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The first Kelvin relation, which states the Peltier coefficient should be equal to the product of temperature
and Seebeck coefficient, is a fundamental principle in thermoelectricity. It has been regarded as an important
application and direct experimental verification of the Onsager reciprocal relation (ORR) that is a cornerstone
of irreversible thermodynamics. However, some critical questions still remain: (a) why Kelvin’s proof—which
omits all irreversibility within a thermoelectric transport process—can reach the correct result, (b) how to
properly select the generalized-force-flux pairs for deriving the first Kelvin relation from the ORR, and (c)
whether the first Kelvin relation is restricted by the requirement of the linear transport regime. The aim of
the present work is to answer these questions based on the fundamental thermodynamic principles. Since the
thermoelectric effects are reversible, we can redefine the Seebeck and Peltier coefficients using the quantities
in reversible processes with no time derivative involved; these are renamed “reversible Seebeck and Peltier
coefficients.” The relation between them (called “the reversible reciprocal relation of thermoelectricity”) is
derived from the Maxwell relations, which can be reduced to the conventional Kelvin relation, when the local
equilibrium assumption (LEA) is adopted. In this sense, the validity of the first Kelvin relation is guaranteed by
the reversible thermodynamic principles and the LEA, without the requirement of the linear transport process.
Additionally, the generalized force-flux pairs to obtain the first Kelvin relation from the ORR can be proper both
mathematically and thermodynamically, only when they correspond to the conjugate-variable pairs of which
Maxwell relations can yield the reversible reciprocal relation. The present theoretical framework can be further
extended to other coupled phenomena.
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I. INTRODUCTION

Thermoelectric effects refer to the direct conversion of
heat to electric energy and vice versa, which encompasses
three separately identified phenomena [1]: the Seebeck effect,
Peltier effect, and Thomson effect, with three corresponding
coefficients. The Seebeck coefficient (α) is the ratio between
the induced thermoelectric voltage in response to a tem-
perature difference across a particular material, the Peltier
coefficient (�) is defined as the ratio between the electric-
current-induced heat flow and the electric current, and the
Thomson coefficient (χ ) is the ratio between the heat produc-
tion rate per unit volume and the product of electric current
and temperature gradient. Note that the thermoelectric effects
are thermodynamically reversible, and strong evidence for
this point is that the efficiency of a thermoelectric module
can approach the Carnot efficiency with the increasing ZT
coefficient [2,3], which implies the heat-electricity conversion
should be totally reversible in the limiting case exclud-
ing the irreversible factors including heat conduction and
Joule heating. Nevertheless, the thermoelectric coefficients
are conventionally defined using the quantities of irreversible
transport processes (such as electric current and heat flux)
with time derivatives involved.
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Early in 1851, Lord Kelvin (also known as William Thom-
son) [4] identified that these three effects are not independent
from each other, and proposed the Kelvin relations (also
known as Thomson relations) that correlate the Seebeck,
Peltier, and Thomson coefficients on the basis of fundamental
reversible thermodynamics [5]. The first Kelvin relation is
αT = � with temperature T, while the second Kelvin relation
gives χ = T dα/dT . In 1893, the Kelvin relations were first
verified experimentally, and from then on they have been
widely accepted and utilized [6,7]. It is noted that the second
Kelvin relation can be readily derived from the first Kelvin
relation, energy conservation law, and local equilibrium as-
sumption [1]; in this sense, the first Kelvin relation should
be the core of the relations among the three thermoelectric
effects.

To derive the relations, Lord Kelvin assumed an electri-
cal short circuit comprising two kinds of materials. There
are two contact junctions within that device, and they are
in contact with heat reservoirs of different temperatures. All
irreversible factors, including Joule heating and heat con-
duction, are neglected. The conservation of energy and the
balance of entropy flows will yield the required results. A
detailed introduction about Kelvin’s proof can be found in
Ref. [8] (Sec. 2.1.4). Note that Kelvin’s proof is question-
able indeed [9], since these irreversible factors should not
be neglected in the electrical short circuit with a finite tem-
perature difference. As stated by Onsager in his famous
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paper in 1931 [9], “Thomson’s relation has not been de-
rived entirely from recognized fundamental principles, nor
is it known exactly which general laws of molecular me-
chanics might be responsible for the success of Thomson’s
peculiar hypothesis.” Even now, the question remains as to
why Kelvin’s proof that omits all irreversible factors within
a thermoelectric transport process, i.e., “Thomson’s pecu-
liar hypothesis” as called by Onsager, can reach the correct
result.

In 1931, Onsager [9,10] developed the Onsager reciprocal
relations (ORRs) on the basis of statistical thermodynamics
and microscopic reversibility. The first Kelvin relation can
be readily derived from the ORRs when the generalized-
force-flux pairs are chosen properly [11,12]. Afterwards, the
Kelvin relation was put on a solid physical basis, and recip-
rocally its experiments have been regarded as an important
experimental verification of the ORR [6,13]. However, when
taking a close look at the derivation from the ORR to the
first Kelvin relation, one critical issue exists, which is how
to properly select the generalized-force-flux pairs to construct
the linear phenomenological relations. Some researchers sum-
marized two requirements [12] on the selection of generalized
fluxes J and forces X: (i) The product of J and X is equal
to the local entropy production rate σS , that is, σS = J · X
(R1); and (ii) J is the time derivative of a state variable,
and X is the derivative of the entropy deviation with respect
to the state variable (R2). However, counterexamples do ex-
ist. For instance, in Miller’s paper [6], the generalized flux
and force are heat flux qh and −∇T/T for heat conduction,
while the charge transport’s generalized flux and force are
electric current Ie and the negative voltage gradient −∇Ve;
the products of generalized force and flux are T σS rather
than σS .

Additionally, the linear hypothesis to derive the ORR has
been stressed among many papers in the literature [14–17].
This actually indicates that the first Kelvin relation should
be valid merely in the regimes of linear transport, since the
ORR has been regarded as the physical basis of the Kelvin
relation [1]. However, in practice the first Kelvin relation is
generally employed to handle the problems with large temper-
ature difference where the linearity of constitutive relations
may be violated [18]. Therefore, it is also needed to clarify
whether the first Kelvin relation is restricted by the require-
ment of linearity.

The present work is trying to answer the questions
above on the basis of fundamental thermodynamic principles.
Firstly, we will introduce the concepts of reversible Seebeck
and Peltier coefficients with no time derivative involved, and
clarify their relations with the conventional thermoelectric co-
efficients. Then, the relation between reversible Seebeck and
Peltier coefficients will be derived from the Maxwell relations.
Based on it, the selection of generalized-flux-force pairs and
the requirement of linearity are clarified.

II. REVERSIBLE SEEBECK AND PELTIER
COEFFICIENTS

The thermoelectric effects are reversible; thus, they can be
analyzed in terms of the fundamental reversible thermody-
namics. To do this, we redefine the thermoelectric coefficients

using the quantities in the reversible processes with no time
derivative involved, and for convenience we call them “re-
versible Seebeck and Peltier coefficients.” Note that we here
focus on the thermoelectric effects in solids with volume kept
constant.

Figure 1 shows an electrically insulated subsystem em-
bedded in an outer system with infinite thermal and electric
capacitances. The initial equilibrium state is characterized by
{S0, Ne0, T0, μe0} with entropy S0, number of charge particles
Ne0, temperature T0, and electrochemical potential μe0. Then,
the outer system is replaced by a new one with an infinites-
imal change �T to its temperature and its electrochemical
potential staying unchanged; a quasistatic reversible process
occurs, during which heat is transferred from the outer sys-
tem to the subsystem until the new equilibrium state of the
subsystem is reached. At this new equilibrium state, the sub-
system’s quantity of charge is unchanged due to its electrically
insulated boundaries, and instead the thermoelectric effect
will cause a change of electrochemical potential, �μe =
e�Ve, with �Ve the voltage change and e the elementary
charge. In this case, a reversible Seebeck coefficient can be
defined as

αr = −�Ve

�T
= − �μe

e�T
. (1)

Apparently, the process depicted above should be re-
versible. To further demonstrate this point, its corresponding
reverse process is depicted. For the subsystem with new
equilibrium state {S0 + �S, Ne0, T0 + �T, μe0 + �μe}, the
outer system is changed to the original one with the initial
temperature T0; a reverse quasistatic process occurs, where
heat is transferred from the subsystem to the outer system
until the subsystem return its initial state, as illustrated in
Fig. 1.

Similarly, a reversible Peltier coefficient is defined by con-
structing a quasistatic process shown in Fig. 2. A subsystem
with open boundaries is embedded in the outer system. Fig-
ure 2(a) illustrates the initial equilibrium state. Then, the outer
system is replaced by a new one with an infinitesimal change
�μe to its electrochemical potential and its temperature re-
mains unchanged; �μe drives both heat and charge quantity
to transfer from the outer system to the subsystem until the
new equilibrium state of subsystem is reached. Finally, for
the subsystem, the changes of entropy S and charge quantity
Qe are denoted by �S and �Qe, respectively. The change
of heat �Qh is equal to T0�S with T0 the temperature kept
constant during the quasistatic process. The change of charge
quantity �Qe should be equal to e�Ne where Ne is the number
of charge particles. Thus, the reversible Peltier coefficient is
given by

�r = �Qh

�Qe
= T0�S

e�Ne
, (2)

which is “heat per carrier” in the quasistatic reversible pro-
cess. Furthermore, the corresponding reverse process can also
be designed by resetting the outer system to the initial one, as
shown in Fig. 2.
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FIG. 1. Schematics for the definition of reversible Seebeck coefficient: (a) initial equilibrium state; (b) quasistatic heat transfer; (c) new
equilibrium state; (d) reverse quasistatic heat transfer.

III. MAXWELL RELATIONS AND
THE FIRST KELVIN RELATION

A. Derivation of the reversible reciprocal relation
of thermoelectricity from Maxwell relations

We start from the basic equations in reversible thermody-
namics [19].

First law of thermodynamics:

T dS = dU +
∑

i

−μidNi + pdV, (3)

Euler integration:

ST = U +
∑

i

−μiNi + pV, (4)

and the Gibbs-Duhem equation:

SdT =
∑

i

−Nidμi + V d p. (5)

Setting V = V0 = const. for solids, we have

dU = T dS +
∑

i

μidNi, (6)

d (V0 p) = V0d p = SdT +
∑

i

Nidμi. (7)

Particularly for thermoelectric systems, Eqs. (6) and (7)
become

dU = T dS + μedNe, (8)

d (V0 p) = SdT + Nedμe. (9)

Two pairs of conjugate variables are selected in terms of
Eqs. (8) and (9), which are

{S, T }, {Ne, μe}, (10)

where S and Ne are extensive variables, while T and μe are
intensive ones. Two exact differentials are thus given by

−dS = �11dT + �12dμe, (11)

−dNe = �21dT + �22dμe. (12)

Note that it is not necessary for the parameters, �11, �12,
�21, and �22, to be constant. The combination of Eqs. (9), (11),
and (12) leads to a Maxwell relation [19] of �12 and �21
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FIG. 2. Schematics for the definition of reversible Peltier coefficient: (a) initial equilibrium state; (b) quasistatic heat and charge transfer;
(c) new equilibrium state; (d) reverse quasistatic heat and charge transfer.

(MR1),

�12 = −dS

dμe

∣∣∣∣
T

=−d2(V0 p)

dT dμe
=−d2(V0 p)

dμedT
= −dNe

dT

∣∣∣∣
μe

= �21.

(13)
For the quasistatic process shown in Fig. 1 where Ne is

unchanged, Eq. (12) becomes

dNe = �21dT + �22dμe = 0 ⇒ �21�T + �22�μe = 0.

(14)
Referring to Eq. (1), the reversible Seebeck coefficient is

given by

− �μe

e�T
= αr = 1

e

�21

�22
. (15)

Furthermore, for the quasistatic process shown in Fig. 2
with dT vanishing, Eqs. (11) and (12) are reduced to

−dS = �12dμe ⇒ −�S = �12�μe, (16)

−dNe = �22dμe ⇒ −�Ne = �22�μe. (17)

Thus, according to Eq. (2), the reversible Peltier coefficient
is

�r = �Qh

e�Ne
= T

e

�12

�22
. (18)

Apparently, in terms of MR1, we have

T αr = �r . (19)

Actually, we can derive two other exact differentials
for these conjugate-variable pairs, which are reciprocal to
Eqs. (11) and (12),

−dT = R11dS + R12dNe,

−dμe = R21dS + R22dNe. (20)

Then, combining Eqs. (8) and (20) yields a Maxwell rela-
tion of R12 and R21 (MR2),

R12 = − dT

dNe

∣∣∣∣
S

= − d2U

dNedS
= − d2U

dSdNe
= dμe

dS

∣∣∣∣
Ne

= −R21.

(21)

Following the identical procedure, the same relation as
Eq. (19) can be recovered from MR2.
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The derivation above yields a relation that shows the
reversible Peltier coefficient is equal to the product of tem-
perature and reversible Seebeck coefficient, which has the
same form as the conventional first Kelvin relation. For conve-
nience, we call this relation “the reversible reciprocal relation
of thermoelectricity.”

B. Relation between the conventional Kelvin relation and
the reversible reciprocal relation of thermoelectricity

In order to clarify the relation between the conventional
Kelvin relation and the reversible reciprocal relation of ther-
moelectricity, we need to analyze the relationship between the
conventional and reversible thermoelectric coefficients.

The conventional Seebeck and Peltier coefficients are de-
fined in irreversible transport processes, which are given
by [1]

α = −∇xVe

∇xT
, (22)

with the temperature gradient ∇xT along a specific direction x
and the corresponding temperature-gradient-induced voltage
gradient ∇xVe, and

� = qxh

Ixe
, (23)

with the heat flux qxh along a specific direction x and the
corresponding electric current Ixe. In fact, based on the Kelvin
relation, αT = �, the conventional Seebeck coefficient can be
transformed to [11]

α = qS

Ie
, (24)

in which qS is entropy flux. Therefore, in the irreversible
thermoelectric transport processes, � is heat per carrier, and
α is “entropy per carrier,” according to Eqs. (23) and (24).

Furthermore, according to Eq. (2), the reversible Peltier
coefficient is heat per carrier in the reversible process.
Importantly, using the reversible reciprocal relation of ther-
moelectricity, Eq. (19), the reversible Seebeck coefficient can
be expressed as

αr = �S

�Qe
, (25)

which is entropy per carrier in the reversible process. There-
fore, when the local equilibrium assumption (LEA) is valid,
the reversible thermoelectric coefficients should be equivalent
to the conventional ones, and thus these two relations are
also equivalent. We note that LEA is a rather fundamental
hypothesis within the present framework of irreversible ther-
modynamics [16], which assumes that a system involving
irreversible processes can be divided into infinitesimal subsys-
tems where the usual thermodynamical variables, including
temperature, pressure, and entropy, etc., have the same mean-
ing as in the equilibrium states. In this sense, thermodynamic
variables can be functions of position and time. Importantly,
LEA further assumes that each subsystem can be considered
as if it were in local equilibrium, though the gradients of the
thermodynamic variables should give rise to the irreversibility
of the whole system, and thus it permits one to apply all

TABLE I. Generalized force-flux pairs for obtaining the first
Kelvin relation from the ORR.

Product of
forces and

Force Flux fluxes

1 Thermal ∇(1/T ) Total energy flux qU σS

Electric ∇(−μe/eT ) Ie

2 Thermal ∇(1/T ) qh

Electric 1
T ∇(−μe/e) Ie

3 Thermal −∇ ln T qS

Electric 1
T ∇(−μe/e) Ie

4 Thermal −∇T/T qh T σS

Electric ∇(−μe/e) Ie

5 Thermal −∇T qS

Electric ∇(−μe/e) Ie

the results of equilibrium thermodynamics to a given subsys-
tem [6]. Therefore, under LEA, Eq. (25), a result based on
equilibrium thermodynamics, can be equivalent to Eq. (22)
which is derived for the subsystems of a system undergoing
irreversible processes. It is emphasized that LEA is just a hy-
pothesis without much rigorous justification yet [20], though
it has been extensively adopted in irreversible thermodynam-
ics. Some researchers augured that LEA can break down for
some far-nonequilibrium or nonlinear systems, the reciprocal
relations are violated in this case [21–26].

In the regime where LEA is valid, our derivation above
shows that the first Kelvin relation can be strictly derived from
the basic equations in reversible thermodynamics, without
considering irreversibility, which can explain the success of
Kelvin’s hypothesis that omits all the irreversible factors.

In addition, the derivation above demonstrates that the
Kelvin relations are not restricted by the requirement of lin-
ear phenomenological relations. In fact, the Kelvin relations
will hold, once the LEA and the fundamental thermodynamic
principles are valid.

C. Selection of generalized force-flux pairs in the terms
of conjugate-variable pairs

Table I summarizes the generalized force-flux pairs in the
literature [1,6,11]. Apparently, referring to Table I, the se-
lection of generalized force-flux pairs to obtain the Kelvin
relation from the ORR is neither unique nor arbitrary. The
product of generalized forces and fluxes is either σS or T σS .
Note that heat flux qh can be regarded as the time derivative
of a state variable, merely for pure heat conduction in solids.

As a reasonable inference, the proper generalized force-
flux pairs should correspond to the conjugate-variable pairs
of which Maxwell relations can yield the reversible recipro-
cal relation of thermoelectricity. The conjugate-variable pairs,
{S, T }, {Ne, μe}, correspond to the generalized force-flux
pairs, {qS,−∇T }, {Ie,−∇μe}, and the product of general-
ized force and flux is equal to T σS . Moreover, the reversible
reciprocal relation of thermoelectricity can also be derived
from another set of conjugate-variable pairs (the relevant
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proof is given in the Appendix), and they are{
U,

1

T

}
,

{
Ne,

−μe

T

}
, (26)

which corresponds to the generalized force-flux pairs,
{qU ,∇(1/T )}, {Ie,∇(−μe/eT )} with total energy flux qU . In
this case, the product of generalized force and flux becomes
σS .

In this sense, no conjugate-variable pair can be constructed
to correspond to the generalized force-flux pairs involving
heat flux, since heat flux is not the time derivative of any state
variable in thermodynamics. Thus, we need further clarify
why these generalized force-flux pairs involving heat flux can
also derive the first Kelvin relation.

Take {qh,−∇ ln T }, {Ie,−∇(μe/e)} as an example. This
set of generalized force-flux pairs implies such two “exact”
differentials,

−δQh = �∗
11

1

T
dT + �∗

12dμe, (27)

−dNe = �∗
21

1

T
dT + �∗

22dμe. (28)

Then, we have

�∗
12 = − δQh

dμe

∣∣∣∣
T

= −T
dS

dμe

∣∣∣∣
T

, �∗
21 = −T

δNe

dT

∣∣∣∣
μe

. (29)

According to MR1, Eq. (13), we still have �∗
12 = �∗

21,
which indicates Eqs. (27) and (28) can also derive the re-
versible reciprocal relation of thermoelectricity. However, it
is emphasized that Eq. (27) is definitely illegal in the sense
of thermodynamics, since Qh is a process variable. Thus,
the generalized force-flux pairs involving heat flux may be
proper in the view of mathematics, but incorrect in the sense
of thermodynamics. In fact, another option to guarantee the
consistency of the ORR’s application to derive the Kelvin re-
lation is to extend the conventional thermodynamics. As in the
extended irreversible thermodynamics (EIT) [16], an extended
entropy was introduced, and the heat flux can be taken as
its additional variables; through such extended analysis, the
ORR can be utilized to derive the Kelvin relation with the
generalized force-flux pairs involving heat flux, electric flux,
and their corresponding time derivatives.

IV. CONCLUSIONS

(1) To analyze the thermoelectric effects using the funda-
mental reversible thermodynamics, we redefine the Seebeck
and Peltier coefficients using the quantities in reversible pro-
cesses with no time derivative involved. Based on the Maxwell
relation derived from the fundamental principles of equi-
librium thermodynamics, we demonstrate that the relation
between the reversible Seebeck and Peltier coefficients, i.e.,
the reversible reciprocal relation of thermoelectricity, has the
same from as that between the conventional ones.

(2) When the LEA holds, the reversible thermoelectric
coefficients should be equivalent to the conventional ones; in
this case, the reversible reciprocal relation of thermoelectricity
is reduced to the conventional first Kelvin relation.

(3) The first Kelvin relation should not be restricted by
the requirement of linear phenomenological relations, and it
will hold once the LEA and the fundamental thermodynamic
principles are valid.

(4) Since Lord Kelvin omitted all the irreversible factors
in a thermoelectric transport process with finite temper-
ature difference, what he derived from the fundamental
balance equations in equilibrium thermodynamics is just the
reversible reciprocal relation of thermoelectricity. This ex-
plains why the questionable proof by Lord Kelvin can lead
to the correct result.

(5) For obtaining the first Kelvin relation from the ORR,
the generalized force-flux pairs, which are proper in the sense
of both mathematics and thermodynamics, should correspond
to the conjugate-variable pairs of which Maxwell relations can
yield the reversible reciprocal relation of thermoelectricity.

(6) Although the present theoretical framework is used to
analyze the thermoelectric effects, it can be extended to deal
with other types of coupled phenomena, such as electrokinet-
ics and heat-moisture-coupled transport.
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APPENDIX

This section provides a proof on how to derive the re-
versible reciprocal relation of thermoelectricity from the
conjugate-variable pairs,{

U,
1

T

}
,
{

Ne,
−μe

T

}
.

For solid-state thermoelectric systems, we have the follow-
ing:

First law of thermodynamics:

T dS = dU − μedNe; (A1)

Euler integration:

ST = U − μedNe + pV0. (A2)

Equation (A1) can be transformed to

dS = 1

T
dU +

(
−μe

T

)
dNe. (A3)

Combining Eqs. (A2) and (A3), we have

d

(−pV0

T

)
= Ud

(
1

T

)
+ Ned

(−μe

T

)
. (A4)
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In this case, there are two pairs of conjugate variables:{
U,

1

T

}
,
{

Ne,
−μe

T

}
, (A5)

where U and Ne are extensive variables, while 1/T and
−μe/T are intensive ones. For clarity, we set

1/T = β, −μe/T = γ .

Two exact differentials are given by

dNe = L11dγ + L12dβ, (A6)

dU = L21dγ + L22dβ. (A7)

Thus, the combination of Eqs. (A4), (A6), and (A7) leads
to a Maxwell relation between L12 and L21,

�21 = dU

dγ

∣∣∣∣
β

= d2
(− pV0

T

)
dβdγ

= d2
(− pV0

T

)
dγ dβ

= dNe

dβ

∣∣∣∣
γ

= �12.

(A8)

For the quasistatic process where Ne is unchanged, we have

L11�γ + L12�β = 0 ⇒ 0 = L11�
(−μe

T

)
+ L12�

(
1

T

)
.

(A9)

Referring to Eq. (1), the irreversible Seebeck coefficient is
given by

− �μe

e�T
= αr = 1

eT

(L12

L11
− μe

)
. (A10)

Additionally, for the quasistatic process shown with dT
vanishing, Eqs. (A6) and (A7) become

e�Ne = eL11�
(−μe

T

)
, (A11)

�U = L21�γ ⇒ �U = L21�
(−μe

T

)
. (A12)

With �Qh = �U − μe�Ne, we have

�Qh = L21�
(−μe

T

)
− μe

e
(e�Ne). (A13)

The reversible Peltier coefficient is thus given by

�r = 1

e

(
�21

�11
− μe

)
= �Qh

e�Ne
. (A14)

According to Eqs. (A10) and (A14), the reversible recipro-
cal relation of thermoelectricity is recovered,

T αr = �r . (A15)
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