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Dissolution process of a single bubble under pressure with a large-density-ratio multicomponent
multiphase lattice Boltzmann model
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A large-density-ratio and tunable-viscosity-ratio multicomponent multiphase pseudopotential lattice Boltz-
mann model is used to study the dissolution process of a bubble under pressure. The multi-relaxation-time
collision operator, exact-difference-method external force scheme, and scaling coefficient k are applied to ensure
the numerical stability of the model. The influence of k in the equation of state (EOS) and intermolecule interac-
tion strength on the stationary bubble evolution process are discussed, and the effect of k on thermodynamic
consistency is also analyzed. The results indicate that adjusting the scaling coefficient in the EOS changes
the surface tension and interface thickness, and that the gas-liquid interface width w is proportional to 1/

√
k.

Considering the effect of k on the surface tension, interface thickness, and thermodynamic consistency, the
scaling coefficient should be between 0.6 and 1. Furthermore, the dissolution process of a single bubble under
pressure is studied using the developed model, and it is found that the dissolution mass and concentration of
dissolved gas increase linearly with increases in the pressure difference, and that the concentration of dissolved
gas is proportional to the gas pressure after the fluid system reaches equilibrium. These results are consistent
with Henry’s law.
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I. INTRODUCTION

The growth and dissolution of gas bubbles under different
pressure conditions are widespread in natural phenomena and
industrial processes, such as carbon dioxide transport in a
coal reservoir [1], clinical practice involving human blood and
tissue [2], the formation of bubbles in hydraulic systems [3],
dissolution and precipitation of supersaturated total dissolved
gas in hydraulic engineering [4], and air bubble formation
and dissolution in nanoimprint lithography [5]. Gas molecules
mainly exist in the form of space-filling gas hydrates after they
enter the liquid phase [6,7]. Although bubble sizes range from
micrometers to centimeters in the aforementioned phenom-
ena, the mass transfer in the dissolution and growth of gas
bubbles originates at the molecular level.

The growth and dissolution process of gas bubbles has
received attention from scientists and engineers for a long
time. Numerous experimental and numerical studies have in-
vestigated bubble growth and dissolution; a subset of the most
relevant studies is summarized here [8]. The bubble diameter
used to observe the growth and dissolutions process by opti-
cal means often ranges from 100 to 300 μm. Krieger et al.
[9] used a high-resolution optical technique combined with
the Epstein-Plesset equation to study the dissolution coeffi-
cients of oxygen in different liquids. However, for bubbles of
100–300 μm with larger rise velocities, the gas-liquid inter-
face deformation becomes sharper. Therefore, the gas bubbles
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were always fixed by a flat plate or capillary needle tube.
Liebermann found that the gas dissolution rate of free bubbles
is quite different from that of trapped bubbles [10]. For a fixed
bubble near a large impermeable boundary, it is necessary to
modify the Epstein-Plesset equation by reducing the bubble
diffusivity.

Exhaustive numerical studies on the growth or dissolution
of isolated bubbles have been reported over the years, with
most macroscopic models falling into one of three categories.
The most widespread are Epstein-Plesset solutions based on
the quasistationary approximation [6,7,9]. In such models,
the ambient process during the entire growth or dissolution
process is assumed to remain constant, and a uniform con-
centration or density field is set as an initial condition. The
second method is based on the assumption that the fluid
in the gas bubble and the surrounding liquid is the same
component [11,12]. The description of the gas-liquid phase
change during bubble growth and dissolution is then based
on an equation of state (EOS) relating the density, pressure,
and temperature of this fluid, and the compressibility of the
fluid is also taken into account. The third category is based
on the Navier-Stokes equations together with a mass transfer
equation to model the mass exchange between the gas and
liquid phases [13,14]. This method requires the Rayleigh-
Plesset equation to obtain the gas-liquid mass transfer rate.
To improve its accuracy, some empirical constants are usually
introduced into the Rayleigh-Plesset equation to modify the
gas-liquid transition rate. The accuracy of these methods is of-
ten limited by their assumptions and the selection of the mass
transfer coefficient, making it difficult to simulate the process
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of gas dissolution accurately. While the gas-bubble growth
and dissolution process has been analyzed in macroscale ap-
proaches, the underlying details of the meso- and microscale
processes, which dominate the process behavior in terms of
interface evolution, interfacial mass transport, and dissolution
concentration distribution, remain unrevealed. Understanding
the meso- and microscopic mechanisms during the bubble
growth and dissolution process is critical to achieving better
predictions of the related multiphase phenomena.

Lattice Boltzmann multiphase models have been exten-
sively developed over the past 30 years. These are diffuse
interface models that use a narrow fluid mixture layer instead
of a sharp phase interface. They can be divided into four cate-
gories: pseudopotential models [15,16], color models [17,18],
free-energy models [19,20], and the phase-field model [21].
The pseudopotential models are the most widely used due
to their simplicity. This kind of model can be further di-
vided into single-component multiphase flow (SCMP) models
and multicomponent multiphase flow (MCMP) models. In
pseudopotential models, the gas-liquid interface of the model
can be formed automatically through the interaction between
fluid particles, thus reducing the computational load of com-
plex interface tracking or capture technology in macroscopic
methods [22]. Rapid developments in SCMP models over the
past 20 years have eliminated defects such as low density
ratios, small kinematic viscosity ratios, thermodynamic in-
consistencies, and large spurious currents from the original
pseudopotential model. The MCMP pseudopotential model
was first proposed by Shan and Doolen [23], and has also
experienced rapid developments in the past 10 years. Grad-
ually, the potential for solving mass transfer problems with
high density and viscosity ratios has been realized. MCMP
pseudopotential models achieve a high density ratio or a high
viscosity ratio through one of the following techniques: an
appropriate EOS, such as the Peng-Robinson (PR) EOS or
Carnahan-Starling (CS) EOS [24–27]; different external force
schemes [28,29]; the use of a multi-relaxation-time (MRT)
collision operator to improve the numerical stability and den-
sity ratio of the model [29,30]; and high-node models such
as D2Q24 [31]. MCMP pseudopotential models reflect the
distribution of gas component molecules in the liquid compo-
nent, and have the advantages that no assumptions are made
and no empirical formulas are used to describe the mass
transfer. Chen et al. [26] proposed an MCMP pseudopoten-
tial model based on the CS EOS, and simulated the mass
transfer and deposition process in a multiphase flow with a
gas-liquid density ratio of 152 in pore scale. Stiles and Xue
[25] discussed the highest density ratio that could be achieved
by an MCMP pseudopotential model with different EOSs,
including van der Waals, PR, and CS, and investigated the
relationship between interface thickness, maximum virtual
velocity, EOS, and the pressure scaling coefficient. The results
showed that smaller spurious currents could be obtained by
using the CS or PR EOS. Zhu et al. [29] combined the MRT
collision operator and exact-difference-method (EDM) force
scheme with an MCMP pseudopotential model, and simu-
lated the three-phase gas-liquid-solid transformation with a
liquid-gas density ratio of ∼1200. Chen et al. [30] simu-
lated the reactive transport during CO2 dissolution trapping
by combining a high-density-ratio MCMP pseudopotential

model with the MRT collision operator. Deng et al. [28]
proposed a high-density-ratio MCMP pseudopotential model
that satisfies thermodynamic consistency and has an indepen-
dently adjustable surface tension, and successfully simulated
the movement of droplets on the gas diffusion layer surface.

The above-mentioned studies have solved the problems of
large density ratios, large viscosity ratios, the adjustment of
surface tension, and thermodynamic consistency. However,
some key problems related to the rationality of the numerical
results given by MCMP pseudopotential models still exist,
such as whether the scaling coefficient k of the EOS affects
the thermodynamic consistency [25,29,32,33], the validation
of thermodynamic consistency, and significant numerical sta-
bility issues when the external force terms of SCMP models
are extended to MCMP models.

In the present study, we developed an MCMP pseudopoten-
tial model with a high density ratio and tunable viscosity ratio.
The MRT collision operator, EDM force scheme, and scaling
coefficient of EOS are used to ensure numerical stability at
large density ratios and various viscosity ratios. This paper
discusses the effect of the scaling coefficient of the EOS on
surface tension, interface thickness, and thermodynamic con-
sistency, and investigates the influence of the intermolecule
interaction strength on the gas component density distribu-
tion. Furthermore, the mass transfer process of the gas under
different pressure conditions with high liquid-gas density and
viscosity ratios is studied using the developed model. The
effects of the initial pressure difference and scaling coefficient
are discussed, and variations in the gas density field, transport
mass, and gas solubility are analyzed.

The remainder of this paper is organized as follows. Sec-
tion II introduces an MCMP MRT pseudopotential lattice
Boltzmann model (LBM) that can be used to simulate multi-
phase phenomena at high density ratios and various viscosity
ratios. Section III verifies the applicability of this model and
simulates the mass transfer process of gas under different
pressures. Finally, some conclusions are drawn in Sec. IV.

II. MCMP PSEUDOPOTENTIAL MODEL

Compared with the Bhatnagar-Gross-Krook (BGK) colli-
sion operator, pseudopotential models with the MRT collision
operator [34] have better numerical stability when simulating
certain high-density-ratio phenomena [35]. The MRT colli-
sion operator, EDM force scheme, and scaling coefficient
of the EOS are applied in the present study to improve the
density ratio, and are combined with the method proposed
by Otomo et al. [36] to achieve high viscosity ratios. Particle
distribution functions with external force terms in the MCMP
pseudopotential model can be written as

fα,i(x + ei�t, t + �t )

= fα,i(x, t ) −
∑

j

�̄i, j
(

fα,i − f eq
α,i

)|(x,t ) + Sα,i, (1)

where fα,i is the particle distribution function of component
α, f eq

α,i is the equilibrium distribution, x is the spatial position,
ei is the discrete velocity of the ith direction, and �t is the
time step. �̄ = M−1�M is the collision matrix, where M is
the orthogonal transformation matrix, M−1 is the inverse of
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M, and the diagonal matrix � is described as [37]

� = diag
(
τ−1
ρ , τ−1

e , τ−1
ζ , τ−1

j , τ−1
q , τ−1

j , τ−1
q , τ−1

ν , τ−1
ν

)
. (2)

where the relaxation time τν is related to the kinematic vis-
cosity as ν = 1

c2
s
(τν − 0.5)�t . The equilibrium distribution

function f eq
α,i is [26]

f eq
α,i = ωiρα

[
1 + ei · ueq

α

c2
s

+ (ei · ueq
α )2

2c4
s

− ueq
α

2

2c2
s

]
, (3)

where the weights are ω0 = 4/9, ω1−4 = 1/9, and ω5−8 =
1/36; and cs is the lattice sound speed. The EDM external
forces are applied in the present study, and the correspond-
ing equilibrium distribution velocity of component α, ueq

α , is
expressed as [26]

ueq
α =

∑
α

∑
i

fα,iei

/ ∑
α

ρα, (4)

where ρα is the density of component α, given by [26]

ρα =
∑

i

fα,i, (5)

and Sα,i is the external force term of component α. For MRT
models, the EDM external force terms [38] can be expressed
as

Sα,i = M−1
i, j

[
meq

α, j

(
ρα, ueq

α + �uα

) − meq
α, j

(
ρα, ueq

α

)]
, (6)

where �uα = Fα,total�t/ρα , in which Fα,total is the total force
acting on the fluid particle of component α. meq is the equi-
librium distribution moment, and is given by [37]

meq = Mfeq = [
ρα, −2ρα + 3

(
ueq

αx
2 + ueq

αy
2)

,

ρα − 3
(
ueq

αx
2 + ueq

αy
2)

, ueq
αx,

−ueq
αx, ueq

αy,−ueq
αy, ueq

αx
2 + ueq

αy
2
, ueq

αxueq
αy

]
. (7)

The density of the mixed fluid ρ and the actual flow veloc-
ity of the fluid up are [26]

ρ =
∑

α

ρα, up =
∑

α ραuα + �t
2

∑
α Fα,total

ρ
. (8)

Pseudopotential models can automatically form the inter-
face through the interaction force from the pseudopotential
between particles. For the MCMP pseudopotential model,
the interaction force between molecules is divided into two
parts: the intramolecule force in the same component and the
intramolecule force between different components [29,39].
In the original LBM pseudopotential MCMP model, the
same pseudopotential function is applied to calculate the
intramolecule force in the same component and the in-
tramolecule force between different components. Once the
potential function of each component is determined, the only
way to adjust the interaction strength is changing the value
of Gα,ᾱ , where Gα,ᾱ is the intramolecule strength between
two particles [39]. After a lot of Gα,ᾱ values were tried in
our early study, which was tedious work, for 0 or positive
Gα,ᾱ , it takes a longer time to reach equilibrium for Laplace
validation. On the other hand, for a negative Gα,ᾱ , an attractive
force intramolecule force is formed, and the gas components

are mainly distributed in the liquid phase, which is unrea-
sonable. Therefore different intermolecule and intramolecule
pseudopotentials are applied in the present study. The in-
tramolecule force is expressed as [26]

Fα,α = −Gα,αψα (x)c2
s

∑
i

wiψα (x + ei�t )ei, (9)

where Gα,α is the intramolecule interaction strength between
two particles and ψα is the interparticle potential between
particles of the same component. For the D2Q9 LBM, wi =
1/3 when |ei| = 1 and 1/12 when |ei| = 2 [40]. ψα can be
calculated after a nonideal gas EOS is introduced as [41]

ψα (ρα ) =
√

2
(
pα − ραc2

s

)
Gα,αc2

s

, (10)

and the intermolecule force can be expressed as [26]

Fα,ᾱ = −Gα,ᾱϕα (x)c2
s

∑
i

wiϕα (x + ei�t )ei, (11)

where Gα,ᾱ is the intermolecule strength between two par-
ticles, and ϕα is the interparticle potential between different
components [39], expressed as

ϕα = aα − exp(−ρα/ρα0), (12)

where the parameters aα and ρα0 depend on the simulation
conditions. The CS EOS [41] is used in the present study:

pα = ραRgT
1 + bρα/4 + (bρα/4)2 − (bρα/4)3

(1 − bρα/4)3 − aρ2
α,

(13)

where a = 0.4963R2
gT 2

c /pc and b = 0.1873RgTc/pc are pa-
rameters, Tc is the critical temperature, and pc is the critical
pressure. Kupershtokh [32] introduced the scaling coefficient
k to the EOS to increase the liquid-gas density ratio of pseu-
dopotential models:

p′
α = kpα = k

[
ραRgT

1 + bρα/4 + (bρα/4)2 − (bρα/4)3

(1 − bρα/4)3

− aρ2
α

]
. (14)

The total pressure of the fluid system is [26]

ptotal = c2
s

∑
α

ρα + 1

2
c2

s

∑
α

Gα,αψ2
α + 1

2
c2

s

∑
α

Gα,ᾱϕαϕᾱ.

(15)

In the present study, the method proposed by Otomo et al.
[36] is adopted to achieve high viscosity ratios, and the relax-
ation coefficient τν in (2) can be expressed as the relaxation
coefficient of mixed fluids:

τν =
(

νmix

c2
s

)
+ 0.5, (16)

where νmix is the viscosity of the mixed fluid, given by

νmix = κνα + (1 − κ )νᾱ, (17)
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FIG. 1. Schematic diagram for Laplaces law and bubble dissolu-
tion, where the rectangular area with dashed box is the computational
domain.

in which κ is a smoothing function that can be simply taken
as

κ = ρα

/ ∑
α

ρα, (18)

and να = 1
c2

s
(τνα − 0.5)�t is the viscosity of component α,

which is related to the relaxation coefficient τνα of α.

III. SIMULATION RESULTS AND DISCUSSION

A. Physical problems

Gas dissolved under pressure exists in many natural phe-
nomena and engineering applications, such as bubble disease
in fish and total dissolved gas in hydraulic engineering. In this
section, two typical two-phase gas-liquid flow phenomena,
namely, Laplace’s law and a single bubble dissolved under
pressure, are used as validation examples to check the ap-
plicability of the model developed in the previous section.
The effect of the pressure difference between water and the
surrounding fluid, the influence of the scaling coefficient of
the EOS on the bubble dissolution process, and the associated
dynamic behavior are analyzed in detail. A schematic diagram
of the computational domain is present in Fig. 1. When the
bubble is small enough (less than 50 μm), it will be influenced
by buoyancy and drag forces, leading to a very small rise
in velocity. Thus, the influence of buoyancy and drag forces
is not considered in the present study. A bubble of radius
R0 = 50 lu (where “lu” denotes lattice units) is placed in the
center of the 200 lu × 200 lu computational domain. p∞ is
the pressure of the surrounding liquid and pv is the pressure
in the bubble. The pressure difference between the bubble
and the surrounding liquid is obtained by adjusting the liquid
phase density of the liquid component.

B. Laplace’s law

The MCMP pseudopotential model for large density and
viscosity ratios is firstly validated with respect to Laplace’s
law. After the bubble reaches the equilibrium state, the surface
tension σ is proportional to the pressure difference inside and
outside of the bubble, and is expressed as

�p = σ

R
. (19)

Two-component two-phase flow is simulated in this study.
The liquid component is treated as a nonideal fluid while the
gas component is treated as an ideal gas. The liquid compo-
nent is denoted by the subscript 1, and the gas component
is denoted by the subscript 2; the intramolecule interaction
strengths are set as G11 = −1.0 and G22 = 0, respectively.
The intermolecule interaction strengths are set as G12 =
G21 = 0.0005. The intermolecule pseudopotential, first pro-
posed by Yu [39], is introduced in the present study:

ϕ1(ρ2) = 1 − exp(−ρ2/ρ20), (20)

ϕ2(ρ1) = a0 − exp(−ρ1/ρ10), (21)

where a0, ρ10, ρ20 are constant parameters; 0 < a0 < −1.
These parameters are critical for numerical stability, although
determining their values is tedious work. Yu [39] indicated
that they mainly depend on the simulation conditions, such as
the dimensionless temperature T/Tc. In the present study, the
parameters are set to a0 = 0.005, ρ10 = − 0.0008

log(a0 ) , and ρ20 =
0.0003. In the CS EOS, the parameters in (13) are set to
a = 1, b = 4, Rg = 1, and the corresponding temperature is
T = 0.58Tc. The corresponding density field is initialized as

ρ(x, y) = (ρα−out + ρα−in )

2
+ (ρα−out − ρα−in )

2

× tanh

[
2
(√

(x − x0)2 + (y − y0)2
) − R0

w

]
. (22)

The initial density of component 1 in the bubble is ρl−in =
0.0001 and the initial density of component 2 in the bubble
is ρg−in = 0.0003, while the initial density of component 1
outside the bubble is ρl−out = 0.42 and the initial density
of component 2 outside the bubble is ρg−out = 0.000 001.
The initial corresponding liquid-gas density ratio is (ρg−out +
ρl−out )/(ρg−in + ρl−in ) = 1050. The initial interface thickness
w is set to 5 lu [35], and (x0, y0) is the center of the
bubble. The relaxation coefficients in the diagonal matrix �

are taken as τ−1
ρ = τ−1

j = 1.0, τ−1
e = τ−1

ζ = 1.1, and τ−1
q =

8(2 − τν )/(8 − τν ) [26].
A series of bubbles with initial radii of R0 =

40, 45, 50, 55, 60 are selected to calculate the surface
tension on the interface, and different EOS scaling coefficients
k = 0.05, 0.1, 0.3, 0.6, 1.0 are chosen. The intermolecule
interaction strength is set as G12 = G21 = 0.0005. The
relaxation coefficient of the component 2, τν , is chosen
as τg = 1.0625, while the relaxation coefficient of the
component 1, τν , is chosen as τl = 0.5375 with a
corresponding viscosity ratio of νg/νl = 15. Figures 2(a)–2(c)
show the component 2 density distribution, component 1
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FIG. 2. Density distribution after bubble reaches equilibrium (k = 0.6, R0 = 50): (a) component 1 density distribution, (b) component 2
density distribution, and (c) total density distribution.

density distribution, and total density distribution after
the bubble reaches equilibrium with k = 0.6, R0 = 50,
respectively. The results indicate that the interface thickness
of component 1 is slightly thinner than that of component 2
and the total density field.

Laplace’s law states that �p = σ/R; that is, the surface
tension σ is proportional to the pressure difference, where
�p is the pressure difference between the interior and exte-
rior of the bubble and R is the radius of the bubble when it
reaches equilibrium. The relationship between the pressure
difference inside and outside the bubble and the drop radii
for five different k values are shown in Fig. 3. The numerical
results agree well with the theoretical analysis, with a linear
relationship between �p and 1/R. The results also show that
the surface tension increases as k increases. These results
mean that the surface tension can be adjusted slightly through
the EOS scaling coefficient.

Comparing the maximum density ratio and the maximum
viscosity ratio in the present study with those from previous
studies (see Table I), our modified MCMP pseudopotential
model with the MRT collision operator can achieve both high
density ratios and high viscosity ratios, with a maximum den-
sity ratio of 1050 and a viscous coefficient ratio of 15.

FIG. 3. Relationship between pressure difference inside and out-
side the bubble and drop radii for five different k values.

The value of Gα,α ranges from −0.5 to −40 to analyze its
effect on density and spurious currents distribution, and the
results are presented in Fig. 4. Both Li et al. [35] and Yuan
and Schaefer [41] indicated that the Gα,α will be canceled
when calculating the macrovariables such as ρ, p, and u. The
only requirement for Gα,α is to ensure that the whole term
inside the square root is positive. As shown in Fig. 4(a), the
distribution of the density of component 1 and component 2
does not change with Gα,α decreasing from −0.5 to −40, and
the flow field distribution is not influenced by Gα,α as shown
in Fig. 4(b).

Another interesting thing is that changing the value of Gα,ᾱ

leads to the variation of density distribution of component
1 as shown in Fig. 5, making the model thermodynamic
inconsistent. A series of Gα,ᾱ is applied here, with Gα,ᾱ

value ranges from 0.0007 to 0.0001. When Gα,ᾱ � 0.0006
or Gα,ᾱ � 0.0001, the simulation is not convergent, and with
Gα,ᾱ = 0.0005, the best thermodynamics consistency is ob-
tained for a large density ratio. When Gα,ᾱ decreases from
0.0005 to 0.0001, the maximum spurious current decreases,
but the interface thickness stays stable.

C. Thermodynamic consistency

Previous research indicates that the scale coefficient k
is an effective parameter for obtaining numerically stable
simulations with large density ratios [25,29,33]. Hu et al.
[33] introduced the scale coefficient k into an SCMP pseu-
dopotential model, and declared that k did not influence the
thermodynamic consistency. Later, Stiles and Xue [25] in-
troduced k into an MCMP model with the BGK collision
operator, and found that the gas density decreases with any
decrease in k at large density ratios, which does not satisfy
the requirements for thermodynamic consistency. Recently,
Zhu et al. [29] introduced k into an MCMP pseudopotential
model with the MRT collision operator, and found that the
total liquid-gas density ratio fluctuates in a small range. The
aforementioned studies have shown that, for different models,
the influence of k varies, especially for large density ratios.
Thus, it is necessary to discuss the influence of k in the present
study. In this subsection, the influence of the scale coefficient
k on the interface thickness, spurious currents, and density
distribution is investigated.

The density profiles of component 1 and component 2
at y = 100 lu with k = 0.1, 0.5, 1 are shown in Fig. 6.
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TABLE I. Maximum density ratio and viscosity ratio of present study and previous studies.

Maximum Maximum Thermodynamic Scale Collision
density ratio viscosity ratio consistency analysis coefficient k operator

Bao and Schaefer [24] 10000 1 No No BGK
Chen et al. [26] 152 1 No No BGK
Stiles and Xue [25] 500 1 Yes Yes BGK
Zhang et al. [27] 10.42 1 No No BGK
Zhu et al. [29] 1273 1 No Yes MRT
Deng et al. [28] 835 16.152 Yes No BGK
Present study 1050 15 Yes Yes MRT

Considering its effect on thermodynamic consistency, we fo-
cus on the density distribution of component 1 in the bubble.
The density of component 1 in the bubble decreases from
1.06 × 10−4 to 7.5 × 10−5 as k increases from 0.1 to 1.0,
with the total density ratio ranging from 750 to 890. Different
values of k exert a significant influence on the density distri-

bution of both components, but have little effect on the density
distribution of component 1 in the surrounding liquid.

Figure 7 compares the numerical output with the analyt-
ical results under different k values. The results show that
a high density ratio can be obtained under different scal-
ing factors with the EDM force scheme. The liquid density

FIG. 4. The distribution of (a) density field of component 1 and component 2 with the different intermolecule interaction strength Gα,α at
y = 100 lu. The velocity distribution in the computation domain with (b) Gα,α = −0.5, (c) Gα,α = −1, and (d) Gα,α = −40.
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FIG. 5. The distribution of (a) density field of component 1 and component 2 with the different intermolecule interaction strength Gα,ᾱ at
y = 100 lu. The velocity distribution in the computation domain with (b) Gα,ᾱ = 0.0002, (c) Gα,ᾱ = 0.0003, and (d) Gα,ᾱ = 0.0005.

of component 1 agrees well with the analytical result for
different scale coefficients. However, the gas phase density
in component 1 deviates from the theoretical results when
T/Tc � 0.65, and the deviation increases as T/Tc decreases.
It is also apparent that, for T/Tc � 0.65, the influence of k on
the thermodynamic curve is small. The value of k gradually
exerts a greater influence when T/Tc � 0.6, which is consis-
tent with the research of Hu et al. [33]. The model with the
EDM external force scheme used in the present study does
not achieve thermodynamic consistency when T/Tc � 0.65.
However, the effect of temperature changes is not considered
in the simulations of the bubble dissolution process, and so the
above-mentioned EDM will be used in later discussions. A
corresponding model with good thermodynamic consistency
[28] will be extended to the MRT mode in a future study.

The distribution of pressure along the x direction at y =
100 lu with k = 0.1, 0.5, and 1 is shown in Fig. 8. The
decrease of the k value has little effect on the gas phase
pressure, but the liquid pressure decreases dramatically, due

to the EOS parameters of component 1 being changed by
modifying the scaler k. An unphysical phenomenon of sharp
pressure fluctuation with negative pressure exists at the in-
terface points, which results from the large density gradient
near the interface, and also exists in earlier studies of large
single-component [22,33] and multicomponent [25,26] pseu-
dopotential models.

D. Effect of scale coefficient k

Stiles and Xue [25] suggested that the scaling coeffi-
cient k exerts a significant influence on the distribution
range and magnitude of spurious currents and the thick-
ness of the interface. Therefore, the influence of k in the
present model is now discussed. Figure 9 shows the mag-
nitude and distribution of spurious currents when R = 50 lu
with different k values while the fluid system reaches the
equilibrium state. In Fig. 9, the inner contour line is ρ =
0.1(ρg−out + ρl−out + ρg−in + ρg−out ) and the outer contour
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FIG. 6. Density profile after bubble reaches equilibrium of dif-
ferent components at y = 100 lu with different k values.

line is ρ = 0.9(ρg−out + ρl−out + ρg−in + ρg−out ), and the ver-
tical distance between the two is defined as the interface
thickness. As k increases, the range of spurious currents be-
comes larger, the maximum spurious currents move closer
to the interface, and the interface thickness decreases. The
results show that the spurious currents mainly stay in the
gas phase due to the low inertia of the gas phase. Figure 10
shows the maximum spurious current, interface thickness, and
surface tension changes with respect to k for an initial bubble
radius of R0 = 50 lu. The results show that the surface tension
decreases with k. As k decreases from 1 to 0.05, the surface
tension decreases by 70%, from 0.0244 to 0.007. The maxi-
mum spurious current also decreases with k: as k decreases
from 1 to 0.05, the maximum spurious current decreases to
just 0.0056 lu tu−1, which is 18% of the maximum spurious
current when k = 1.0. Furthermore, the interface thickness

FIG. 7. Comparison of thermodynamic curves in theoretical so-
lution with the EDM force scheme combined with different scale
coefficient k values.

FIG. 8. Pressure distribution after bubble reaches equilibrium at
y = 100 lu with different k values.

w increases as k decreases. In the present study, when the
interface thickness w is 14 lu with k = 0.05, this is nearly
30% of the bubble radius, which is unphysical. However,
the interface thickness decreases to 5 lu with k increases
to 0.6, and the corresponding maximum spurious current is
0.0146 lu tu−1 in present study, which is much smaller than
the maximum spurious current reported by Bao and Schaefer
[24] with 0.033 lu tu−1 (density ratio 971) and that observed
by Chen et al. [26] with 0.05 (density ratio 152).

Greater interface thickness reduces the density gradient
and increases the numerical stability, but it affects the bubble
deformation and the mass exchange rate [42,43]. Li et al.
[35] pointed out that the numerical stability of LBM increases
as the interface thickness w increases. However, the numer-
ical simulation results become unphysical if the interface
thickness is too large, so it was suggested that the interface
thickness should be 4–5 lu. Li et al. [35] pointed out the inter-
face thickness is proportional to 1/

√
a when the parameter a

is undetermined. The scaling coefficient k is used in the EOS,
which means new parameters are applied in CS EOS as

p′
α = ραR′

gT
1 + bρα/4 + (bρα/4)2 − (bρα/4)3

(1 − bρα/4)3 − a′ρ2
α,

(23)

where R′
g = kRg, and a′ = ka. The interface thickness is pro-

portional to 1/
√

a′, which also can be presented as w ∝
1/

√
ka. However, the parameter a is undetermined in the

study of Li et al. [35]. Once a has been determined, the
interface thickness w is only proportional to 1/

√
k. The sim-

ulation results show that the thickness of the interface w is
proportional to 1/

√
k with a = 1 and R0 = 50 lu, as shown

in Fig. 11. To ensure that the interface thickness satisfies both
numerical stability and physical phenomena, it is suggested
that k should be set in the range 0.6–1.

The chemical potential is the driving force for isothermal
mass transport, and is partial molar Gibbs free energy at
constant pressure [44]. The chemical potential can be derived
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FIG. 9. Distribution of spurious currents with R0 = 50 with different values of k: (a) k = 0.05, (b) k = 0.3, (c) k = 0.6, and (d) k = 1.

from the free energy functional [43,44,45]:

μ = φ′(ρ) + σ∇2ρ (24)

where μ is the chemical potential, φ is the bulk free energy
density at a given temperature, and σ is the surface tension.
For CS EOS, the chemical potential is [45]

μ = RgT

[
3 − bρ/4

(1 − bρ/4)3 + lnρ + 1

]
− 2aρ − σ∇2ρ. (25)

The chemical potential distribution along the x direction
at y = 100 lu with k = 0.1, 0.5, and 1 is shown in Fig. 12.
Due to the density distribution of components 1 and 2 varying
very little as shown in Fig. 6, the chemical potentials almost
overlap with each other except on the gas-liquid interface. A
dramatic pressure fluctuation exists on the gas-liquid interface
which results from the large density gradient, the fluctuation

range, and amplitude of chemical potential increases as the
value of scalar coefficient k decreases.

Following the study of Benzi et al. [46], the surface tension
σ is defined as

σ =
∫ +∞

−∞
(pyy − pxx )dy, (26)

where pyy and pxx are the normal and transverse compo-
nents of the pressure tensor. Through theoretical analysis, the
surface tension caused by pressure from the intermolecule
force is composed of two terms, including − 1

2 G11c4
s |∂yψ1|2

from component 1 and − 1
2 G22c4

s |∂yψ2|2 from component
2. The surface tension caused by pressure from the in-
tramolecule force is also composed of two terms, including
− 1

2 G12c4
s |∂yϕ1|2 from component 1 and − 1

2 G21c4
s |∂yϕ2|2 from
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FIG. 10. Relationship between interface thickness or surface ten-
sion and scaling coefficient k of EOS .

component 2. The surface tension can be expressed as

σ = −1

2
c4

s

∫ +∞

−∞

(
G11|∂yψ1|2 + G22|∂yψ2|2

+ G12|∂yϕ1|2 + G21|∂yϕ2|2
)
dy. (27)

In the present study, G22 is set as 0, leading to the surface
tension caused by pressure from the intermolecule force being

σinter = −1

2
G11c4

s

∫ +∞

−∞
(|∂yψ1|2)dy. (28)

The G12 has the same value of G21, leading to the surface
tension caused by pressure from the intramolecule force being

σintra = −1

2
G21c4

s

∫ +∞

−∞
(|∂yψ1|2 + |∂yψ2|2)dy. (29)

Through the integration, the contribution of intermolecule
force and intramolecule force is obtained.

FIG. 11. Relationship between interface thickness and the scal-
ing coefficient k of the EOS.

FIG. 12. Chemical potential distribution after bubble reaches the
equilibrium at y = 100 lu with different k values.

The comparison between the surface tension obtained by
theoretical analysis and that obtained by Laplace law is shown
in Fig. 13(a); the numerical result agrees well with the theo-
retical analysis and the maximum error between theoretical
analysis and numerical results is less than 2%. Figure 13(b)
depicts the surface tension caused by the intermolecule and
intramolecule interaction forces. As defined in Eq. (28), the
surface tension caused by intermolecule force is not related
to the intermolecule interaction strength Gα,α . However, the
surface tension caused by intramolecule force depends on
the intramolecule interaction strength Gα,ᾱ , and decreases
with the decreasing of Gα,ᾱ . Through theoretical analysis,
the surface tension σintra caused by the intramolecule force
is only 1%–2.3% of the surface tension σinter caused by the
intermolecule force in the present model.

E. Effect of viscosity ratio

To ensure the numerical stability of large-density-ratio
MCMP pseudopotential models, most previous studies set
the viscosity ratio to 1 and ignored this parameter of the
fluid system, an oversight that may affect the evolution of
the velocity field. The gas-liquid viscosity ratio may be very
large in actual multiphase phenomena, e.g., the viscosity ra-
tio between air and water is about 15, and so the influence
of different viscosity ratios on the density distribution is
analyzed with k = 0.6 and R0 = 50. Firstly, the relaxation
coefficient of the gas component is set to 1.0625, giving a
corresponding viscosity of gas of 0.1875, while the relax-
ation coefficients of the liquid component are set to τl =
0.5375, 0.6125, and 1.0625 and the corresponding gas-liquid
viscosity ratios are set to M = 15, 5, and 1. The density
profile at y = 100 lu after the fluid system reaches equilibrium
is shown in Fig. 14(a). The viscosity of the liquid phase only
affects the density distribution of gas components in the liquid
phase near the interface at large density ratios. The concentra-
tion of gas components in the liquid phase near the interface
increases as the viscosity of the liquid component increases,
but the concentration of gas components in the bubble and the
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FIG. 13. (a) The comparison of the surface obtained from
theoretical analysis and Laplace law. (b) The contribution of the in-
termolecule and intramolecule interaction forces on surface tension.

concentration of liquid components outside the bubble are not
affected by changes to the viscosity of the liquid components.
Next, the relaxation coefficient of the liquid component is set
to 0.5375, giving a corresponding liquid viscosity of 0.0125,
while the relaxation coefficient of the gas component is set
to τl = 0.5375, 0.6875, and 1.0625 and the corresponding
gas-liquid viscosity ratios are set to 1, 5, and 15. The density
profile at y = 100 lu after the fluid system reaches equilibrium
is shown in Fig. 14(b). The density profile lines at y = 100 lu
with different gas viscosities overlap. The variation of the gas
viscosity has little effect on the distribution of the density
field. The results show no dependence between the density
distribution and the viscosity ratio at high density ratios.

F. Bubble dissolution process under pressure

In the computational domain shown in Fig. 1, p∞ is the
pressure of the surrounding liquid and pv is the pressure inside
the bubble. The initial radius of the bubbles is set to R0 =
50 lu. Considering the numerical stability and physical reality

FIG. 14. Influence of different gas-liquid viscosity ratios on the
gas and liquid component density distribution at y = 100 lu: (a)
variation of liquid viscosity; (b) variation of gas viscosity.

of the simulation results, the EOS scaling coefficient k is set to
0.6. The relaxation coefficient of the gas component is chosen
as τg = 1.0625, while the relaxation coefficient of the liquid
component is chosen as τg = 0.5375 with a corresponding
gas-liquid viscosity ratio of νg/νl = 15. The corresponding
density field is initialized according to (24), the initial density
of the liquid component in the bubble is set to ρl−in = 0.0001,
and the initial density of the gas component is ρg−in = 0.0003,
while the initial density of the gas component outside the
bubble is ρg−in = 0.000 001. The other parameters are the
same as those in Sec. III A.

Figure 15 shows the process of bubble dissolution with
k = 0.6 and �p = 0.013 56. When the pressure difference
between the liquid and gas phases is greater than in the
equilibrium state, the force balance at the bubble interface
is broken. The gas density of both components increases
in the bubble as its diameter decreases, and so the density
field of both components changes greatly across the whole
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FIG. 15. Velocity distribution of fluid system during bubble dis-
solution process with k = 0.6 and �p = 0.01356 mu lu−1 tu−2 at
different time steps: (a) t = 0, (b) t = 1000 tu, (c) t = 2000 tu, (d)
t = 3000 tu, (e) t = 4000 tu, and (f) t = 15 000 tu.

computational domain. The bubble radius is compressed to the
minimum of R = 26 lu at t = 345 tu, as shown in Fig. 16,
while the flow velocity on the interface is zero and the pressure
inside the bubble is greater than that outside. The bubble then
oscillates and its diameter increases rapidly, with the radius
reaching the maximum of R = 47 lu at t = 640 tu after
rebounding, as shown in Fig. 16, at which time the pressure
inside the bubble is once again smaller than that outside.
The pressure difference then oscillates, causing fluctuations
in the bubble radius, gas phase density, and dissolution mass
of the gas component. The bubble radius reaches equilibrium
at t = 15 000 tu, as shown in Fig. 16, at which point the pres-
sure difference inside and outside of the gas is balanced and
the concentration and mass of the dissolved gas component
reaches equilibrium. The maximum flow velocity occurs near
the interface while the bubble is oscillating. When the bubble
is compressed, the velocity is perpendicular to the interface
and points toward the center of the bubble. In contrast, the

FIG. 16. Variation in the radius of the bubble with time when
k = 0.6 and �p = 0.01356 mu lu−1 tu−2.

velocity is perpendicular to the interface and pointing outside
of the bubble as the bubble rebounds. The maximum velocity
when the fluid system reaches equilibrium is much smaller
than that as the bubble is oscillating. The smaller spurious
currents do not affect the real velocity distribution of the fluid
system, demonstrating that our MCMP pseudopotential model
has good numerical stability.

In the present study, the total dissolved gas mass is obtained
by adding all of the dissolved gas densities in the grid nodes
of the surrounding liquid:

Mg−out =
∑

ρg−out (x), (30)

where Mg−out is the total dissolved gas mass. Figure 17
presents the variation in the dissolved gas mass with k = 0.6
and �p = 0.013 56 mu lu−1 tu−2. The dissolved gas mass
increases rapidly during the first bubble compression process,
then oscillates with the bubble radius. Goldman et al. [2]

FIG. 17. Variation in dissolved gas mass with time when k = 0.6
and �p = 0.01356 mu lu−1 tu−2.
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indicated that a stable bubble radius is achieved by mechan-
ical equilibrium, whereas a stable concentration is achieved
by chemical equilibrium; that is, the concentration gradient
inside and outside the bubble reaches equilibrium. Due to the
diffusion process of dissolved gas being much slower than that
of bubble oscillation, the oscillation period of the dissolved
gas is much longer than that of the bubble radius.

The variation in the gas component density, liquid com-
ponent density, and total density at y = 100 lu with respect
to the initial pressure difference when k = 0.6 is shown in
Fig. 18. Figure 18(a) shows that the density of the gas com-
ponent outside the bubble increases as the pressure increases,
causing the dissolved gas concentration to increase as well.
As the gas component is set as an ideal gas in our model,
the density of the gas component inside the bubble increases
linearly with any increase in pressure. The variation in the
liquid component density in the fluid system with the pressure
difference is shown in Fig. 18(b). The initial pressure differ-
ence has little effect on the density of the liquid component
outside the bubble, but the density of the liquid component
in the bubble increases as the pressure increases. Figure 18(c)
shows the variation in the total density with the initial pressure
difference. Although the density of the gas component in
the liquid phase is greatly affected by the pressure, there is
an order of magnitude difference between the density of the
gas component and that of the liquid component outside the
bubble. Variations in the initial pressure difference have little
influence on the total density of the liquid phase. However,
the density of the gas component in the bubble is similar to
that of the liquid component, so the densities of both the gas
component and the liquid component increase as the bubble
is compressed, causing the total density in the bubble to in-
crease.

As the density of the gas component in the liquid phase
increases, the mass and concentration of dissolved gas in-
crease. Previous studies have shown that the concentration of
dissolved gas increases with pressure increases in an airtight
container [6,7]. The concentration of dissolved gas is the mass
concentration, which is defined as follows in the present study:

C = Mg−out

Vl
, (31)

where C is the mass concentration of dissolved gas and Vl is
the volume of the liquid phase.

The numerical simulation results show that both the
mass and concentration of dissolved gas increase linearly as
the initial pressure difference increases (see Fig. 19). The
mass of dissolved gas increases from 0.0094 to 0.0281 as
the initial pressure difference increases from 0.001 33 to
0.017 mu lu−1 tu−2, and the dissolved gas concentration also
increases from 9.15 × 10−5 to 0.0027.

It is obviously important to validate the numerical results
obtained here for predicting the stability, growth, and disso-
lution of gas bubbles. This can be done using Henry’s law. It
is well known that the gas solubility in liquids and the partial
pressure of the gas are proportional to the molar concentration
of the gas in the solution in an airtight container at a certain
temperature [3,47], that is,

pg = KCB × CB, (32)

FIG. 18. Influence of initial pressure difference on gas compo-
nent density, liquid component density, and total density at y =
100 lu (k = 0.6): (a) gas component density distribution, (b) liquid
component density distribution, and (c) total density distribution.
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FIG. 19. Relationship between the mass and concentration of
dissolved gas and the initial pressure difference with k = 0.6 and
�p = 0.01356 mu lu−1 tu−2.

where pg is the gas phase partial pressure after the system
reaches the equilibrium state, KCB is Henry’s coefficient, and
CB is the molar concentration. The concentration of dissolved
gas C defined in this study is proportional to the molar con-
centration CB, with C = CBMog, where Mog is the number
of moles. Thus, there is a linear relationship between the gas
phase partial pressure pv and the concentration of dissolved
gas C:

pg = KCC. (33)

Earlier research stated that all gaseous solutes will obey
Henry’s law to an excellent approximation. The numerical
results show that the concentration of dissolved gas is pro-
portional to the gas partial pressure, as shown in Fig. 20, and
the linear fitting coefficient KC is approximately 36.44. The
results indicate that the numerical method can predict the time

FIG. 20. Relationship between the dissolved gas concentration
and partial pressure of component 1 in the surrounding liquid after
the fluid system reaches equilibrium.

evolution of bubble growth and the concentration of a single
ideal bubble.

The choice of parameters has only been considered from
the perspective of numerical stability, and the conversion
between lattice units and real physical units has not been
considered in the present study. Additionally, the factors in-
fluencing the gas dissolution process have not been fully
considered, including the diffusion rate and surface tension.
The above-mentioned limitations to this study will be over-
come in future work.

IV. CONCLUSIONS

In this paper, we have proposed a multicomponent multi-
phase pseudopotential lattice Boltzmann model that is suitable
for high density ratios and high viscosity ratios. The proposed
formulation uses the MRT collision operator, EDM force
scheme, and scaling coefficient of the EOS. Laplace’s law was
used to validate the LBM, which was then used to simulate
the dissolution process of bubbles under different pressures
with a liquid-gas density ratio of 1050 and a viscosity ratio
of 15. The variation of dissolved gas mass, gas phase density,
and dissolved gas concentration after the fluid system reached
equilibrium was analyzed under different initial pressure dif-
ferences.

Adjusting the scaling coefficient k of the EOS changes
the surface tension and interface thickness, and affects the
gas and liquid density distributions after the fluid has reached
equilibrium. The surface tension increases with k, while spu-
rious currents decrease with smaller values of k. Furthermore,
it has been proved that the gas-liquid interface thickness w

is proportional to 1/
√

k. Considering the influence of k on
the surface tension, interface thickness, and gas-liquid den-
sity ratio after the fluid system has reached equilibrium, it
is suggested that k should be set between 0.6 and 1. Fur-
thermore, the effect of the kinematic ratio has also been
investigated, with the results showing no dependence between
the density distribution and viscosity ratio at high density
ratios.

The dissolution process of a single bubble under pressure
was successfully simulated. The mass and concentration of the
dissolved gas were observed to oscillate with the bubble ra-
dius, and the equilibrium mass and concentration of dissolved
gas increased linearly with the initial pressure difference. The
initial pressure difference mainly affects the density distri-
bution of the gas phase and has little effect on the density
distribution of the liquid phase. Once the fluid system has
reached equilibrium, the concentration of dissolved gas is
proportional to the partial pressure of the gas phase, which
satisfies Henry’s law.

In summary, the MRT collision operator, EDM external
force scheme, and scaling coefficient k were applied to im-
prove the numerical stability of the MCMP pseudopotential
model at high density ratios and various viscosity ratios.
However, the model does not always achieve thermodynamic
consistency. As presented in our study, both the EDM exter-
nal force term and the k method lead to the thermodynamic
inconsistency. Therefore, the external force term of Li et al.
[35] is introduced to overcome this limitation in our follow-
up study, and from the preliminary study, we found the
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model with the external force scheme of Li et al. [35] can
achieve thermodynamic consistency and low spurious cur-
rents without using the k method. The influence of several
factors, including the diffusivity parameter, pressure differ-
ence, on the real bubble dissolution process will also be
considered.
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