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Kinetics of the two-dimensional long-range Ising model at low temperatures
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We study the low-temperature domain growth kinetics of the two-dimensional Ising model with long-range
coupling J (r) ∼ r−(d+σ ), where d = 2 is the dimensionality. According to the Bray-Rutenberg predictions, the
exponent σ controls the algebraic growth in time of the characteristic domain size L(t ), L(t ) ∼ t1/z, with growth
exponent z = 1 + σ for σ < 1 and z = 2 for σ > 1. These results hold for quenches to a nonzero temperature
T > 0 below the critical temperature Tc. We show that, in the case of quenches to T = 0, due to the long-range
interactions, the interfaces experience a drift which makes the dynamics of the system peculiar. More precisely,
we find that in this case the growth exponent takes the value z = 4/3, independently of σ , showing that it
is a universal quantity. We support our claim by means of extended Monte Carlo simulations and analytical
arguments for single domains.
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I. INTRODUCTION

After a quench from the disordered phase above the critical
temperature Tc to a final temperature T < Tc, ferromagnetic
materials undergo phase ordering [1–5]. The system orders
locally inside domains whose typical size L(t ) grows in time
until equilibration takes place on a timescale τeq which di-
verges with the system (linear) size L. This relaxation process
is called coarsening and it is often accompanied by a dynam-
ical scaling symmetry, which amounts to the physical fact
that configurations at different times are statistically similar
upon measuring distances in units of L(t ). The latter usually
increases algebraically, L(t ) ∼ t1/z, where z is a nonequilib-
rium dynamical exponent that is unrelated to any equilibrium
property. This exponent is also independent of the quench
temperature [2,6], a property which is true for any universal
quantity, because it can be shown that temperature is an irrel-
evant parameter in the sense of the renormalization group [6].
This statement applies for quenches to 0 < T < Tc: Indeed,
when cooling down to T = Tc the process is qualitatively
different because the order parameter vanishes in the target
equilibrium state, at variance with what happens when T <

Tc. Quenches to T = 0, on the other hand, may also have pecu-
liar properties because any activated process is forbidden. To
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be concrete, let us discuss a system with a scalar nonconserved
order parameter.

Short-range systems. If interactions are restricted to
nearest-neighbor (NN) spins, the Ising model with Glauber
single-spin-flip kinetics [7] represents an appropriate descrip-
tion. Letting space dimension d > 1 above the lower critical
one, in order to have a finite Tc, after quenching to 0 < T <

Tc, ordered domains grow at late times with z = zCD = 2 until
the system eventually attains the equilibrium state in a time
τeq which is in most cases τeq ∼ Lz. We indicate with zCD this
value of z because the motion of the interface in this case is
curvature driven [2,8].

For quenches to T = 0, even if the motion of interfaces
is no longer curvature driven but has a diffusive character,
one still observes a growth law with an exponent z = zdiff =
zCD = 2. Another difference between T = 0 and T > 0 is
that the equilibration in the former quench may be impeded
due to blocking of the system into infinitely lived metastable
states [9,10]. In d = 2 these blocked states are stripes with flat
interfaces extending along the lattice directions, such as that
in Fig. 1(a). Clearly, the fact that such flat interfaces are frozen
affects not only the fate of the system in a quench to T = 0,
but also the preceding dynamics. Indeed, it was shown in [11]
that, although the value of z does not change in going from
T > 0 to T = 0, since zdiff = zCD, some other nonequilibrium
exponents related to the geometry of interfaces do change.

Furthermore, even if the quench is made to a finite T ,
the different dynamics associated with T = 0 is observed in
a preasymptotic regime which can be rather long if T is
small enough. Similarly, for sufficiently low T > 0, although
the metastable states are eventually escaped, this happens on
timescales that can be huge, greatly delaying the equilibration
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FIG. 1. Pictorial representation of different interfaces (thick red lines) on a square lattice and their stability with long-range interactions.
Spins are located in the center of the small squares forming the lattice and they have opposite orientation on the two sides of the interface,
supposed to extend indefinitely. We show (a) a flat interface directed along one lattice direction; (b) an interface with a constant slope (i.e., all
steps have the same length); (c) an interface of positive curvature (i.e., steps become shorter upon going right); (d) an interface with a local
constant slope, then acquiring a finite curvature (the three central terraces have the same length, higher terraces have an increasing length, and
lower terraces have a decreasing length); and (e) an interface whose slope changes sign. For any shape we focus on a given spin on the interface
(closed black circle •) and we wonder about its stability at T = 0. Using symmetry considerations, it is possible to compensate the interaction
with spins of opposite orientations. This is explicitly depicted in (b), where the interaction with spins parallel to • (straight segments) is
compensated with the interaction with spins antiparallel to • (dashed segments). In particular, all spins within the two perpendicular straight
segments originating in • are compensated by all spins within the two perpendicular dashed segments originating at the same site. Once this
procedure is completed, uncompensated spins are shown as dark gray circles if they are parallel to • (therefore, they are stabilizing) and as
light gray circles if they are antiparallel to • (therefore, they are destabilizing). Therefore, spins • at interfaces (a) and (b) are stable while
spin • in (c) is unstable. Notice that all the above is true for any value of σ . The stability of spin • in (d) is more complicated because it
has short-distance stabilizing interactions (dark gray circles) and longer-distance destabilizing interactions (light gray circles). The resulting
effect depends on the details of the interface and on σ : For large σ we expect the short-distance stabilizing interactions to prevail, while for
small σ we expect the longer-distance destabilizing interactions to do so. Finally, in (e) the edge spins of a top terrace are unstable, showing
that curvature is more relevant than the sign of the slope. In all figures (b)–(e) the spin at the right of • (i.e., the spin on the other side of the
interface) is stable. For the NN model the picture is different because the interaction is local and the curvature is irrelevant: Interface (a) is
stable while edge spins in (b)–(e) are (energetically) in neutral equilibrium, and therefore are dynamically unstable [see Eq. (3) with �E = 0].

with respect to what happens at higher T where, as already
mentioned, τeq ∼ Lz. Summarizing, the case with T = 0 dis-
plays peculiar features which can strongly affect even the
dynamics of quenches to finite T , at least preasymptotically.

A separated discussion is deserved by the case d = 1,
because here Tc = 0, meaning that, strictly speaking, T = 0
is the only possibility to cool the system to a magnetized
state. However, even for quenches to a finite T , a coarsening
stage takes place because domains keep growing as in a T = 0
quench until their size L(t ) reaches the equilibrium correlation
length ξ or the system size L, after which equilibration occurs.
Also in this case the motion of interfaces has a diffusive
character and one finds z = zdiff = 2 [7], but, at variance with
higher dimensions, there are no metastable states due to the
trivial one-dimensional lattice geometry.

Long-range systems. The presence of long-range interac-
tions changes considerably the above picture. The equilibrium
scenario with a coupling between spins at distance r decaying
as r−(d+σ ) is well understood. There is an ordered phase below
a finite Tc also in d = 1 provided, in this case, that σ � 1.
Furthermore, the energy is extensive and the system is additive
for any d if σ > 0, a regime sometimes referred to as a weak
long-range regime, whereas extensivity and additivity are lost
for σ � 0, the strong long-range case. In this paper we will
only focus on the weak long-range case σ > 0.

Regarding the nonequilibrium properties, in quenches to
a finite T one finds [12–14] z = zadv = 1 + σ for σ � 1 and
z = 2 for σ > 1 (with logarithmic corrections right at σ = 1).
This applies down to d = 1 where, if σ > 1, one has Tc = 0
and the discussion made above for short-range interactions
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regarding equilibration applies. The different behavior of the
exponent z in crossing σ = 1 can be ascribed to qualitatively
different underlying dynamical mechanisms. When, for σ >

1, z takes the same value z = 2 as in the case with NN interac-
tions, the motion of interfaces behaves as for NN interactions,
namely, it is diffusive for d = 1 and is governed by the
curvature [12,15] for d > 1. Instead, when z = zadv, i.e., for
σ � 1, the motion of domains walls is advected by the drift
due to the long-range interactions between far away spins.
Note that one has z → zball = 1 for σ → 0+. This case corre-
sponds to an advection of interfaces so strong as to produce a
completely deterministic motion and hence a ballistic regime.
This is related to the crossover from weak long-range to strong
long-range interactions occurring right at σ = 0.

Regarding the differences between T > 0 and T = 0 when
long-range interactions are present, the situation is not clear at
all. To date, the matter has been well understood only in d = 1
[16–18]. In this case, when quenching to T = 0, one finds
coarsening with z = zball = 1 for any σ . Let us recall that,
instead, for T > 0 one has z → 1 only in the limit σ → 0+.
The interpretation is as follows: When T > 0 thermal fluctu-
ation randomize the displacement of interfaces and therefore
the motion is not fully deterministic, although still advected.
In this case, in order to have full determinism, one has to go
to the strong-interaction limit σ → 0. Instead, when T = 0,
even a relatively small drift, present for any σ � 1, leads to
a deterministic motion with z = zball = 1. Also in this case,
the asymptotic ballistic growth which sets in at T = 0 is
observed as a preasymptotic behavior after quenches to finite
T for any σ . Finally, let us mention that also with long-range
interactions, as in the NN case, metastability is not observed
in d = 1.

In this paper we take a step in the direction of understand-
ing the ordering kinetics after quenches to T = 0 of systems
with long-range interactions in d > 1. The matter, which is
largely unexplored, is relevant because in this case, as we will
illustrate, the dynamical mechanism is different from the ones
discussed above, thus producing a different value z = Z of
the growth exponent. This is independent of σ and character-
izes also the preasymptotic evolution in deep quenches to a
finite T .

The origin of this growth mechanism can be traced back
to metastable configurations. In order to discuss this point we
invite the reader to refer to Fig. 1 as a preliminary illustration
of the various shapes of the interfaces, leaving further details
contained in this figure, described in the detailed caption, to
the specific discussion that will be conducted in Sec. IV B.
As discussed previously, in d > 1 with NN interactions a flat
portion of an interface along a lattice direction [Fig. 1(a)]
is stable at T = 0. However, interfaces are never perfectly
flat nor are they aligned along the lattice directions in the
coarsening stage, and hence they can be deformed by flipping
spins on the edges [Figs. 1(b)–1(d)]. This process typically
occurs without any drift and hence has a diffusive character
[11], a fact that leads to an exponent z = zdiff = 2. The addi-
tion of long-range interactions changes the situation in two
fundamental respects. The first modification is an increase
of (meta)stable configurations: Any globally straight interface
[e.g., the one of Fig. 1(b), where all steps have the same size]
is now locally stable, even if its direction does not fit the

orientation of the underlying lattice. This means that also
spins on edges can be blocked, at variance with the NN case.
Second, if we perturb the constant slope interface [e.g., see
Figs. 1(c) and 1(d), where steps have different lengths], spins
which are now free to flip are subjected to a determinis-
tic drift, similarly to what happens in d = 1 in the ballistic
regime. These two ingredients have, so to say, contrasting
effects. On the one hand, the presence of the drift tends to
speed the kinetics with respect to a diffusive case, leading
to z < 2; on the other hand, the drift is contrasted by the
abundance of blocked states, causing z > 1. The result is a
nontrivial value z = Z , with 1 < Z < 2. Even if this regime
is observed unambiguously in numerical simulation, a precise
determination of Z is difficult with this technique also because
a preasymptotic stage is present. A direct analytical attack
of the problem seems to be difficult as well. This is due to
the presence of long-range correlations which mix up with
lattice effects making calculations elusive. Indeed, as we will
discuss further, an approach on the continuum, i.e., off-lattice,
which accurately captures the asymptotic values zadv and zdiff

in quenches to finite T , provides a wrong value of Z . Consid-
ering instead a simplified system with a single domain, we are
able to obtain a full analytic understanding of the early stage
where Z = 3/2 and a quite clean numerical determination of
its asymptotic one with Z = 4/3. While the former value can
be traced back to a relatively simple circular geometry of the
growing domains, the latter originates from a more peculiar
one caused by the long-range interactions extending along the
interfaces.

This paper is organized as follows. In Sec. II we introduce
the kinetic model we study, discuss the implementation of
the numerical simulations, and define the basic observable
quantities we compute. Section III presents the results of
numerical simulations of the model and the determination
of the exponent Z . In Sec. IV we simplify the problem by
considering the evolution of a single domain. This is studied
both numerically and analytically, allowing us to determine
Z . In Sec. V we summarize the main results and discuss some
open points. In the Appendix we give some details of the nu-
merical technique, namely, Ewald summation, to incorporate
long-range interactions in the system.

II. MODEL AND ITS NUMERICAL SIMULATION

We consider an Ising model with the Hamiltonian

H({si}) = −1

2

∑
i

∑
j

′J (r)sis j, (1)

where si = ±1 are Boolean spin variables on the sites i of a
two-dimensional square lattice of linear size L, whose spacing
we assume to be unitary. The sum over j is primed to indicate
that the terms with i = j are excluded and

J (r) = r−(2+σ ) (2)

is a ferromagnetic coupling constant with r = |�ri − �r j |, �ri

being the coordinate of site i of the lattice. The usual NN Ising
model arises on setting J (r) = δr,1.

At equilibrium the long-range model has a para-
ferromagnetic phase transition at a finite critical temperature
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Tc(σ ). Critical exponents match [19–24] those of the corre-
sponding NN model for sufficiently large values of σ , i.e.,
σ � σNN, where σNN has been estimated [21,24] to be σNN =
7/4, whereas they match the mean field values for σ < 1. In
between, for 1 < σ < σNN, critical exponents depend contin-
uously on σ .

A kinetics is introduced by flipping single spins with
Metropolis transition rates

w(si → −si ) = L−2 min{1, e−�E/T }, (3)

where �E is the change in energy due to the spin flip to be
attempted and we have set to unity the Boltzmann constant.
Time is measured in Monte Carlo steps, each of which cor-
responds to L2 elementary spin-flip attempts. We consider
a quenching protocol where the system is initialized in a
configuration sorted from an infinite-temperature equilibrium
ensemble, i.e., spins are randomly and independently set to +1
or −1. This initial state is evolved at the quench temperature
T by means of the transition probabilities (3) with T < Tc(σ ).

Since the spin-spin interaction is long ranged, the cal-
culation of �E at every spin-flip attempt via Metropolis
probability (3) is computationally expensive. To speed up the
computer simulation, we store the local field for each spin
at the beginning of the simulation. In this way we need to
update it only once the spin flip is accepted. This simple trick
significantly speeds up the numerical calculations at any given
quench temperature [13,25].

The main issue during the simulations of the system with
Hamiltonian (1) is the strong finite-size effect arising due
to the long-range character of J (r). One obvious way to di-
minish these effects is to use periodic boundary conditions
via minimum-image convention [26]. In this approach, the
square lattice is mapped onto a torus where each spin in
the system interacts with other spins up to a certain cutoff
distance (less than or equal to L/2). When the interaction
decays slowly, this natural cutoff limit on the interaction-range
causes artifacts in the simulation results. Therefore, we need a
more sophisticated approach to implement periodic boundary
conditions in such systems. For this, we envision an infi-
nite two-dimensional lattice partitioned into infinite imaginary
copies of the original simulation lattice. The central cell of this
infinite lattice is the simulation lattice itself, and the imaginary
copies, called images, lie across its periodic boundaries in
both the x and y directions. Implementing periodic bound-
ary conditions with infinite images remove cutoff errors in
the simulation results of long-range interacting systems. The
effective interaction between two spins inside the simulation
lattice can now be expressed as an infinite summation over all
images

J (si, s j ) =
∑

nx

∑
ny

1

|�n + �ri − �r j |2+σ
, (4)

where displacement vector �n = (nx, ny) with nx, ny =
0,±L,±2L, . . ., representing the coordinates of image sys-
tems and the simulation lattice is located at �n = (0, 0). The
infinite summation involved in (4) has slow convergence in
coordinate space; therefore, it is difficult to handle it directly
during the numerical simulations. We have adapted the Ewald
summation technique [24,26,27], which uses a clever trick to

split it into two independent rapidly convergent summations,
one in coordinate space and another in reciprocal space (see
the Appendix).

The main observable we consider in this paper is the char-
acteristic size of the growing domains, which we extract from
the time-dependent spin configurations by means of the equal
time correlation function

C(r, t ) = 〈si(t )si+�r (t )〉, (5)

where 〈· · · 〉 is an off-equilibrium average, namely, taken over
different initial conditions and thermal histories. If dynamical
scaling holds, in quenches below Tc this quantity depends on
a single variable as [1–5]

C(r, t ) = f

(
r

L(t )

)
, (6)

where f is a scaling function and L(t ) has the meaning of the
size of the growing domains at time t . This quantity can be
extracted from the correlation function itself as [13,28,29]

C(r = L(t ), t ) = C(0, t )

2
≡ 1

2
. (7)

The growth law after a quench to T > 0 was predicted in
[12] by Bray and Rutenberg to be characterized by z = zCD =
2 for σ > 1 and by z = zadv = 1 + σ for σ � 1, with logarith-
mic corrections at σ = 1. Such a prediction was obtained by
using a continuum model, based on a Ginzburg-Landau free
energy, assuming a dynamical scaling symmetry and resort-
ing to an energy scaling argument. These results have been
confirmed recently by Christiansen et al. [13] by means of
numerical simulations of the model considered in the present
paper.

In order to study the growth law L(t ) it is useful to
consider the effective exponent zeff (t ) defined by 1/zeff (t ) =
d ln L(t )/d ln t . Since, in order to speed our simulations, ob-
servable quantities are computed only at discrete times ti
(equally spaced in ln t), the effective exponent is computed
as

1/zeff (ti) = ln L(ti) − ln L(ti−1)

ln ti − ln ti−1
. (8)

The effective exponent computed by means of the definition
(8) may have a noisy character; therefore, we will also use
the determination based on the symmetric derivative, which
amounts to

1/z(s)
eff (ti) = ln L(ti+1) − ln L(ti−1)

ln(ti+1) − ln(ti−1)
. (9)

III. NUMERICAL RESULTS

Let us now discuss the outcomes of our numerical simu-
lations. First, as a benchmark, we show in Fig. 2 the results
for quenches to relatively high T , where we expect to recover
results similar to those found by Christiansen et al. [13], thus
confirming the Bray-Rutenberg asymptotic exponents. In this
figure we see that an algebraic growth of L(t ) sets in at times
t � 10, for all σ values. The value of z matches with the
prediction of Bray and Rutenberg, as it can be appreciated in
the main figure and in the inset, where the effective exponent
1/zeff is plotted against L(t ).
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FIG. 2. Plot of L(t ) against t on a double logarithmic scale for
systems with various values of σ (see legend) quenched from infinite
temperature to final temperatures T = 1.255, 2.929, 1.5, and 0.9 for
σ = 0.6, 0.8, 1.5, and 3, respectively (such temperatures are in the
range 0.1Tc–0.3Tc). The system size is 20482 and each data set is
averaged over 10 realizations. The different lines (see legend) rep-
resent the expected asymptotic behavior L(t ) ∼ t1/z, with z = 1 + σ

for σ � 1 and z = 2 for σ > 1. In the inset the effective exponent
1/zeff is plotted against L(t ) on a log-linear scale. The horizontal
dashed, dotted, and solid lines are the expected asymptotic values.

Let us now move to the core results of this article, namely,
the effect of quenching to T = 0. In Fig. 3 we summarize
the behavior of L(t ) not only in zero-temperature quenches,
but also in deep quenches to small but finite T , in order to
appreciate the existence of preasymptotic effects. Let us start
by discussing the case with σ = 3 [Fig. 3(d)]. Since this value
of σ is rather large, one could naively expect to see a behavior
akin to that of the NN model. As we know, such a naive
argument is correct when applied to the shallow quenches
discussed above, since for any σ > 1 one recovers the ex-
ponent zCD = 2 of the NN case. Instead, here one observe
that for T = 0 (black curve), for t � 10 one has an algebraic
increase of L(t ) with an exponent 1/z 
 0.7, definitely larger
than the one, 1/zdiff = 0.5, of the corresponding quench to
T = 0 in the model with NN interactions (and of the one
1/zCD = 0.5 predicted by Bray-Rutenberg for quenches to
T > 0 with σ > 1). Although a precise determination of z
is not possible from these simulations, this is surely enough
to establish the existence of a different exponent, which we
denote by Z , associated with the zero-temperature quenches
with long-range interactions. Note that the decrease of such
an exponent at large L(t ) (meaning very large times) must be
attributed to finite-size effects.

Figure 3(d) also shows that a quench to T = 10−4 behaves
very similarly to the case with T = 0, whereas a quench to
T = 10−2 does so only up to times smaller than t 
 102,
after which L(t ) slows down gradually until being compati-
ble with 1/zeff = 1/zCD = 1/2. This pattern of behaviors can
be interpreted as a crossover occurring at Lcross(T, σ ) be-
tween an early regime with z = Z and a late stage with the
Bray-Rutenberg exponent. Since Lcross(T, σ ) is a decreasing
function of T , the crossover cannot be observed in the quench

to T = 10−4 because it occurs after the longest simulated
times.

Moving now to the other values of σ considered in Fig. 3,
we observe a similar pattern of L(t ), with a regime charac-
terized by a value of 1/z of order 0.7. This value, with the
precision of our numerical simulations, appears to be roughly
independent of σ , a fact that suggests that Z is a universal
exponent. This can be better appreciated in Fig. 4(a), where
we compare 1/zeff and 1/z(s)

eff in zero-temperature quenches
with various σ . This figure shows that 1/zeff is set to a value of
order 1/zeff 
 2/3 for L(t ) around L(t ) = 10 and then slowly
increases towards a value that exceeds 0.7, before bending
down due to finite-size effects. A similar behavior, somewhat
less noisy, is displayed by 1/z(s)

eff . This observation, together
with the study of single-domain models that we will discuss in
Sec. IV, leads us to the conjecture that the exponent Z toggles
between a preasymptotic value Z = 3/2 and an asymptotic
one Z = 4/3. These two values are indicated by straight lines
in Figs. 3 and 4.

Comparing the various panels of Fig. 3, one can also be
convinced that the crossover length Lcross(T, σ ) is a (rather
strongly) decreasing function of σ . Indeed, for instance, with
σ = 0.9 [Fig. 3(c)], one has to increase T by a factor 102

(i.e., to set T = 1) in order to see a crossover pattern similar
to the one observed at σ = 3 (at T = 10−2). Moreover, one
observes that finite-size effects are more important for the
smaller values of σ because the longest range of the inter-
actions makes the system experience the periodic boundary
conditions earlier.

Finally, let us discuss the issue of dynamical scaling. This
was shown to be obeyed [13] in the Bray-Rutenberg regime
occurring in quenches to a finite T , by checking the form
(6) of the correlation function. In the following we study the
same matter in the zero-temperature quenches. Our results for
C(r, t ) are shown in Fig. 5. The data for different times show a
very good collapse when plotted against the rescaled variable
r/L(t ), as expected after Eq. (6) in the presence of dynamical
symmetry. This is true for all the values of σ considered (we
show only a couple of them in Fig. 5, but similar results are
found for the other values). For σ = 0.8 [Fig. 5(a)], the curve
at the longest time t = 500 starts departing from the collapse,
but this is due to the onset of finite-size effects which can also
be detected at these times from the behavior of L(t ) shown
in Fig. 3. Hence, we conclude that the dynamical scaling
symmetry is at work also in zero-temperature quenches, a
fact that will be used in the following. Let us also mention
that metastable states, which are very important with NN
interactions, here are absent (or at least greatly suppressed),
as found also in [30].

IV. EVOLUTION OF A SINGLE DOMAIN

In the preceding section we have shown that, with long-
range interactions, one observes a fast growth regime at T = 0
regulated by an exponent 1/Z 
 0.7. However, in the absence
of analytic approaches or of a detailed comprehension of
the mechanism at work, a precise determination of such an
exponent on the basis of the sole simulations could not be
obtained.
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FIG. 3. Plot of L(t ) against t on a double logarithmic scale for systems with various values of σ (see legends) quenched from infinite
temperature to different final temperatures (see legends). The system size is 20482 and each data set is averaged over 40 realizations. The solid,
dotted, and dashed lines (see legends) represent the expected asymptotic behavior at finite temperatures and the two putative behaviors t2/3 and
t3/4 expected preasymptotically and at late times at zero and low temperatures. In the inset the effective exponent 1/zeff is plotted against L(t )
on a log-linear scale. The horizontal solid, dashed, and dotted lines are the above-discussed expected asymptotic and preasymptotic exponents.

In this section we study the simpler process with a single
domain. This approach has been shown to provide a correct
determination of the growth exponent z in systems with NN
interactions, for any d [11,31,32], and also with long-range
interactions in d = 1 [16]. We consider the same model of
Sec. II with the only difference that the initial state is not
sorted from an infinite-temperature ensemble but is built by
hand with a single domain of size R. This configuration is
evolved with the flip probabilities (3), which lead to a shrink-
age and eventual disappearance of the bubble. We start with a
circular shape of radius R (more precisely, the lattice approx-
imation to a circle, as in Fig. 6), because we observed that,
starting from different shapes, a roughly circular one tends
to be formed during the evolution after a transient (however,
the true asymptotic shape is not perfectly circular; see the
discussion in Sec. IV C). This is shown in Fig. 7 for an initially
square bubble. Notice that the late geometry of the bubble is
almost isotropic, at variance with what was observed with the
NN interaction during coarsening [33] or in metastable states
[34]. The idea behind this single-domain approach is based
on the dynamical scaling hypothesis which simply means that

at any time t in a coarsening system there is only a relevant
length L(t ). According to this assumption, the average time
t (L) needed to close a domain of initial size L in such a system
scales as Lz. Here we adopt the stratagem is to compute t (L)
with a single domain. Since R is the initial size of such a
domain, we indicate with t (R) this quantity and use t (R) ∼ Rz

as a proxy for t (L). This of course implies another assumption,
namely, that the shrinkage of a domain is not significantly
influenced by the presence of the others, so a single-domain
configuration suffices. Previous studies [11,16,31,32] proved
that such an approach works well because as long as σ > 0
the interaction is integrable, i.e.,

∑
�r J (r) is finite. This means

that the interaction between spins at distance larger than L, in
the asymptotic stage when L has grown large, is negligible.

A. Numerical results

To start with, we have implemented numerical simulations
of the bubble shrinkage process and we have computed t (R)
by averaging over many dynamical trajectories. The results
are contained in Fig. 8, where in each panel we plot t (R) (on
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FIG. 4. Comparison between the effective exponents 1/zeff and
1/z(s)

eff in the quench to T = 0 with various values of σ presented
on a log-linear scale. (a) Same data as in Fig. 3 for the coarsening
multidomain system (only for T = 0). (b) Same data as in Fig. 8 for
the single shrinking bubble model. The dashed and dotted lines are
the values 3/4 and 2/3, respectively.

the x axis) vs R (on the y axis). This choice allows us a direct
comparison with Fig. 3, where we plotted L(t ) versus t for an
extended multidomain system. For the same reason we also
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scale for systems with (a) σ = 0.8 and (b) σ = 3 quenched from
infinite to zero temperature. Different symbols and colors refer to
different times, as shown in the legend. The system size is 20482 and
each data set is averaged over 40 realizations.
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FIG. 6. Pictorial representation of a circular domain (only one
quadrant) on a square lattice. Spins are located in the center of the
small squares forming the lattice. The domain can be viewed as the
superposition of terraces, numbered according to the violet figures
near the vertical axis. The droplet is shown at a time when the upper
terrace (number 1) has shrunk to zero and is disappearing. In this
configuration the length of the jth terrace is indicated with �( j)

r . With
the simplified dynamics described in Sec. IV C, only the edge spins
can flip. The red curve is a circle in the continuum.

plot the effective exponent, defined previously in Eq. (8) (with
the replacement L → R), in the inset.

Let us start with the case σ = 3 [Fig. 8(f)]. Working at
T = 0, one sees that a very clean value 1/zeff = 0.75 sets in
for large R, providing Z = 4/3. Instead, for very small sizes
the effective exponent has a zigzag behavior. This is perhaps
due to the fact that for such small sizes some fine geometrical
details of the initial state become relevant. We notice indeed
that the most pronounced peaks (local maxima) of 1/zeff cor-
respond to values of R = n2, where n is an integer. As we
will further discuss below, as shown with Eq. (11), when the
bubble diameter is a perfect square number the largest terrace
�L of the domain (the horizontal segment denoted by 1 in
Fig. 6) is naturally an integer, thus determining a disconti-
nuity in the dynamical process. This effect clearly reduces
and tends to disappear with increasing R. If we neglect these
special maxima, for small R the effective exponent hits twice
the value 1/zeff = 2/3. This might suggest that Z toggles
between a preasymptotic value Z = 3/2 and an asymptotic
one Z = 4/3. This conjecture is going to be further supported.
The asymptotic value 4/3 is assumed for R � 102. Comparing
with the coarsening data of Fig. 3, we can conclude that
domains of such sizes are only reached at the very end of
the coarsening simulation when finite-size effects start to set
in. This would explain why in the coarsening simulations one
mostly observes an exponent in between Z = 3/2 and Z =
4/3 and only a hint of the convergence to the late one Z = 4/3
can be observed. Looking now still in Fig. 8 for σ = 3 but
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FIG. 7. Shrinkage of an initially square bubble of size 500 shown for T = 0 and σ = 3. Different snapshots correspond to the simulation
times reported on top of the panels [times are expressed in Monte Carlo steps (MCS)].

focusing on the data at the finite temperature T = 0.5, one
sees that the effective exponent attains the value of Bray and
Rutenberg, 1/z = 0.5. This result attests to the correctness of
the single-domain configuration to extract the exponent z.

We can now pass to the other panels of Fig. 8, correspond-
ing to smaller values of σ . At finite T one concludes that there
is a crossover phenomenon at a value Rcross(T, σ ), where the
exponent z changes from Z to the Bray and Rutenberg value
[for σ = 0.6, Rcross(T, σ ) is probably too large to observe
the crossover]. At T = 0 the same value Z = 4/3 is neatly
observed also for σ = 1.5 and 2. For values of σ smaller than
one, the determination of such an exponent turns out to be
less precise and there is the tendency to observe larger values
of 1/zeff upon decreasing σ . This could be due to a stability
effect that we will discuss below. The data for the effective
exponent at T = 0 are summarized in Fig. 4(b).

B. Stability of the bubble

After having presented the results of the simulations of
the bubble shrinkage, which provide a determination of the
growth law in a semiquantitative agreement with what was
observed in the full coarsening model, we turn now to a study
of the microscopic kinetic mechanisms producing the closure
process, in order to gain a better understanding. We start by
discussing the stability properties of an interface between two
regions with differently aligned spins. The zero-T stability of
a (positive, say) spin depends on the total field h acting on
it. If h > 0 the spin is stable (meaning that it cannot flip), if
h < 0 the spin is unstable, and if h = 0 the spin can also flip

but this usually corresponds to a neutral equilibrium, typical
of the NN model (discussed below) but not of the long-range
one, because a perfect compensation of extended interactions
leading to h = 0 is almost impossible.

In Fig. 1 we consider different types of discrete interfaces
and we refer the reader to its detailed caption. A straight in-
terface parallel to a lattice axis [see Fig. 1(a)] is clearly stable
because all spins parallel to a given interface spin, denoted by
a closed black circle, block its reversal while all other spins,
above and below such a line, perfectly compensate. This is
true for long-range coupling but also for NN coupling: In
the former case all closed gray circles block the closed black
circles, in the latter case only its two neighboring ones. When
the interface contains kinks, either keeping a constant slope
(i.e., all the steps have the same length) as in Fig. 1(b) or
acquiring a finite curvature as in Figs. 1(c) and 1(d), things are
different and more complicated. In the NN case kinks do not
interact and each of them can move in both directions even at
T = 0. With long-range interactions the picture is completely
different and we must distinguish between the two sides of the
kink. Let us always focus on the closed-black-circle spins. If
the interface has a constant slope it is stable; this is shown in
Fig. 1(b) (see the discussion in the caption). Notice that this
is true irrespectively of the value of σ . If the interface has a
finite curvature as in Fig. 1(c), the closed-black-circle spin is
unstable while the spin at its right is stable, meaning that the
kink can move uphill (to the left) only. This also occurs for any
σ . In Fig. 1(d) the interface has a constant slope locally around
the closed black circle, i.e., terraces locally have the same
length, but further uphill and downhill terraces are longer
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FIG. 8. Closure time t (R) of an initially circular bubble of diameter R (on the x axis) plotted against R (y axis) on a double logarithmic
scale for different temperatures (see legends) and different values of σ : (a) σ = 0.6, (b) σ = 0.8, (c) σ = 0.9, (d) σ = 1.5, (e) σ = 2, and (f)
σ = 3. The system size is 20482. Data are averaged over 103 realizations for R � 100 and over 10–102 realizations for larger values of R. The
dotted and dashed lines represent the two putative behaviors t2/3 and t3/4 expected preasymptotically and at late times at low temperatures,
respectively. In the inset the effective exponent 1/zeff is plotted against R on a log-linear scale. The horizontal solid, dashed, and dotted lines
are the expected asymptotic and preasymptotic exponents. The dashed magenta upward arrows in (f) indicate the first three values of R such
that

√
R is an integer (see the text), namely, R = 16, 25, 36.
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FIG. 9. Here A (dark gray) is a general compact (negative) do-
main in a sea of positive spins. At any point of its surface (where spin
s is located) we can imagine drawing the mirror domain B (light gray)
tangent to it. For symmetry reasons the field produced by the negative
domain A on spin s is exactly compensated by the field produced by
the positive domain B, leaving the remaining white region, which is
positively magnetized and which therefore induces a constant drift
favoring the closure of domain A.

and shorter, respectively. In this case there are short-distance
stabilizing interactions (due to parallel uncompensated spins)
and longer-distance destabilizing interactions (due to antipar-
allel uncompensated spins). The global effect depends on the
details of the interface and on the value of σ ; it is likely that
stability prevails for large σ and instability prevails for small
σ . Finally, in Fig. 1(e) it is shown that also the edge spins of a
top terrace are unstable.

Things are even more complicated when considering inter-
face spins not at a kink. As a matter of fact, in the limit of
small σ , even bulk spins can flip. In particular, considering a
circular domain of size R, the central spin is unstable up to a
critical size R = Rc ∼ 21/σ . Indeed, the spin cannot flip when
the stabilizing interaction of order

∫
r<R d�r r−(2+σ ) prevails

over the destabilizing one of order
∫

r>R d�r r−(2+σ ) produced
by the antialigned spins outside the domain, which gives the
above-mentioned result. Note that in our bubble shrinkage
simulations, in order to have a reliable asymptotic (i.e., large
R) determination of t (R) one has to consider R � Rc; other-
wise there is a correction lowering t (R) (because the domain
shrinks to zero almost immediately as soon as R crosses Rc).
Since for σ → 0 it is Rc → ∞, this is the possible explanation
of the observation made, regarding Fig. 8, that decreasing σ ,
one observes values of 1/Z larger than 3/4. In Sec. IV C we
will clearly show the role of bulk spin flips.

We conclude this section by stressing that our results are
strongly related to the discreteness of the lattice. In a con-
tinuum medium any surface spin of a compact bubble would
experience a field favoring the closure of the bubble itself (see
Fig. 9) because the field produced by spins within the bubble
is always compensated by the field due to the mirror domain.
Uncompensated spins are antiparallel to bubble spins, thus
inducing its closure. At zero temperature this uniform driving
force would give a trivial dynamical exponent z = 1.

C. Simplified dynamics and determination of Z
In Sec. IV B we discussed at a semiquantitative level the

role of bulk spin flips which produce finite-size effects whose
importance increases with decreasing σ . The behavior of

FIG. 10. Closure time t (R) of a bubble of size R (on the x axis)
plotted against R (y axis) on a double logarithmic scale, at T = 0
and using the simplified dynamics where only corner spins can flip.
Data are averaged over 100 realizations. The dashed line represents
the behavior t3/4. In the inset the effective exponent 1/zeff is plotted
against R on a log-linear scale. The horizontal dotted and dashed
lines are the expected preasymptotic and asymptotic exponents 2/3
and 3/4, respectively.

interfacial spins with three aligned neighbors and the fourth
pointing in the opposite direction (namely, spins on a locally
flat interface) is more difficult to investigate. However, we can
imagine that, at least at a qualitative level, they should behave
similarly to the bulk ones, in that they are stable for large σ

and bubble sizes R and become unstable upon decreasing R,
particularly for small σ . According to this reasoning, these
spins together with the bulk ones introduce finite-bubble-size
effects that are more severe for small values of σ . As already
mentioned, we believe these finite-size effects to be respon-
sible for the effective exponent zeff somewhat larger than 4/3
observed for small σ in Fig. 8 and in Fig. 4(b). In order to
avoid them, here we offer simulations where flips in the bulk
and with three aligned neighbors are forbidden.

Results of simulations conducted with this simplified dy-
namics at T = 0 are shown in Fig. 10. Our data clearly prove
that the dynamical exponent with the simplified dynamics is
Z = 4/3 for all σ . This suggests that this exponent is univer-
sal (i.e., independent of σ ) and that 4/3 is its truly asymptotic
value. However, according to the previous considerations, in
order to see this value with comparable evidence for small σ

in full simulations one should access very large bubble sizes,
which is not feasible with our current numerical resources.

In order to clarify the physical mechanisms leading to Z =
4/3 and to the preasymptotic value Z = 3/2, it is necessary
to have a more detailed study of the shape of the shrinking
bubble. If we focus on a quadrant and suppose that only edge
spins can flip, the dynamics of the droplet can be reduced to
that of the terraces pictorially depicted in Fig. 6. We indicate
with �

( j)
r the length of the jth terrace exactly at the time step

when the top terrace shrinks to zero, in the configuration when
the bubble radius is (at that time) r.

Taking into account that the kink on the upper terrace
always moves ballistically, we find that the time necessary for
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FIG. 11. Length of the jth terrace �( j)
r at the closure time of the

top terrace plotted against r, for j = 1–10, from top to bottom. The
dashed line is the power law r1/3, whereas the dotted line is the power
law r1/2.

the droplet to disappear is

t (R) =
R∑

r=2

�(2)
r + �R, (10)

where �R is the length of the top terrace in the initial con-
figuration. The evaluation of �(2)

r is complicated because of
the “long-range” interaction between terraces. An analytical
expression for �(2)

r can be obtained from the observation (see
Fig. 7) that, independently of the initial configuration, the
droplet asymptotically assumes a quasicircular shape. Assum-
ing that the droplet is exactly circular at all times, the quantity
�(2)

r is obtained from the equation of the boundary in the
continuum, x2 + y2 = r2, as the value of x corresponding to
y = r − 1,

�(2)
r = √

2r − 1 

√

2r. (11)

Inserting this expression in Eq. (10), we get t (R) ∼ R3/2,
hence Z = 3/2. This value, as we know, is observed for small
R, whereas for large R it crosses over to Z = 4/3, indicating a
deviation from the circular profile of the upper terraces. This
deviation must be attributed to the interaction between differ-
ent terraces, in particular because of the drive exerted by the
ballistic upper terrace transporting to some extent the lower
ones. In order to be more quantitative about this, in Fig. 11
we plot results for �

( j)
r as a function of r for j � 10. Let us

look at the region 102 < r < 103. In this sector one sees that
the size of the innermost terrace considered, namely, j = 10
(lowest curve, magenta), grows as r1/2. Recalling Eq. (11)
and observing that also �

( j)
r ∝ √

r for r � j, this is what one
would expect for a circular domain indicating that, sufficiently
far from the top of the domain, its shape is circular. However,
upon decreasing j, that is, considering higher terraces, this
slope gradually decreases until, for j = 2, the top terrace
behaves as �(2)

r ∼ r1/3. Using this result in Eq. (10), one gets
from the behavior of this terrace the correct asymptotic value
Z = 4/3. This shows that the origin of this number must
be traced back to the nontrivial geometry of the domains
induced by nonlocal interactions between terraces. The actual
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0

50

100
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200

250

FIG. 12. Shape of the shrinking bubble with the approximated
dynamics for σ = 0.8. Different symbols corresponds to the droplet
configuration at different times t = 10 × 2i, with i = 1, 4, 5, 6 in-
creasing from top to bottom. The dashed red curve is a circle in the
continuum.

shape of the domain during its shrinkage is shown in Fig. 12,
where one can see deviations from circularity in the top and
rightmost part of the bubble. Notice that such deviations are
hardly visible to the naked eye; however, their effect on Z is
important enough to change its value from 3/2 to 4/3.

To complete the discussion of Fig. 11, let us note that
there is a steep increase at r � 103 and also that the algebraic
behavior of the curves is spoiled for small values of r. The
former effect is due to the fact that the simulation is initialized
with a domain of size greater than or approximately 1000
and it takes some time for the dynamical process to build
the domain’s shape and to enter the scaling stage. The latter
effect occurs because, in the very late stage of the process
when the domain is very small, the scaling properties are lost
because there are not enough interacting terraces to produce a
many-body phenomenon.

V. CONCLUSION

In this paper we have shown that during the zero-
temperature relaxation dynamics of the two-dimensional
long-range Ising model a new dynamical regime appears,
which is characterized by an exponent Z that takes a
preasymptotic value Z = 3/2 and an asymptotic one Z =
4/3. These values are strongly related to the interplay between
the discrete nature of the lattice and the long-range nature of
the interaction. In fact, if interactions are short ranged (NN
model) we would have zCD = 2 both in a discrete lattice and
in a continuum picture (see Sec. I). On the other hand, a con-
tinuum picture with long-range interactions would trivially
give z = 1 (see Fig. 9 and related discussion at the end of
Sec. IV B).
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The preasymptotic value Z = 3/2 [see Eqs. (10) and (11)]
is simply understandable. For this, we use a discrete approx-
imation of a circular bubble and assume that its shrinkage
dynamics is limited by the closure of the largest terraces.
However, Fig. 11 shows that the largest terraces scale as r1/3

rather than as r1/2, as expected for a circular bubble. This
results in the true asymptotic value Z = 4/3. The reason for
such a behavior (see Sec. IV C) can be associated with the
long-range character of the interaction and the necessity to
locally preserve a convex shape of the bubble in order for
the dynamics to proceed. Apart from this phenomenological
understanding of the mechanism producing the asymptotic
value Z = 4/3, a rigorous analytical derivation has not yet
been possible.

Given the paucity of analytic approaches, further analysis
is confined to better numerical simulations of the multidomain
system. To be useful, these must go beyond the timescales and
the statistical accuracy of those presented in this paper. As we
estimate below, this seems to be possible, but entails a huge
computational effort. Figure 4 shows that the effective expo-
nent would reasonably approach the value 4/3 for sizes of
order L(t ) 
 200–300. Thus, one should check for its further
behavior up to, say, L(t ) 
 500–600. Figure 3 informs us that,
in order to reach this point, we should go to times of order t 

104. Also, from the same figure one understands that finite-
size effects start to be important around L(t ) 
 100 
 L/20.
Hence, in order to reach L(t ) 
 500 without severe finite-size
effects, the system should have at least a size L 
 104. Putting
the above facts together, we estimate a required computational
effort at least 100 times larger than the one of this study, which
is already quite massive. This estimate applies for the larger
values of σ ; for smaller values the situation is much worse.

The study of this paper is restricted to a two-dimensional
square lattice. However, since we have emphasized that lat-
tice effects are relevant in determining the T = 0 growth
exponent, an interesting question to be still addressed is the
universality of the exponent Z with respect to the lattice
geometry. In this direction, numerical simulations of d =
2 systems on different lattices (e.g., triangular or hexago-
nal lattices) would be useful. Similarly, the dependence on

dimensionality should also be considered, although the nu-
merical effort required would be further increased. Finally,
the dynamics with extremely long-range interactions (i.e.,
with σ � 0) remains a completely unexplored subject in any
dimension.

Note added. Recently, Christiansen et al. [30] also found
the exponent 3/4 independently of σ .
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APPENDIX: EWALD SUMMATION TECHNIQUE

Combining the effective interaction between two spins
described by Eq. (4) in Eq. (1), the Hamiltonian for the long-
range Ising model takes the form

H({si}) = −1

2

′∑
�n

∑
i

∑
j

1

|�n + �ri j |2+σ
sis j, (A1)

where �ri j = �ri − �r j and the summation over �n accounts for
the contribution of infinite imaginary copies across periodic
boundaries. The prime in this summation indicates that, when
�n = (0, 0), the terms with i = j are excluded. In this Ap-
pendix we will split the summation over �n into a combination
of two rapidly convergent summations. For this, we take the
help of complete and incomplete Gamma functions defined,
respectively, as

�(x) =
∫ ∞

0
t x−1e−t dt, (A2)

�(x, y) =
∫ ∞

y
t x−1e−t dt . (A3)

The trick of Ewald, which was originally proposed for the
Coulomb potential [26,27], is introduced as follows. First,
we use the integral of Eq. (A2) and divide the interval of
integration into two parts

J (si, s j ) =
∑

�n

1

|�n + �ri j |2+σ
=

∑
�n

1

�(σ/2 + 1)

∫ ∞

0

1

|�n + �ri j |2+σ
tσ/2e−t dt

=
∑

�n

1

�(σ/2 + 1)

(∫ α2|�n+�ri j |2

0

1

|�n + �ri j |2+σ
tσ/2e−t dt +

∫ ∞

α2|�n+�ri j |2
1

|�n + �ri j |2+σ
tσ/2e−t dt

)
,

= I1 + I2, (A4)

where α is a positive real number. The separated terms, de-
noted by I1 and I2, represent the contributions of the integral
over intervals 0 < t < α2|�n + �ri j |2 and α2|�n + �ri j |2 < t < ∞,
respectively.

Looking at the second term given in Eq. (A4), one can
write, with the help of Eq. (A3),

I2 = 1

�(σ/2 + 1)

∑
�n

1

|�n + �ri j |2+σ
�

(σ

2
+ 1, α2|�n + �ri j |2

)
.

(A5)

This term rapidly converges as |�n| increases, representing the
short-range contribution of the exchange interaction between
spins si and s j .

To simplify the first term, we use the change of variables
ρ2|�n + �ri j |2 = t ,

I1 = 2

�(σ/2 + 1)

∑
�n

∫ α

0
ρσ+1e−|�n+�ri j |2ρ2

dρ. (A6)
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The above term can also be made rapidly convergent by trans-
forming to reciprocal space. We use the Poisson summation
formula to obtain

∑
�n

e−|�n+�ri j |2ρ2 = π

L2ρ2

∑
�k

e−π2|�k|2/ρ2
ei2π �k·�ri j , (A7)

where the reciprocal vector �k = (kx, ky), with kx, ky =
0,±1/L,±2/L, . . .. As mentioned in the main text, L de-
notes the system size. Using the expression (A7) in Eq. (A6)
and recalling Eq. (A3), the first term (A6) can be written
as

I1 = 2π

L2�(σ/2 + 1)

∑
�k

ei2π �k·�ri j
1

2
(π |�k|)σ�

(
−σ

2
,
π2|�k|2

α2

)
.

(A8)

This term rapidly becomes negligible as |�k| increases, repre-
senting the long-range contribution of exchange interactions.
Combining Eqs. (A5) and (A8) in Eq. (A4) provides the
essence of the Ewald summation technique. One should also
note that the summations over �n and �k in Eqs. (A5) and (A8),
respectively, are conditionally convergent, i.e., the conver-
gence of the summations depend on the order of adding terms
in the summations. The best way is to sum spherically over |�n|
and |�k|.

The auxiliary parameter α determines the speed of conver-
gence of summations over |�n| and |�k|. We have taken the value
of α = 2/L, also chosen in recent paper [24], which allows
us to truncate the summation to |n| � 5L in I2 [Eq. (A5)]
and to |k| � 5/L in I1 [Eq. (A8)]. To calculate complete and
incomplete � functions in the numerical simulations, we have
used the FORTRAN interface of the GNU scientific library in
GFORTRAN.
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