′). (29)

Using Eqs. (18) and (28) and repeating the procedure de-
scribed in detail in Ref. [31], the SD is obtained in the form

f (s, s̄) = b

2(1 − β )
exp

[
b

(1 − β )
(s − s̄) + b2D(s̄)

2(1 − β )2

]

× erfc

[
s − s̄√
2D(s̄)

+ b

1 − β

√
D(s̄)

2

]
, (30)

where D(s̄) is defined in Eq. (26) or Eq. (27) for a given α

and γ .
The mean size and variance of the fully formed SD such

that f (0, s̄) = 0 equal

〈s〉 = s̄ − 1 − β

b
, σ 2 = D +

(
1 − β

b

)2

. (31)

Hence, the mean size of the SD decreases and its variance
increases due to the nucleation delay at small b � 1. How-
ever, for any b we have the asymptotic relationship

σ 2

〈s〉 → D(s̄)

s̄
at 〈s〉 → ∞ (32)

showing that the ratio of the variance over mean size is deter-
mined by that of Green’s function for large enough 〈s〉. The
asymptotic relationship given by Eq. (32) applies for large
enough sizes such that s̄  (1 − β )/b and D  (1 − β )2/b2,
where the second condition is usually stronger than the first
one. Of course, there is no guarantee that the asymmetry
caused by the nucleation delay is completely forgotten in the
experimental SD. This important question will be considered
in Sec. VII. From Eqs. (26) and (27) it follows that

D(s̄)

s̄
→ 1 + β

1 − β

1

1 − 2α
, α < 1/2,

D(s̄)

s̄
→ 1 + β

1 − β
ln(γ s̄), α = 1/2,

D(s̄)

s̄
→ 1 + β

1 − β

1

2α − 1
(γ s̄)2α−1, α > 1/2. (33)
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FIG. 2. Evolution of the SD f (s, s̄) = f [s, s̄(τ )] at α = 1/3, γ =
0.1, β = 0.3, b = 0.05, and different s̄ shown in the legend (full
lines), compared to the corresponding Green function (dashed lines).
It is seen that the SD is very asymmetric at the beginning due to the
long nucleation delay at a small b. As the growth proceeds, the SD
shape becomes symmetric and very similar to that of Green’s func-
tion, with a constant shift becoming negligible at s̄ → ∞. Symbols
at s̄ = 150 and 250 show numerical solution to the continuum RE
given by Eq. (2) for the same parameters.

The last expression is reduced to D(s̄)/s̄ →
[(1 + β )/(1 − β )]γ s̄ at α = 1. Therefore, the asymptotic
SDs at α < 1/2 are quasi-Poissonian, with the variance
scaling linearly with the mean size. The threshold value of
α = 1/2 corresponds to only logarithmic spreading of the
ratio D(s̄)/s̄. At α > 1/2, the ratio D(s̄)/s̄ scales with the
mean size as (γ s̄)2α−1. This yields the SD broadening which
is much larger than Poissonian. For the size-linear growth
rate, D(s̄)/s̄ becomes proportional to s̄, as in the case of
Polya SD [28,31,33,34]. The effect of evaporation on the SD
broadening is given by the same factor (1 + β )/(1 − β ) for
any α, showing again that the SD becomes wider for higher
evaporation rates. This result was obtained earlier at α = 0
[35]. Overall, these results generalize the earlier ones [31] to
linear systems with evaporation of material.

Figure 2 shows the evolution of f (s, s̄) given by Eq. (30)
at α = 1/3, β = 0.3, b = 0.05 and different s̄. The SD is
asymmetric at the beginning, with a much longer tail toward
smaller sizes due to the long nucleation delay at b = 0.05.
However, it evolves to a symmetric Gaussian shape in the
large time limit, with the variance becoming almost identical
to the one of Green’s function. This illustrates the property
given by Eqs. (31) and (32), that is, negligible influence of the
nucleation step on the SD shape for large enough sizes. Nu-
merical solution to the initial continuum RE given by Eq. (2)
with the same condensation-evaporation growth rates and the
boundary condition corresponding to the nucleation rate de-
fined in Eq. (28) is only slightly wider than the analytical one
at s̄ = 150, and almost identical to the latter at s̄ = 250. This
good quantitative correlation justifies the assumptions made
in Sec. II.

Figure 3 shows how the SD shape changes with the growth
index α at a fixed γ = 0.1, β = 0.3, b = 0.05, and s̄ = 400.
As in Ref. [31], the SDs rapidly broaden with increasing α,
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FIG. 3. SD shapes at a fixed s̄ = 400, γ = 0.1, β = 0.3, b =
0.05, and different α from 0 to 1 shown in the legend. The SDs
rapidly broaden for larger α. All SDs are almost symmetrical and
are wider than Poissonian, shown by the dashed line for the same s̄.

demonstrating the huge effect of the growth index on the SD
shape. At a fixed evaporation coefficient β = 0.3, all SDs are
broader than Poissonian. The effect of nucleation delay is
almost negligible at a large s̄ = 400, which is why the SDs
are nearly symmetric around the mean size.

Figure 4 shows the effect of evaporation on the SDs at a
fixed s̄ = 1000, α = 1, γ = 0.01, and b = 0.05. These Polya
SDs apply to the practical case of semiconductor NWs grow-
ing by surface diffusion of adatoms [33,34,43,44], with a
nucleation delay and desorption or downward diffusion of
material from a catalyst droplet. The role of desorption in this
case has not been considered so far to our knowledge. The
SDs are symmetrical and rapidly broaden for larger evapo-
ration coefficients β, showing that the growth regimes with
high desorption rates (occurring at a low supersaturation of
the vapor phase) are undesirable for the length uniformity of
vapor-liquid-solid NWs.
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FIG. 4. SD shapes at a fixed s̄ = 1000, α = 1, γ = 0.01, b =
0.05, and different β shown in the legend. It is seen that enhanced
evaporation (desorption or downward diffusion for NWs) leads to a
very significant broadening of the SDs toward larger β.
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IV. CLASSICAL NUCLEATION THEORY
IN OPEN SYSTEMS

We now consider homogeneous nucleation and growth
of nanoparticles in systems with a restricted number of
monomers which are used for growth and continuously
added to a system via pumping using an external flux
[1–8,12,17,21,22,27,29,30,42]. In this case, the condensation-
evaporation rate constants for large enough s (which are much
larger than the critical size of CNT [8,21]) are given by

W +(s) = (ζ + 1)sα, W −(s) = sα. (34)

As above, we measure time τ in the units of a characteristic
growth time tg. The time dependent supersaturation ζ (τ ) is
governed by the nanoparticle nucleation and growth and the
material influx. Below we study only Green’s function of
the SD. This is relevant in the large time limit where the
nucleation-induced variance [5,14,22] is almost negligible.
On the other hand, we do not consider the late Ostwald
ripening stage [45] which in many cases can be disabled by
pumping [2,21]. For example, it is never observed in systems
with a time-independent influx or deposition rate [2].

Our aim is calculating the variance of Green’s function
given by Eq. (19) with W +(s) − W −(s) = ζ sα and W +(s) +
W −(s) = (ζ + 2)sα , where ζ is a time-dependent function.
This complicates the treatment with respect to a simpler case
of linear growth systems studied in Sec. III. We note, however,
that supersaturation tends to zero in the asymptotic growth
stage [8] and hence the mean size is simply given by pumping

s̄ = kτ p. (35)

Here, p is the pumping index which equals 1 in the most
common case of a time-independent material influx and k is a
certain coefficient which depends on the nanoparticle density
[5,12,14,18,21,22] and the characteristic times of growth and
pumping. For example, at p = 1 the material balance can be
put in the form

(n1 + Ns̄) = t

t∞
+ neq

1 , (36)

where  is the elementary volume or surface area per
monomer in the condensed phase, n1 is the concentration
of free monomers at time t , N is the number density of
nanoparticles which is established in the nucleation stage and
remains constant in the growth stage, t∞ is the characteristic
time of pumping, and neq

1 is the equilibrium concentration of
monomers in the mother phase. The left side gives the total
number of monomers in the mother phase and in the islands,
with the latter being reasonably approximated by the term
Ns̄ for sufficiently narrow SDs whose variance remains
much smaller than the mean size squared. Using the definition
of supersaturation, ζ = n1/neq

1 − 1, and using ζ → 0 for long
enough times, we get

s̄ → 1

N

tg
t∞

t

tg
= kτ, k = 1

N

tg
t∞

. (37)

Therefore, the coefficient k is inversely proportional to N
and decreases for lower ratio tg/t∞. As discussed in detail in
Refs. [18,22], one can tune the growth conditions to maximize

the value of k, which suppresses the SD broadening in the
kinetic growth stage.

Using Eq. (35) with arbitrary p, we obtain

ds̄

dτ
= kpτ p−1 = ζ s̄α. (38)

This allows us to find supersaturation as a function of τ or
s̄ in the form

ζ = pk1−ατ (1−α)p−1 = pk1/ps̄1−α−1/p. (39)

Of course, the pumping index p must satisfy the condition
of supersaturation decrease (or stabilization to a small con-
stant) at a given α. Using

W +(s̄) − W −(s̄) = pk1/ps̄1−1/p,

W +(s̄) + W −(s̄) = pk1/ps̄1−1/p + 2s̄α (40)

in Eq. (19) and integrating, we find the variance of the
Gaussian Green function,

D(s̄) = s̄

2/p − 1
+ 2

pk1/p

1

α + 3/p − 2
s̄α+1/p. (41)

Again, the pumping index must be such that both denom-
inators in this expression are positive or zero, with the latter
case corresponding to only logarithmic broadening of the SD
[21].

For the ratio D(s̄)/s̄, Eq. (41) yields

D(s̄)

s̄
→ 1

2/p − 1
+ 2

pk1/p

1

α + 3/p − 2
s̄α+1/p−1, (42)

which is reduced to

D(s̄)

s̄
→ 1 + 2

k(α + 1)
s̄α (43)

at p = 1. As above, the asymptotic ratio of the SD
σ 2/〈s〉 equals D(s̄)/s̄ due to a negligible contribution of
the nucleation-induced broadening at s̄ → ∞. According to
Eq. (42), the SDs in CNT in open systems with pumping
broaden for larger α and lower p, as shown in Fig. 5. There-
fore, slower pumping always leads to wider SDs. In contrast to
linear systems where the ratio D(s̄)/s̄ remains constant at α <

1/2 [see Eqs. (33)], the SDs in CNT with a time-independent
influx (at p = 1) broaden wider than Poissonian for any α > 0
as given by Eq. (43).

In the specific case of 3D droplets growing from supersat-
urated vapors in the ballistic regime (α = 2/3), it was argued
[12] that the SD maintains its time-independent double ex-
ponential shape in terms of the invariant size ρ, which for
this system equals the dimensionless radius of the droplet.
Spreading of the “invariant” SD at arbitrary α was later stud-
ied in Ref. [21], where the tendency for the suppression of
spreading with increasing α was confirmed. This property is
widely used in the growth modeling because the suppressed
SD broadening allows for neglect of the second derivative
with respect to size in the continuum RE [5,8,12,14,18]. In-
terestingly, however, Eqs. (42) or (43) show the monotonic
increase of the SD broadening with α in terms of the number
of monomers in the nanoparticle s. This feature also follows
from the two known exactly solvable cases for linear systems
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FIG. 5. Ratio σ 2/〈s〉 vs mean size of the SDs in CNT in open
systems with different pumping index p and growth index α shown in
the legend. The variance increases with increasing α and decreasing
p. Quasi-Poisson SD with a constant σ 2/〈s〉 is observed only at p = 1
and α = 0.

at α = 0 [quasi-Poissonian SD with D(s̄)/s̄ → const [32,35])
and at α = 1 (Polya-type SD with D(s̄)/s̄ ∝ s̄ [33,34]]. Con-
sequently, both theoretical methods of the growth modeling of
nanostructures and broadening of the real SDs largely depend
on the choice of size variable. In the next section, we try to
clarify the trends of the SD shapes in terms of s or ρ.

V. BROADENING IN TERMS OF NATURAL VERSUS
INVARIANT VARIABLES

A. Linear growth systems

To find the relationship between the asymptotic Green
functions of the continuum RE in terms of natural and invari-
ant variables, we note that Eqs. (23) for large enough sizes are
reduced to

s → γ α/(1−α)[(1 − β )(1 − α)r]1/(1−α),

s̄ → γ α/(1−α)[(1 − β )(1 − α)τ ]1/(1−α), α < 1. (44)

We insert this into Eq. (18) for Green’s function with D(s̄)
given by the corresponding Eq. (33), present it in terms of r
and τ according to Eq. (17), and use (r1/(1−α) − τ 1/(1−α) )2 ∼=
τ 2α/(1−α)(r−τ )2/(1 − α)2. This allows us to resume the Gaus-
sian given by Eq. (10) with the asymptotic variance

ψ (τ ) → 1 + β

1 − β

(1 − α)2

1 − 2α
[(1 − β )(1 − α)]−1/(1−α)γ −α/(1−α)

× τ (1−2α)/(1−α), α < 1/2,

ψ (τ ) → 0, α > 1/2. (45)

Thus, the “invariant” Green function G(r, τ ) in linear sys-
tems broadens with τ at α < 1/2 and becomes a delta function
at α > 1/2, with the threshold case of α = 1/2 correspond-
ing to logarithmic broadening. This result is fully consistent
with Ref. [21] and supports the time invariance of the SD at
α = 2/3 introduced in Ref. [12]. According to Eq. (45), the
invariant SDs are not affected by kinetic fluctuations for any
α > 1/2. In other words, they remain truly invariant in the

kinetic growth stage, with the SD width being determined in
the nucleation stage [5,12,14].

Comparison of broadening in different growth systems be-
comes clearer if presented in terms of the ratio of the variance
over the mean size. For the ratio ψ (τ )/τ introduced earlier,
Eqs. (44) and (45) give

ψ (τ )

τ
→ 1 + β

1 − β
(1 − β )−1/(1−α)γ −α/(1−α) (1 − α)2

1 − 2α
τ−α/(1−α),

α < 1/2,

ψ (τ )

τ
→ 0, α > 1/2. (46)

Comparing this to Eqs. (33), one can see that at α < 1/2,
the natural ratio of variance versus mean size D(s̄)/s̄ tends to
a time-independent value which increases with α, while the
invariant ratio ψ (τ )/τ decreases with time and its decrease is
faster for larger α. The only case where the two representa-
tions are equivalent is the Poisson growth at α = 0. This is
not surprising because the natural and invariant variables are
identical. At α > 1/2, the natural ratio D(s̄)/s̄ increases with
s̄ and its increase is faster for larger α, while the invariant SD
does not spread at all. Overall, the SD broadening in terms
of the number of monomers in the nanoparticle s is enhanced
for larger α, while it is suppressed in terms of the invariant
variable r, as shown in Fig. 6(a).

B. Classical nucleation theory at p = 1

According to Eqs. (34), the regular growth rate in terms of
the natural variable is given by ds/dτ = ζ sα . The invariant
size of CNT is defined according to [12,14,21,22]

dρ

dτ
= ζ . (47)

Therefore s and ρ are related by

s = [(1 − α)ρ]1/(1−α), s̄ = [(1 − α)z]1/(1−α), (48)

where we again assume that α < 1. Using this in Eq. (18)
together with Eq. (41) for D(s̄) at p = 1 and repeating the
above procedure for expressing the SD in terms of the invari-
ant variables, we obtain the invariant Green function in the
form of Gaussian [21]

G(ρ, z) = 1√
2πψ (z)

exp

[
− (ρ − z)2

2ψ (z)

]
. (49)

Here, the variance is given by

ψ (z) → [(1 − α)z](1−2α)/(1−α) + 2

k

(1 − α)z

1 + α
, α < 1/2,

ψ (z) → 2

k

(1 − α)z

1 + α
, α > 1/2. (50)

The first term in Eq. (50) at α < 1/2 is similar to the one
in Eq. (45) for linear systems and describes quasi-Poissonian
broadening of the SD. As above, it decreases with increas-
ing α and disappears at α > 1/2. The second term describes
additional broadening in the asymptotic growth stage where
supersaturation tends to zero [21]. At a time-independent in-
flux (p = 1), it scales linearly with z, with a coefficient which
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FIG. 6. Comparison of the asymptotic variance vs mean size in
terms of natural or invariant variables for (a) linear growth systems
and (b) CNT at p = 1 for three different α shown in the legend.
Kinetic broadening of the natural SD increases with α, while broad-
ening of the invariant SD decreases with α. The Poisson case is
resumed only at α = 0.

decreases for larger α. We remind that this additional broad-
ening can be made rather small even for large enough sizes
by optimizing the growth conditions to increase the value of
k. However, this term dominates in the limit z → ∞ for any
α > 0 and gives quasi-Poisson broadening with ψ (z) ∝ z.

For the ratio ψ (z)/z, Eqs. (50) yield

ψ (z)

z
→ (1 − α)(1−2α)/(1−α)z−α/(1−α) + 2

k

1 − α

1 + α
, α < 1/2,

ψ (z)

z
→ 2

k

1 − α

1 + α
, α > 1/2. (51)

Comparing this to Eq. (43), one can see that the natural
ratio of variance versus mean size D(s̄)/s̄ is always larger
than unity (the Poisson case) and gradually increases with
the growth index α, while the invariant ratio ψ (z)/z is usu-
ally smaller than unity (this requires k  1) and gradually
decreases with α, as shown in Fig. 6(b). Kinetic broadening of
the SDs in terms of the natural variable s increases for larger α

for both linear growth systems and CNT. This trend is reversed
for the SDs over the invariant variable r or ρ.

As a general conclusion, treatment of the SDs in terms
of the invariant size indeed allows for minimization of the
kinetic broadening, particularly for α > 1/2. However, spe-
cial care should be taken for the correct interpretation of
the results. In particular, the invariant SDs become narrower
for larger α, while the SDs over the number of monomers
s becomes wider for larger α. For example, growth of 3D
droplets from supersaturated vapors in the ballistic regime at
α = 2/3 [5,12,14,21] may yield a time-invariant and narrow
SD over the droplet radii r ∝ s1/3, but the SD over s is very
broad and rapidly spreads as the droplets grow. The growth
regime should become diffusionlike for very large droplets
(α = 1/3) [8], in which case the SD may be time invariant
for the surface area (ρ ∝ s2/3 ∝ r2). The natural SD over s
is affected by the kinetic broadening, but its spreading is less
than in the ballistic regime at α = 2/3. The same observation
holds for the Stranski-Krastanov islands at α = 1/3 [17,18].
The SD is narrow for the island surface area, which may be
advantageous for surface-related effects such as adsorption,
whereas the light emitting properties are governed by the
number of semiconductor atoms or III–V pairs s [46] for
which the SD is broad and spreads with time. III–V semicon-
ductor NWs growing by surface diffusion of group III adatoms
at α = 1 (ds/dτ → γ s at large s) [33,34] feature the broadest
Polya-like SD over their lengths s, with D(s̄) ∝ γ s̄2. The SD
becomes narrow and time invariant in terms of the logarithmic
invariant variable ρ = γ −1lns, which is meaningless.

VI. SIZE DISTRIBUTION OVER A GIVEN VARIABLE:
INVARIANT OR NOT?

The invariant variable corresponds to a size-independent
regular growth rate at a given growth index α and hence is
fixed for a given growth law. Using the same approach as
above, we can ask the question of whether the SD in terms
of the variables

y = s1/m, ȳ = s̄1/m (52)

is time invariant at a given α. The power index m equals
1, 2, or 3 in the typical cases, corresponding for example
to the total number of monomers (or the volume) of a 3D
nanoparticle with a fixed shape at m = 1, its surface area
at m = 2, or linear size (“radius”) at m = 3. We saw earlier
that the time invariance or kinetic broadening of the SD is
determined entirely by the variance of Green’s function. We
introduce Green’s function of the continuum RE in terms of y
by the general definition

H (y, ȳ)dy = F (s, s̄)ds, (53)

where the Gaussian F (s, s̄) is given by Eq. (18). Using
ds/dy = mym−1 and

(s − s̄)2 ∼= m2ȳ2m−2(y − ȳ)2, (54)

we obtain

H (y, ȳ) = mȳm−1

√
2πD(ȳ)

exp

[
−m2ȳ2m−2

2D(ȳ)

]
. (55)
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FIG. 7. Zones of time invariance (above the full curves) and
broadening of the SDs (below the full curves) for linear growth
systems and CNT at p = 1. The dashed lines correspond to quasi-
Poisson broadening with ψ (ȳ) ∝ ȳ. Any growth regimes below the
dashed curves yield broadening which is larger than Poissonian.

This Green function is also Gaussian, with the variance

ψ (ȳ) = D(ȳ)

m2ȳ2m−2
, (56)

where D should be presented as a function of ȳ using Eq. (52).
From Eqs. (33) for linear growth systems (at β = 0 and

γ = 1), we get

ψ (ȳ) = 1

m2(1 − 2α)
ȳ2−m, α < 1/2,

ψ (ȳ) = 1

m
ȳ2(1−m)lnȳ, α = 1/2,

ψ (ȳ) = 1

m2(2α − 1)
ȳ2(mα−m+1), α > 1/2. (57)

From Eq. (43) for CNT at p = 1, we obtain

ψ (ȳ) = 1

m2

[
ȳ2−m + 2

k(α + 1)
ȳ2−m+mα

]
. (58)

Clearly, the time invariant SDs are observed when ψ (ȳ) →
0 at large ȳ. This condition determines the critical index mc

above which the SDs over y are invariant at a given α. For
linear growth systems, the condition for the time invariance is
given by

m > mc = 2 at α < 1/2,

1/(1 − α) at α > 1/2.
(59)

For CNT at p = 1, the same condition becomes

m > mc = 2/(1 − α), (60)

and applies uniformly for any α.
These critical curves are shown in Fig. 7 in the form

of m(α) diagrams, along with the curves corresponding to
quasi-Poisson broadening of the SDs with ψ (ȳ) ∝ ȳ. All ge-
ometrical characteristics of a nanoparticle lying above the
critical curves are not influenced by kinetic fluctuations and
their SDs are expected to be more homogeneous and time
invariant. The SDs broaden below the critical curves, and they

broaden faster than Poissonian below the dashed curves. The
time-invariant zone is narrower in CNT than in linear growth
systems due to additional broadening at zero supersaturation.
We remind that the SDs in CNT at p = 1 do not undergo the
Ostwald ripening, which is why the time invariant shape will
be maintained forever. Figure 7 shows, for example, that the
SD over the nanoparticle radii in the 3D case (m = 3) remains
invariant for any α < 2/3 in linear growth systems and for any
α < 1/3 in CNT. On the other hand, the SD over the nanopar-
ticle volume (m = 3) can only be quasi-Poissonian in linear
growth and is broader than Poissonian for any α > 0 in CNT.
The invariant zones narrow up with increasing the growth
index α in both cases, which is why the growth regimes with
lower α are always favorable for the size homogeneity.

VII. THEORY AND EXPERIMENT

We now consider particular growth systems for which the
regular growth rater is either independent of s or scales lin-
early with s for large enough s. We will compare the variance
versus mean size for the experimental SDs or those obtained
using kinetic Monte Carlo (KMC) simulations in terms of the
ratio σ 2/〈s〉 taking into account (i) Poissonian broadening,
(ii) additional kinetic broadening due to surface diffusion,
(iii) evaporation of material, and (iv) nucleation delay for
asymmetric SDs. Using Eq. (26) for D(s̄) at α = 1, we have

D(s̄) = 1 + β

1 − β
(s̄ + γ s̄2), (61)

which is reduced to D(s̄) = [(1 + β )/(1 − β )]s̄ for systems
with s-independent growth rates (at γ = 0). From Eqs. (31),
the ratio σ 2/〈s〉 can be presented solely as a function of 〈s〉:

σ 2

〈s〉 = [(1 − β )/b]2[1 + γ (1 + β )/(1 − β )] + (1 + β )/b

〈s〉
+ 1 + β

1 − β
+ 2γ

(1 + β )

b
+ 1 + β

1 − β
γ 〈s〉. (62)

This expression contains three parameters γ , β, and b
describing the effects of surface diffusion, evaporation, and
nucleation delay, respectively. The Poissonian broadening in
the absence of the three other effects (at γ = β = 0 and
b = 1) corresponds to the minimum σ 2/〈s〉 = 1 for 〈s〉  1.
Clearly, the first term of Eq. (62) always tends to zero at
large enough 〈s〉, showing that the effect of nucleation delay
on the SD shape dissapears provided that γ = 0. The sec-
ond, 〈s〉-independent term gives a constant ratio σ 2/〈s〉 =
(1 + β )/(1 − β ) for Poissonian growth with evaporation. This
ratio can be very large when β is close to unity. The third term
is also 〈s〉 independent and describes additional broadening
of the SDs in systems with surface diffusion (γ > 0) and
nucleaton delay (b � 1). Finally, the last term is proportional
to γ 〈s〉 and gives the Polya-type broadening of the SDs due to
surface diffusion.

Figure 8 shows the ratios σ 2/〈s〉 for different mean sizes
and in different systems. In two systems, we clearly observe
the linear scaling of σ 2/〈s〉 with 〈s〉. Two-dimensional (2D)
surface islands of different shapes (fractal or compact) studied
by KMC in Ref. [23] grew at a high ratio of the surface
diffusion coefficient over the deposition rate and without
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FIG. 8. The ratios σ 2/〈s〉 obtained by KMC simulations for 2D
fractal and compact islands in the precoalescence stage of their
growth for the surface coverages of 0.05, 0.1, and 0.15 [23]; for
Au-catalyzed InAs NWs whose growth is driven by surface diffusion
of In adatoms [33]; for surface profiles of 3D thin films at low tem-
peratures [47]; for Au-catalyzed InAs NWs grown without surface
diffusion of In adatoms from thermally dewetted Au films or Au
colloidal nanoparticles [32]; and for Ga-catalyzed GaAs NWs [35].
The lines show the fits obtained from Eq. (62) with the parameters
summarized in Table I. The dashed line corresponds to the mini-
mum Poisson broadening at σ 2/〈s〉 = 1. The data points without
the line are fitted with the four different b values given in Table I.
The maximum broadening of the SDs is observed for 2D islands,
where the ratio σ 2/〈s〉 scales linearly with 〈s〉. InAs NWs growing by
surface diffusion also show the linearly increasing σ 2/〈s〉. However,
it remains smaller than the ones for “quasi-Poissonian” InAs NWs
or Ga-catalyzed GaAs NWs whose SDs broaden due to very long
nucleation delay or high desorption rate of As atoms, respectively.
The true Poissonian case of σ 2/〈s〉 = 1 is observed in only two
cases.

evaporation (β = 0). Their nucleation is homogeneous and
the nucleation rate may be more complex than the simple
exponential decay given by Eq. (28). Furthermore, the coales-
cence may occur before the adatom density tends to zero and
the SDs obtained in Ref. [23] do not tend to zero at s = 0.
Therefore, Eq. (62) can be used only in the first approxi-
mation. Despite of this, the growth has a marked Polya-like
character, with σ 2/〈s〉 increasing linearly with 〈s〉. Based on
our results, one may conclude that the growth rate of such
islands is linear in s for large enough s, the property ex-
plained earlier by a competition of the growing islands for
the diffusion flux from the substrate [3,6,7,23,28]. Due to the
pronounced asymmetry of the SDs obtained in Ref. [23], we
fit the corresponding ratios σ 2/〈s〉 with γ = 0.1 and a small
b of 0.017, as given in Table I. Au-catalyzed InAs NWs of
Ref. [33] were grown at 450 °C under group V rich conditions.
The vapor-liquid-solid growth is driven by surface diffusion
of adatoms collected from the entire NW length, as explained
in Sec. III. In adatoms are not expected to desorb at 450 °C.
The measured SDs were perfectly symmetric [33], meaning
that the effect of slow nucleation is negligible. Therefore,
these SDs are fitted with β = 0, b = 1, and γ = 0.0025. The

TABLE I. Fitting parameters for different SDs shown in Fig. 8.

System γ β b

2D surface islands [23] 0.1 0 0.017
Au-catalyzed InAs NWs growing by
surface diffusion [33]

0.0025 0 1

Au-catalyzed InAs NWs growing with
long nucleation delay [32]

0 0 0.005

0.009
0.013
0.017

Ga-catalyzed GaAs NWs growing with
high As desorption rates [35]

0 0.9 0.02

Poissonian InAs NWs [32] 0 0 1
Poissonian 3D thin films [47] 0 0 1

broadening of the SDs is much smaller than for 2D islands
mainly due to a much smaller γ (0.0025 against 0.1).

Au-catalyzed InAs NWs of Ref. [32] were grown using
thermal dewetting of a thin Au film or Au colloids, where the
latter appeared buried deep into the substrate in the annealing
pregrowth step. This burial caused a long nucleation delay.
The measured SDs were fully formed; however, they showed
very long tails toward the smaller lengths. The four data points
shown in Fig. 8 were perfectly fitted but with different b
for each sample [32], summarized in Table I. The growth
was quasi-Poissonian, without surface diffusion of In adatoms
and at a low surface temperature of 380 °C. Therefore, the
other fitting parameters are chosen at γ = β = 0. The large
broadening effect in these NW SDs is entirely due to the long
nucleation delay, and is comparable to that in the ensembles of
InAs NWs growing by surface diffusion. When the nucleation
effect is removed, as in InAs NWs of Ref. [32] grown from
thermally dewetted Au films, the SDs become Poissonian.
The Poisson SD is also observed in KMC simulations of
three-dimensional (3D) homoepitaxial thin films grown at low
temperatures in the absence of re-evaporation and surface
diffusion (γ = β = 0, b = 1) [47]. In this case, the SD gives
the probability to observe the random point of the film surface
at a height of s monolayers from the substrate, and obey the
set of Poissonian REs [47].

The broadest NW SDs are observed for Ga-catalyzed
GaAs NWs grown at 635 °C on processed Si substrates [35].
Ga-catalyzed vapor-liquid-solid growth is always controlled
by the kinetics of As atoms (in the excess of liquid Ga
in the droplet) which are not diffusive (γ = 0) but desorb
from the droplet due to the known high volatility. There-
fore, the corresponding SDs are well fitted with β = 0.9,
showing that about 90% of As arriving onto the droplet
surface re-evaporates. The influence of the nucleation delay
at b = 0.02, necessary to describe the initial asymmetry of
the SDs for smaller lengths, becomes negligible at 〈s〉 >

600.
The above comparison of different growth systems shows

the following trends. The ratio σ 2/〈s〉 scales linearly with 〈s〉
in systems where the growth rate is linear in s, and should
become asymptotically larger than in any other system. How-
ever, this scaling largely depends on the value of γ and other
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effects such as a limited diffusion length of group III adatoms
on the NW sidewalls [33] or coalescence of 2D islands into
continuum layers. Therefore, the real ratios σ 2/〈s〉 may be
smaller than in quasi-Poissonian systems with high evapora-
tion rates or nucleation delays. If the regular growth rate is
independent of s, the effect of evaporation is asymptotically
larger than that of the nucleation delay, and remains forever in
the measured SDs. The true Poisson SDs are rarely observed
and seem to be the best case regarding the size uniformity
within the ensembles of different nanoobjects. The only effect
which can narrow the SDs below the Poisson limit is the
nucleation antibunching, occurring due to a limited amount of
material in a nanophase [36–38]. This effect was considered
earlier only in the case without surface diffusion or evapora-
tion [38]. Including these effects in the existing theory is far
from obvious.

VIII. CONCLUSIONS

In conclusion, we summarize the main findings. First, an
analytic approach of Ref. [31] has been generalized to include
evaporation of material from a nanoparticle. In the case of
heterogeneous nucleation and growth at a time-independent
supersaturation, an analytic SD over the natural variable s
has been obtained as given by Eq. (30). This SD depends

on the four parameters—the growth index α, the evapora-
tion coefficient β, the nucleation delay b and the diffusion
parameter γ —and can reproduce very different shapes under
different growth conditions. Evaporation has been shown to
always increase the SD width. Second, CNT in open systems
with pumping has been considered, where a similar approach
allowed us to obtain an analytic Green function for the SDs
over s. Third, it has been shown that the SDs in terms of the
natural versus invariant variables show the opposite broaden-
ing trends, namely, the natural SDs broaden with increasing α,
while the invariant SDs narrow with increasing α. Fourth, the
zones of time invariance or broadening at different rates have
been established for different size-dependent variables versus
the growth index. Several growth systems have been consid-
ered from the viewpoint of the obtained results, including
3D thin films, 2D surface islands, and III–V semiconductor
nanowires. These results should enable fine tuning of the
growth conditions to narrow the SDs in terms of the required
geometrical parameter such as the volume, surface area, linear
size, or length of a nanostructure.
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