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Thermodynamic uncertainty relations for bosonic Otto engines
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We study two-mode bosonic engines undergoing an Otto cycle. The energy exchange between the two
bosonic systems is provided by a tunable unitary bilinear interaction in the mode operators modeling frequency
conversion, whereas the cyclic operation is guaranteed by relaxation to two baths at different temperatures after
each interacting stage. By means of a two-point-measurement approach we provide the joint probability of
the stochastic work and heat. We derive exact expressions for work and heat fluctuations, identities showing
the interdependence among average extracted work, fluctuations, and efficiency, along with thermodynamic
uncertainty relations between the signal-to-noise ratio of observed work and heat and the entropy production.
We outline how the presented approach can be suitably applied to derive thermodynamic uncertainty relations
for quantum Otto engines with alternative unitary strokes.
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I. INTRODUCTION

Nonequilibrium processes are always accompanied by ir-
reversible entropy production [1]. When systems become
smaller, as in nanoscopic heat engines [2,3], biological or
chemical systems [4–6], or nanoelectronic devices [7,8], the
fluctuations of all thermodynamic quantities, such as work,
heat, their correlations, and entropy production itself, become
very relevant. For example, a macroscopic thermal engine
supplies a certain amount of work while extracting heat from
a hot thermal reservoir. As the thermodynamic machine size
is reduced, the work output and heat absorbed are correspond-
ingly scaled down, their fluctuations become more and more
significant, and it becomes useful to investigate the stochastic
properties of such fluctuating quantities.

A number of fluctuation theorems have been derived
[9–29] as powerful relations that characterize the behavior
of small systems out of equilibrium. Fluctuation relations
pose stringent constraints on the statistics of fluctuating
quantities such as heat and work due to the symmetries
(particularly, time-reversal symmetry) of the underlying mi-
croscopic dynamics. Furthermore, recent relations have also
been developed, so called thermodynamic uncertainty rela-
tions (TURs), where the signal-to-noise ratio of observed
work and heat has been related to the entropy production
[30–50]. Such TURs rule, for example, the trade-off between
entropy production and the output power relative fluctuations,
i.e., the precision of a heat machine, so that working ma-
chines operating at near-to-zero entropy production cannot be
achieved without a divergence in the relative output power
fluctuations.

Although independently developed, fluctuation relations
and TURs have been recently connected under various
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approaches and assumptions [36,51–57]. In particular, in
Ref. [54] a saturable TUR obtained from fluctuation theorems
has been derived and compared with exact results pertaining
to a microscopic two-qubit swap engine operating at the Otto
efficiency.

In this paper we derive thermodynamic uncertainty rela-
tions for two-mode bosonic engines, where alternately each
quantum harmonic oscillator is coupled to a thermal bath
allowing heat exchange, and a unitary bilinear interaction
determines energy exchange between the two modes by
frequency conversion with tunable strength. We adopt the
two-point-measurement scheme [20,25,58,59] usually consid-
ered in the derivation of Jarzynski equality [60] and referred
to the simultaneous estimation of both work and heat in order
to derive the joint characteristic function that provides all
moments of work and heat. The model is shown to achieve
the Otto efficiency [61–68], independently of the coupling
parameter and the temperature of the reservoirs. After identi-
fying the regimes where the periodic protocol works as a heat
engine, a refrigerator, or a thermal accelerator, we provide
the full joint probability of the stochastic work and heat in
closed form.

Our derivation allows us to obtain the exact relation be-
tween the signal-to-noise ratio of work and heat and the
average entropy production of the engine, thus showing the
deep interdependence among the average extracted work, fluc-
tuations, and entropy production. From these relations we
derive thermodynamic uncertainty relations that are satisfied
in all the regimes of operations and for any value of the bilin-
ear coupling between the two quantum harmonic oscillators.
A bound of the efficiency in terms of the average work and its
fluctuations is also obtained.

As outlined in Appendix C, the presented approach can be
applied to quantum thermodynamic engines with alternative
unitary strokes in order to assess the validity of the standard
TUR.
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FIG. 1. Two-mode bosonic Otto cycle in heat engine operation:
in the first stage each quantum harmonic oscillator with frequency
ωA and ωB is at thermal equilibrium with its respective bath at
temperature TA and TB, respectively, with TA > TB; in the second
stage the two oscillators are isolated and allowed to interact by a
bilinear unitary interaction (θ ), thus extracting work W ; in the third
stage the oscillators are allowed to relax to their respective thermal
baths, thus absorbing heat QH and releasing heat QC , such that the
initial condition is reestablished. In the refrigeration regime all three
arrows are reversed.

II. THE TWO-MODE BOSONIC OTTO ENGINE

We illustrate now the two-mode bosonic engine under in-
vestigation, as depicted in Fig. 1. Let us fix natural units h̄ =
kB = 1. Each system is described by bosonic mode operators
a, a† and b, b†, respectively, with the usual commutation rela-
tion, and corresponding free Hamiltonians HA = ωA(a†a + 1

2 )
and HB = ωB(b†b + 1

2 ). Initially, the two modes a and b are at
thermal equilibrium with their own ideal bath at temperatures
TA and TB, respectively, and we fix TA > TB. Hence, the initial
state is characterized by the tensor product of bosonic Gibbs
thermal states, i.e.,

ρ0 = e−βAHA

ZA
⊗ e−βBHB

ZB
, (1)

with βX = 1/TX and ZX = Tr[e−βX HX ]. The two systems are
then isolated from their thermal baths and are allowed to
interact via a global unitary transformation. We consider
the bilinear interaction that globally transforms the mode
operators as follows:

a′ = a cos θ + eiϕb sin θ, (2)

b′ = b cos θ − e−iϕa sin θ, (3)

with θ ∈ [0, π
2 ] and ϕ ∈ [0, 2π ].

The Heisenberg transformations in Eqs. (2) and (3) cor-
respond to a linear mixing of the modes that for ωA �= ωB

describe the frequency conversion and, in the Schrödinger
picture, are equivalent to the unitary transformation Uξ =
exp (ξa†b − ξ ∗ab†), with ξ = θeiϕ . We remark that Uξ

incorporates the free evolutions, all interactions and classi-

cal external drivings, such that the corresponding unitary for
the time-reversed process is just U †

ξ . We also note that an
extensive study of such thermodynamic coupling, especially
for general Gaussian bipartite states, has been recently put
forward in Ref. [69]. In a quantum optical scenario, this bi-
linear coupling may arise from an interaction Hamiltonian
of duration t between the couple of modes a and b and a
third mode at frequency |ωA − ωB| considered as a classical
undepleted coherent pump with amplitude γ via a nonlinear
χ (2) medium under parametric approximation [70,71], such
that in the interaction picture ξ = γχ (2)t . In what follows the
phase ϕ is irrelevant, hence we pose ϕ = 0.

After the interaction the two harmonic oscillators are reset
to their equilibrium state of Eq. (1) via full thermalization by
weak coupling to their respective baths. The procedure can be
sequentially repeated and leads to a stroke engine. We note
that for θ = π/2 the unitary Uπ/2 performs a swap gate which
exchanges the states of the two quantum systems, analogous
to the two-qubit swap engine [54,66]. More generally, here we
consider an arbitrary value of θ , modeling different interaction
strengths (or times). In each cycle the energy change in mode
a due to the unitary stroke corresponds to the heat QH released
by the hot bath, i.e., QH = −�Ea, and similarly we have
QC = −�Eb for the heat dumped into the cold reservoir (heat
is positive when it flows out of a reservoir). The work W is
performed (W > 0) or extracted (W < 0) during the unitary
interaction, and from the first law we have

W = −QH − QC = �Ea + �Eb. (4)

We can characterize the engine by the independent random
variables W and QH and study the characteristic function
χ (λ,μ), where λ and μ denotes the work and heat labels
such that all moments of work and heat can be obtained by
the identity

〈
W nQm

H

〉 = (−i)n+m ∂n+mχ (λ,μ)

∂λn∂μm

∣∣∣∣
λ=μ=0

. (5)

The characteristic function depends on the procedure that is
adopted to jointly estimate W and QH . By using the two-
point measurement scheme [20,25,58,59], we can write the
characteristic function as follows [25]:

χ (λ,μ) = Tr[U †
θ e−iμHA eiλ(HA+HB )UθeiμHA e−iλ(HA+HB )ρ0]. (6)

By representing the thermal states as mixtures of coherent
states, namely,

e−βX HX

ZX
=

∫
d2γ

πNX
e− |γ |2

NX |γ 〉〈γ |, (7)

with d2γ = dReγ dImγ and NX = (eβX ωX − 1)−1, from the
identities eiψa†a|α〉 = |αeiψ 〉 and

Uθ |α〉|δ〉 = |α cos θ + δ sin θ〉|δ cos θ − α sin θ〉, (8)

we have

χ (λ,μ)=
∫

d2α

πNA

∫
d2γ

πNB
e− |α|2

NA
− |γ |2

NB

×〈α cos θ + γ sin θ |α cos θ+γ ei(λ−μ)ωA−iλωB sin θ〉
×〈γ cos θ−α sin θ |γ cos θ − αeiλωB−i(λ−μ)ωA sin θ〉.

(9)
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Finally, from the relation

〈α|γ 〉 = exp
(− 1

2 |α|2 − 1
2 |γ |2 + ᾱγ

)
(10)

and lengthy but straightforward Gaussian integration we
obtain

χ (λ,μ) = {1 − sin2 θ [(NA + NB + 2NANB)

× [cos(μωA − λ(ωA − ωB)) − 1]

+ i(NA − NB) sin(μωA − λ(ωA − ωB))]}−1.

(11)

We easily check the identity χ [iβB, i(βB − βA)] = 1, corre-
sponding to the standard fluctuation theorem. Indeed, the
time-reversal symmetry of the unitary operation provides
the stronger identity χ [iβB − λ, i(βB − βA) − μ] = χ (λ,μ),
corresponding to the Gallavotti-Cohen microreversibility
[9,10] and equivalent to the detailed fluctuation theorem
[19,22,23,27]

p(W, QH )

p(−W,−QH )
= e(βB−βA )QH +βBW . (12)

Note the symmetry 〈W nQm
H 〉 = ( ωA

ωB−ωA
)m〈W n+m〉, and from

the first law, 〈Qn
C〉 = (−ωB/ωA)n〈Qn

H 〉.
Using Eqs. (5) and (11) one obtains the following averages

and variances of work and heat:

〈W 〉 = (ωA − ωB)(NB − NA) sin2 θ, (13)

〈QH 〉 = ωA(NA − NB) sin2 θ = ωA

ωB − ωA
〈W 〉, (14)

var(W ) = (ωA − ωB)2[NA + NB + 2NANB

+(NA − NB)2 sin2 θ ] sin2 θ, (15)

var(QH ) = ω2
A

(ωA − ωB)2
var(W ), (16)

cov(W, QH ) = ωA

ωB − ωA
var(W ). (17)

We can identify three regimes of operation, namely,
(a) ωA > ωB and NA > NB, heat engine;
(b) ωA > ωB and NA < NB, refrigerator;
(c) ωA < ωB (⇒ NA > NB), thermal accelerator;
where, correspondingly, we have
(a) 〈W 〉 < 0, 〈QH 〉 > 0, 〈QC〉 < 0;
(b) 〈W 〉 > 0, 〈QH 〉 < 0, 〈QC〉 > 0;
(c) 〈W 〉 > 0, 〈QH 〉 > 0, 〈QC〉 < 0.
We note that for both the heat engine and the refrigerator

the sign of cov(W, QH ) is negative. On the other hand, for
the thermal accelerator, where external work is consumed
to increase the heat flow from the hot to the cold reservoir,
the covariance is positive. In terms of the temperature of the
reservoirs, it is useful to observe that

βAωA � βBωB ⇐⇒ NA � NB, (18)

and thus the three regimes are equivalently identified by

(a)
TB

TA
<

ωB

ωA
< 1, (b)

ωB

ωA
<

TB

TA
< 1, (c)

ωB

ωA
> 1.

FIG. 2. Plot of work, heat, and entropy production (thick, dashed,
and dotted curves, respectively) for ωA = 1, βA = 1, βB = 2, and θ =
π/2 versus the ratio ωB/ωA, in their three regions of operation.

The efficiency of the heat engine is given by

η = 〈−W 〉
〈QH 〉 = 1 − ωB

ωA
� 1 − TB

TA
≡ ηC, (19)

corresponding to the Otto cycle efficiency. The Carnot ef-
ficiency ηC is achieved only for ωA/ωB = TA/TB (i.e., for
NA = NB with zero output work). Analogously, the coefficient
of performance for the refrigerator is given by

ζ = 〈QC〉
〈W 〉 = ωB

ωA − ωB
� TB

TA − TB
= ζC . (20)

Note that both the efficiency and the coefficient of per-
formance are independent of θ and the temperature of the
reservoirs.

Since [Uθ , a†a + b†b] = 0 one has �Eb = −ωB
ωA

�Ea, and
hence the entropy production 〈�〉 can be written as follows:

〈�〉 = βA�Ea + βB�Eb = βAωA − βBωB

ωA − ωB
〈W 〉

= (βAωA − βBωB)(NB − NA) sin2 θ. (21)

From Eq. (18), as expected, one always has 〈�〉 � 0. Work,
heat, and entropy production are depicted in Fig. 2 for param-
eters ωA = 1, βA = 1, and βB = 2, with θ = π/2.

By the identity βAωA−βBωB

ωA−ωB
= − 1

TB
( ηC

η
− 1), for the heat en-

gine one obtains the relation

〈�〉 = 〈−W 〉
TB

(
ηC

η
− 1

)
(22)

between the average extracted work, entropy production, and
efficiency. Analogously, for the refrigerator one has

〈�〉 = 〈QC〉
TA

(
1

ζ
− 1

ζC

)
. (23)
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FIG. 3. Plot of the work variance var(W ) (thick curve) and the
function 〈W 〉2( 2

〈�〉 + 1) (dashed curve) for ωA = 1, βA = 1, and
βB = 2 versus the ratio ωB/ωA. The dotted curve was obtained by
the lower bound in Eq. (27) derived in Ref. [54].

III. THERMODYNAMIC UNCERTAINTY RELATIONS

Using Eqs. (11)– (15) one can obtain the inverse signal-to-
noise ratios

var(W )

〈W 〉2
= var(QH )

〈QH 〉2
= cov(W, QH )

〈W 〉〈QH 〉
= NA + NB + 2NANB

(NA − NB)2 sin2 θ
+ 1. (24)

These ratios are minimized versus θ for θ = π
2 , for which

also the entropy production 〈�〉 achieves the maximum. Note
also that operating at zero entropy production (i.e., for NA →
NB, thus approaching the Carnot efficiency) will produce a
divergence in Eq. (24). By combining Eqs. (21) and (24),
independently of θ we obtain the exact relation

var(W )

〈W 〉2
= h(βAωA − βBωB)

〈�〉 + 1, (25)

where h(x) = x cth(x/2). Then, reducing the noise-to-signal
ratio associated with work extraction (or cooling perfor-
mance) comes at the price of increased entropy production.
Since h(x) � 2, the following thermodynamic uncertainty re-
lation is always satisfied,

var(W )

〈W 〉2
� 2

〈�〉 + 1, (26)

and then also the standard TUR var(W )/〈W 〉2 � 2/〈�〉.
In Fig. 3 we plot the work variance and compare it with

the bound obtained by Eq. (26), for fixed parameters ωA = 1,
βA = 1, and βB = 2. Differently from the two-qubit case stud-
ied in Ref. [54], we do not observe a violation of the standard
TUR. Indeed, the tightest saturable bound from Ref. [54],

var(W )

〈W 〉2
� f (〈�〉), (27)

where f (x) = csch2[g(x/2)] and g(x) denotes the inverse
function of x tanh(x), becomes quite loose for the present
bosonic engine for ωB 
 ωA (see Fig. 3). For a more direct
comparison with the two-qubit engine, where the standard
TUR can be violated, see Appendix A. The effect of fi-
nite thermalization times on the TUR is also considered in
Appendix D.

From Eqs. (22) and (26) we can write a relation between
the average extracted work, fluctuations, and efficiency:

〈−W 〉 � var(W )

2TB

(
ηC

η
− 1

)
. (28)

This can also be written as a bound on the efficiency,
determined by the average work and fluctuations, namely,

η � ηC

1 + 2TB〈−W 〉/var(W )
. (29)

We note that Eqs. (28) and (29) are analogous to the universal
trade-off derived in Ref. [41] for steady-state engines perma-
nently coupled to heat baths. The bound, (29), shows that in
order to increase the efficiency, one must either sacrifice the
output work or increase the fluctuations, thus decreasing the
engine reliability.

We observe that both the stochastic work and the stochastic
heat come as integer multiples of ωA − ωB and ωA, respec-
tively. In fact, this can also be understood [72,73] by noting
that the characteristic function has periodicity 2π

|ωA−ωB| and 2π
ωA

in the variables λ and μ. The joint probability for work and
heat is then given by

p[W = m(ωA − ωB), QH = nωA] = ωA|ωA − ωB|
(2π )2

∫ π
|ωA−ωB |

− π
|ωA−ωB |

dλ

∫ π
ωA

− π
ωA

dμχ (λ,μ)e−iλm(ωA−ωB )−iμnωA

= p[W = m(ωA − ωB)]δn,−m = p[QH = nωA]δm,−n, (30)

where, by the derivation given in Appendix B,

p[QH = nωA] = p[W = −n(ωA − ωB)] = 1√
1 + 2(NA + NB + 2NANB) sin2 θ + (NA − NB)2 sin4 θ

×

⎧⎪⎨
⎪⎩

(
1+(NA+NB+2NANB ) sin2 θ−

√
1+2(NA+NB+2NANB ) sin2 θ+(NA−NB )2 sin4 θ

2NB (NA+1) sin2 θ

)n
for n � 0,(

1+(NA+NB+2NANB ) sin2 θ−
√

1+2(NA+NB+2NANB ) sin2 θ+(NA−NB )2 sin4 θ

2NA(NB+1) sin2 θ

)|n|
for n < 0.

(31)

In Fig. 4 we report the work probability for NA = 8 and NB = 2, pertaining to two values of strength interaction, i.e., θ = π/4
and θ = π/2.
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FIG. 4. Distribution of the extracted work in ωA − ωB units, for NA = 8 and NB = 2, for interaction strength θ = π/4 (left) and θ = π/2
(right). By exchanging n → −n, the same histograms represent the probability of heat released by the hotter reservoir in ωA units [see Eqs. (31)
and (B7)].

From the form of Eq. (30), similarly to the case of the
two-qubit swap engine [66], one recognizes that the efficiency
is indeed a self-averaging quantity. In fact, in principle the
efficiency η = 〈−W 〉

〈QH 〉 is different from the expectation of the
stochastic efficiency ηs = 〈−W/QH 〉. However, here we have
for all moments

〈(−W/QH )n〉 = 〈−W/QH 〉n =
(

1 − ωB

ωA

)n

; (32)

namely, there are no efficiency fluctuations.
The closed form for the probability of Eq. (31) allows one

to explicitly verify the detailed fluctuation theorem in Eq. (12)
as follows:

p[W = −n(ωA − ωB), QH = nωA]

p[W = n(ωA − ωB), QH = −nωA]
=

[
NA(NB + 1)

NB(NA + 1)

]n

= e(βB−βA )nωA−βBn(ωA−ωB ) = e(βB−βA )QH +βBW . (33)

In Appendix C we provide a general discussion of the special
character of the joint probability p(W, QH ) and an outline of
the generalization of the present approach to the study of Otto
engines with alternative unitary interactions.

IV. CONCLUSIONS

In conclusion, by adopting the two-point-measurement
protocol for the joint estimation of work and heat, we have
derived exact expressions for work and heat fluctuations
pertaining to two-mode bosonic Otto engines, where two
quantum harmonic oscillators are alternately subject to a tun-
able unitary bilinear interaction and to thermal relaxation to
their own reservoirs. We have derived the characteristic func-
tion for work and heat and obtained the full joint probability
of the stochastic work and heat.

The presented thermodynamic uncertainty relations show
the interdependence among the average extracted work, fluc-
tuations, and entropy production, which holds over the whole
range of coupling parameters between the two quantum har-
monic oscillators. Our results confirm the general meaning of
TURs, namely, that reducing the noise-to-signal ratio asso-
ciated with a given current comes at the price of increased
entropy production.

The direct derivation of TURs by explicit measurement
protocols can be effective in a variety of stroke thermody-

namic engines. Within this approach, the relevance of the
algebraic properties of the interactions naturally emerges.

The connection between fluctuation theorems, estima-
tion protocols, and thermodynamic uncertainty relations
represents a significant advance in our understanding of
nonequilibrium phenomena and is relevant for the design of
quantum thermodynamic machines, by posing strict bounds
that relate work, heat, fluctuations, efficiency, and reliability.

APPENDIX A: A COMPARISON WITH THE TWO-QUBIT
OTTO ENGINE

It is interesting to compare the results for the two-mode
bosonic Otto engine with the case of the two-qubit Otto en-
gine. Hence, we extend the study in Ref. [54] to the case of
partial swap, by considering a two-qubit unitary interaction,

Uθ =

⎛
⎜⎝

1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

⎞
⎟⎠, (A1)

where we have used the tensor-product ordered basis
|00〉, |01〉, |10〉, |11〉 for two qubits. The characteristic func-
tion is still obtained by Eq. (6) in the text, where now HX =
−ωX |0〉〈0|. A simple calculation gives

χ (λ,μ) = 1 + sin2 θ{(NA + NB − 2NANB)

× [cos(μωA − λ(ωA − ωB)) − 1]

+ i(NA − NB)[sin(μωA − λ(ωA − ωB))]}, (A2)

where now NX = (eβX ωX + 1)−1. The odd and even moments
are given by 〈

Q2n+1
H

〉 = ω2n+1
A (NA − NB) sin2 θ, (A3)〈

Q2n
H

〉 = ω2n
A (NA + NB − 2NANB) sin2 θ, (A4)

and 〈W nQm
H 〉 = ( ωB−ωA

ωA
)
n〈Qn+m

H 〉. The entropy production has
the same formal expression of the bosonic case, namely,

〈�〉 = (βAωA − βBωB)(NB − NA) sin2 θ, (A5)

whereas the inverse signal-to-noise ratio reads

var(W )

〈W 〉2
= var(QH )

〈QH 〉2
= NA + NB − 2NANB

(NA − NB)2 sin2 θ
− 1. (A6)
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FIG. 5. Plot of the signal-to-noise ratio of work 〈W 〉2/var(W ) and scaled entropy production 〈�〉/2 for the qubit Otto engine with θ = π/2
(left) and θ = π/3 (right) as a function of the parameters NA and NB.

For the qubit engine, Eq. (25) in the text is then replaced with

var(W )

〈W 〉2
= h(βAωA − βBωB)

〈�〉 − 1, (A7)

where, remarkably, the same function h(x) = x cth(x/2) appears. Since around the affinity x = βAωA − βBωB one has 2 �
h(x) � 2 + x2

6 , the standard TUR

var(W )

〈W 〉2
� 2

〈�〉 (A8)

can be tinily violated for the qubit engine, as shown in Ref. [54]. In Fig. 5 we report the signal-to-noise ratio 〈W 〉2/var(W ) along
with the function 〈�〉/2 for the cases θ = π/2 and θ = π/3. We observe that the region of violation of the thermodynamic
uncertainty relation (A8) is shrunk for decreasing values of θ .

For the qubit engine the probability for the stochastic heat and work has finite outcomes and is obtained as follows:

p[QH = nωA] = p[W = −n(ωA − ωB)]

= 1

2π

∫ 2π

0
{1 + sin2 θ [(NA + NB − 2NANB)[(cos μ) − 1] + i(NA − NB) sin μ]} e−iμn dμ

=

⎧⎪⎨
⎪⎩

1 − (NA + NB − 2NANB) sin2 θ for n = 0,

NA(1 − NB) sin2 θ for n = 1,

NB(1 − NA) sin2 θ for n = −1.

(A9)

As we have shown above, this three-point probability may give rise to a violation of Eq. (A8). The finiteness of the stochastic
outcomes and the different algebra of operators concur to provide a different thermodynamic uncertainty relation with respect
to the bosonic case. We recall that the saturable bound in the text, (27), provides a stronger violation of the standard TUR and is
achieved by a two-point distribution, as shown in Ref. [54].

APPENDIX B: PROBABILITY FOR THE STOCHASTIC WORK AND HEAT OF THE BOSONIC OTTO ENGINE

From Eq. (30) in the text, in order to obtain the probability for the stochastic work and heat we need to perform the following
integral:

p[QH = nωA] = p[W = −n(ωA − ωB)]

= 1

2π

∫ 2π

0
{1 − [(NA + NB + 2NANB)[(cos μ) − 1] + i(NA − NB) sin μ] sin2 θ}−1e−iμndμ. (B1)

The integral can be solved by using the residue theorem, after posing z = eiμ and integrating on the complex plane along the
unit circle γ , with dμ = dz/(iz). Then we have

p[QH = nωA] = 1

2π

∫
γ

{1 − [(NA + NB + 2NANB)[(z + z−1)/2 − 1] + i(NA − NB)(z − z−1)/(2i)] sin2 θ}−1z−n dz

iz

= 1

2π i

∫
γ

z−n

[1 + (NA + NB + 2NANB) sin2 θ ]z − [NA(NB + 1)z2 + NB(NA + 1)] sin2 θ
dz. (B2)
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For n � 0 the poles are easily evaluated as

z± = 1 + (NA + NB + 2NANB) sin2 θ ±
√

1 + 2(NA + NB + 2NANB) sin2 θ + (NA − NB)2 sin4 θ

2NA(NB + 1) sin2 θ
. (B3)

We observe that

z+ >
1 + [(NA + NB + 2NANB) + |NA − NB|] sin2 θ

2NA(NB + 1) sin2 θ
. (B4)

Then for NA � NB clearly one has z+ > 1. For NA < NB, one also has

z+ >
1 + 2NB(NA + 1) sin2 θ

2NA(NB + 1) sin2 θ
> 1, (B5)

since NB > NA > 0 ⇐⇒ NB(NA + 1) > NA(NB + 1). Hence, the pole z+ lies outside the unitary circle.
The residue for the first-order pole z− is given by

Res

(
z|n|

[1 + (NA + NB + 2NANB) sin2 θ ]z − [NA(NB + 1)z2 + NB(NA + 1)] sin2 θ
, z−

)

= z|n|

[1 + (NA + NB + 2NANB) sin2 θ ] − 2NA(NB + 1)z sin2 θ

∣∣∣∣
z=z−

= 1√
1 + 2(NA + NB + 2NANB) sin2 θ + (NA − NB)2 sin4 θ

×
(

1 + (NA + NB + 2NANB) sin2 θ −
√

1 + 2(NA + NB + 2NANB) sin2 θ + (NA − NB)2 sin4 θ

2NA(NB + 1) sin2 θ

)|n|
. (B6)

For n > 0, we also have an n-order pole in z = 0. However, we can recast the integration as for the case n < 0 by the change
of variable μ → −μ, which is then equivalent to exchanging NA with NB. Hence, one obtains the closed expression for the
probability for the stochastic work and heat of Eq. (31).

In the case of the swap engine θ = π
2 , one can directly derive the analytic expression for p[QH = nωA] as

p[QH = nωA] = p[W = −n(ωA − ωB)] =
∞∑

l,s=0

Tr[(|l〉〈l| ⊗ IB)Uπ/2(|s〉〈s| ⊗ ρNB )U †
π/2]〈s|ρNA |s〉 δn,s−l

=
∞∑

l,s=0

1

NA + 1

(
NA

NA + 1

)s 1

NB + 1

(
NB

NB + 1

)l

δn,s−l =
{ 1

1+NA+NB

( NA
NA+1

)n
for n � 0,

1
1+NA+NB

( NB
NB+1

)|n|
for n < 0,

(B7)

consistent with Eq. (31) for θ = π
2 .

APPENDIX C: GENERAL CONSIDERATION OF THE JOINT PROBABILITY p(W, QH )

We would like to make some general considerations about the special character of the joint probability p(W, QH ). Let us
return to the characteristic function χ (λ,μ) in Eq. (6) in the text. We note that the periodicity in λ and μ which is evident
in Eq. (11) can indeed be recognized from the expression of Eq. (6) without explicit calculation, but exploiting the algebra of
bosonic operators, since one can rewrite

χ (λ,μ) = Tr[U †
θ Uξ ρ0], (C1)

where ξ = θeiλ(ωA−ωB )−iμωA . The fact that χ (λ,μ) is a function of the single variable λ(ωA − ωB) − μωA is due to the symmetry
[Uθ , a†a + b†b] = 0, and from this the Kronecker delta is obtained as

p[W = m(ωA − ωB), QH = nωA] = ωA|ωA − ωB|
(2π )2

∫ π
|ωA−ωB |

− π
|ωA−ωB |

dλ

∫ π
ωA

− π
ωA

dμχ (λ,μ)e−iλm(ωA−ωB )−iμnωA

= δm,−n
1

2π

∫ 2π

0
χ

(
0,

μ

ωA

)
e−iμndμ. (C2)
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This feature can also be obtained in other thermodynamic
engines where a different observable is a constant of motion
during the unitary strokes. For example, one can consider the
unitary Vθ = exp(θa†b2 − θ∗ab†2), where now the constant
of motion is 2a†a + b†b. The characteristic function is then
given by χ (λ,μ) = Tr[V †

θ Vζ ρ0] with ζ = θeiλ(ωA−2ωB )−iμωA ,
and hence

p[W = m(ωA − 2ωB), QH = nωA]

= p[W = m(ωA − 2ωB)]δn,−m

= p[QH = nωA]δm,−n. (C3)

Clearly, also in this case the efficiency η = 〈−W/QH 〉 = 1 −
2ωB/ωA has no fluctuations. Even without finding explicitly
the stochastic distribution one can exploit this result to prove
some thermodynamic properties. For example, in this case we
can write the average entropy production as follows:

〈�〉 = −βAωA − 2ωBβB

ωA
〈QH 〉 = βAωA − 2ωBβB

ωA − 2ωB
〈W 〉. (C4)

By requiring positivity of the entropy production one can
easily infer the conditions for having a heat-engine operation
〈QH 〉 > 0 and 〈W 〉 < 0, namely, βAωA < 2βBωB and ωA >

2ωB. We note that the first of these conditions is equivalent
to NA > N2

B/(2NB + 1). Further work is required in order
to obtain other properties related to higher moments (e.g.,
thermodynamic uncertainty relations), since the algebra of
operators (a†b2, ab†2, a†a, b†b) is not closed. The presented
approach might be fruitful for the study of nonlinear optical
interactions from a thermodynamic perspective.

Similarly, for the two-mode squeezing unitary interaction
Sr = exp[r(a†b† − ab)] for which [Sr, a†a − b†b] = 0, one
obtains

p[W = m(ωA + ωB), QH = nωA]

= p[W = m(ωA + ωB)]δn,−m = p[QH = nωA]δm,−n. (C5)

In this case the engine can work just as a dud machine,
since one always has 〈W 〉 � 0, along with 〈QH 〉, 〈QC〉 � 0.
Basically, in this case the unitary strokes perform work W =
(ωA + ωB)(NA + NB + 1) sinh2 r to build correlations that are
then converted to heat when the two harmonic oscillators relax
to equilibrium with their thermal reservoirs. This is consistent
with a general result obtained in Ref. [69], where it is shown
that the presence of initial correlations is needed to extract
work by the interaction Sr . By exploiting the closed algebraic
transformations

S†
r aSr = a cosh r + b† sinh r, (C6)

S†
r bSr = b cosh r + a† sinh r (C7)

from the general formula in the text, (5), one obtains

〈W 〉 = (ωA + ωB)(NA + NB + 1) sinh2 r,

var(W )

〈W 〉2
= NA + NB + 2NANB + 1

(NA + NB + 1)2 sinh2 r
+ 1 . (C8)

The entropy production reads

〈�〉 = βAωA + βBωB

ωA + ωB
〈W 〉, (C9)

and hence, for any value of the interaction strength r, one
obtains the exact relation

var(W )

〈W 〉2
= h(βAωA + βBωB)

〈�〉 + 1. (C10)

Remarkably, as for the interaction Uθ , the function h(x) =
x cth(x/2) appears, and then also in this case the thermody-
namic uncertainty relation var(W )/〈W 〉2 � 2/〈�〉 + 1 holds.

By an analogous derivation of Eq. (31) given in Ap-
pendix B, one can obtain the probability for the stochastic
work and heat as

p[QH = nωA] = p[W = −n(ωA + ωB)] = 1√
1 + 2(NA + NB + 2NANB + 1) sinh2 r + (NA + NB + 1)2 sinh4 r

×

⎧⎪⎨
⎪⎩

( 1+(NA+NB+2NANB+1) sinh2 r−
√

1+2(NA+NB+2NANB+1) sinh2 r+(NA+NB+1)2 sinh4 r
2(NA+1)(NB+1) sinh2 r

)n
for n � 0,

( 1+(NA+NB+2NANB+1) sinh2 r−
√

1+2(NA+NB+2NANB+1) sinh2 r+(NA+NB+1)2 sinh4 r
2NANB sinh2 r

)|n|
for n < 0.

(C11)

A further interesting observation comes from the specific form of the stochastic distributions of Eqs. (31) and (C11), namely,
an asymmetric Bose-Einstein distribution over n ∈ Z. This is due to the property of the interactions Uθ and Sr of transforming
initial Gibbs states in a final correlated state which locally (i.e., the two partial traces on each mode after the interaction) is
still of the Gibbs form. In fact, from the perspective of pure probability theory such power-law expressions along with the
detailed fluctuation theorem generally give rise to the thermodynamic uncertainty relation var(W )/〈W 〉2 = var(QH )/〈QH 〉2 �
2/〈�〉 + 1, as shown in the following. Let us assume a general stochastic distribution over n ∈ Z of the form

p[QH = nv] = p[W = nk] =
{
αxn for n � 0,

αy|n| for n < 0,
(C12)

with arbitrary real v and k and with x and y ∈ [0, 1]. The normalization condition of probability implies α = (1 − x)(1 − y)/(1 −
xy). One easily obtains the identities

〈W 〉 = k

v
〈QH 〉 = k

(v + k)βB − hβA
〈�〉 = k

x − y

(1 − x)(1 − y)
, (C13)

var(W )

〈W 〉2
= var(QH )

〈QH 〉 = (x + y)(1 − x)(1 − y)

(x − y)2
+ 1 = (x + y)[(v + k)βB − vβA]

(x − y)〈�〉 + 1. (C14)
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The detailed fluctuation theorem p[W =nk]
p[W =−nk] = e� also provides

the constraint x/y = e(v+k)βB−vβA . Then Eq. (C14) can be
rewritten as

var(W )

〈W 〉2
= var(QH )

〈QH 〉2

= h[(v + k)βB − vβA]

〈�〉 + 1 � 2

〈�〉 + 1. (C15)

APPENDIX D: PARTIAL THERMALIZATION FOR THE
BOSONIC SWAP ENGINE

The study of the case of partial thermalization requires
some care, for two reasons. First, one has to ignore a tran-
sient time in order to consider the possible stabilization of a
periodic steady state at the beginning of each cycle. Second,
for general coupling parameter θ the resulting state at the
beginning of each cycle, even in the periodic steady-state
regime, is a correlated state which does not commute with HA

and HB, and hence the approach of the two-point measurement
scheme to obtain the characteristic function is not justified.
This second issue, however, does not affect the engine in the
case of a perfect swap θ = π

2 , since in any case the initial state
in each cycle is of bi-Gibbsian form, and we can study partial
thermalization as follows. Let us consider the usual bosonic
dissipation described by a Lindblad master equation to model

thermalization [74], namely,

ρ̇ = γA(NA + 1)
(
aρa† − 1

2 a†aρ − 1
2ρa†a

)
+ γANA

(
a†ρa − 1

2 aa†ρ − 1
2ρaa†

)
, (D1)

and analogously for mode b. For simplicity let us assume
equal damping rates γA = γB ≡ γ for both modes. At the end
of the (n + 1)th cycle with finite thermalization time τ the
state will be bi-Gibbsian with mean occupation numbers

Nn+1
A = e−γ τ Nn

B + (1 − e−γ τ )NA, (D2)

Nn+1
B = e−γ τ Nn

A + (1 − e−γ τ )NB. (D3)

After a transient time, the cycles lead to a periodic state
corresponding to the steady-state solution of Eqs. (D2) and
(D3), which are given by

ÑA = (NA + e−γ τ NB)/(1 + e−γ τ ),

ÑB = (NB + e−γ τ NA)/(1 + e−γ τ ). (D4)

It follows that the characteristic function is still given by
Eq. (11) in the text, along with the replacement of NA and NB

with ÑA and ÑB, respectively. Then the average work, heat, and
entropy production per cycle given in Eqs. (13), (14), and (21),
respectively, are just rescaled by the factor tanh(γ τ/2). The
effect of partial thermalization is more involved for physical
quantities related to higher moments. For example, Eq. (24)
for the inverse signal-to-noise ratios is replaced with

var(W )

〈W 〉2
= (1 + e−2γ τ )[NA(NA + 1) + NB(NB + 1)] + 2e−γ τ (NA + NB + 2NANB)

(1 − e−γ τ )2(NA − NB)2
. (D5)

Clearly, for τ → +∞, Eq. (24) is recovered. In Fig. 6 we plot the signal-to-noise ratio for a fixed value of the parameter NA = 3
versus a varying NB, for different values of γ τ , where the detrimental effect of decreasing the thermalization times is apparent.

The function h(βAωA − βBωB) in Eq. (25) in the text is replaced with

v(βAωA, βBωB, γ τ ) ≡ (βAωA − βBωB)

× (1 + e−γ τ )2 cosh(βAωA) + (1 + e−γ τ )2 cosh(βBωB) − (1 + e−2γ τ ) cosh(βAωA − βBωB) − e−γ τ (4 + e−γ τ ) − 1

(1 − e−2γ τ )[sinh(βAωA) − sinh(βBωB) − sinh(βAωA − βBωB)]
. (D6)

One can easily prove the bound

v(βAωA, βBωB, γ τ ) � 2 coth(γ τ/2) (D7)

FIG. 6. Signal-to-noise ratio of the work for the bosonic swap en-
gine (θ = π

2 ) with NA = 3 versus the occupation number NB for ideal
thermalization (solid curve) and finite thermalization times γ τ = 3,
2, and 1 (dashed, dotted, and dot-dashed curves, respectively).

and hence the thermodynamic uncertainty relation

var(W )

〈W 〉2
� 2

〈�〉 coth(γ τ/2) + 1. (D8)

This bound shows that thermodynamic uncertainty relations
can be informative also for more realistic engines where finite
thermalization times are considered. Partial thermalization
clearly affects the signal-to-noise ratio of the extracted work.
When treating specific microscopic interactions via a time-
dependent Hamiltonian or assigning a time cost to the unitary
transformations, one may study optimal time allocation be-
tween thermalization strokes and unitary strokes in order to
maximize the extracted work at nonzero power.

The replacement rule (NA, NB) → (ÑA, ÑB) also applies to
the joint probability of the stochastic work and heat. This
implies that even in the case of partial thermalization the effi-
ciency of the swap engine remains a nonfluctuating quantity.
We note, however, that a detailed fluctuation theorem as in
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Eq. (12) holds provided that βA and βB are replaced by the
effective inverse temperatures β̃X = 1

ωX
ln ( ÑX +1

ÑX
).

For the arbitrary interaction parameter θ , we ar-
gue that the issue of the presence of correlations or

coherence in the periodic steady states could be ad-
dressed by replacing the two-measurement protocol with
a full-counting-statistics approach, along the lines of
Ref. [75].
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