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Effective algorithm for simulations of layer-by-layer growth during pulsed-laser deposition
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The atomistic simulation of materials growing in the layer-by-layer mode by the pulsed-laser deposition is
a significant challenge mainly due to the short timescales in which the fastest processes on the surface occur
together with long periods between pulses. We present a kinetic Monte Carlo algorithm which overcomes
the scaling problem by approximation of fast diffusion and by neglecting complex chemical processes. The
atomic diffusion is modeled as a two-dimensional gas of material units on each layer. The model is based on
a few elementary processes—the condensation of units on the surface, their dissolution back to the gas, and
interlayer transport, which can be influenced by the Ehrlich-Schwoebel barrier. With these simplifications, the
computational time of the algorithm scales only linearly with the size of the substrate while describing physically
relevant growth kinetics. We demonstrate that the simplified model is suitable for simulations of layered growth
of thin films in the range from quasicontinuous deposition to low-frequency cases. The model is successfully
implemented to provide an alternative explanation of the time evolution of layer coverages by interlayer transport
after pulses of deposition experimentally observed during perovskite growth [G. Eres et al., Phys. Rev. B 84,
195467 (2011)].
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I. INTRODUCTION

The ability to control the epitaxial growth of thin films
is of great importance with respect to the synthesis of films
with desired properties. This is currently true, for example,
in the case of the pulsed-laser deposition (PLD) growth of
perovskites group materials [1–3].

From real-time experiments, it is usually possible to obtain
spatially integrated information related to the growth kinet-
ics, typically the coverage of the growing layers. However,
the underlying kinetics is difficult to extract. For this reason,
computer simulations are an important technique that is com-
plementary to the experiments since it allows one to test the
proposed kinetics by calculating the evolution of atomically
resolved morphologies, from which the experimentally rele-
vant quantities can be obtained.

Different modes of thin film growth appear depending on
the binding energies to the substrate and neighboring atoms
or molecules. In the so-called layer-by-layer (LBL) mode, the
deposited material forms partially covered two-dimensional
(2D) planes on the surface. We use the less strict definition of
the LBL growth, in which several uncovered layers coexist.
Note that the true LBL growth in which a new layer starts
growing once the previous one is completed is not possi-
ble [4]. The LBL mode is often desired because it results in
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the growth of well-defined homogeneous films. An example
of materials which grow in the LBL mode is the so-called
layered perovskites. These materials have the same general
formula ABO3, where A and B are metal cations and O is
oxygen. Depending on the combination of the metals A and
B, the materials can demonstrate a large variety of interesting
phenomena, for example, superconductivity [5], ferroelectric-
ity [6], or ferromagneticity [7].

The properties of the resulting films are also significantly
influenced by the deposition regime. Typical examples of
methods with continuous deposition are molecular beam epi-
taxy and vacuum sputtering, while the most prominent pulsed
methods are the pulsed-plasma deposition and the PLD. In
the PLD mode, a target is heated by a high-power laser which,
during very short times, evaporates a small amount of atoms or
molecules (units). Due to the high power of the laser and thus
the high temperature of the target, the impinging units on the
substrate are significantly hotter than the substrate. Hence, the
system is not in a thermodynamic equilibrium. Under correct
conditions, the PLD growth allows one to obtain smoother
surfaces than the continuous deposition [8]. Moreover, the
PLD has an advantage of the possibility to tune the surface
smoothness by the laser repetition frequency [9,10].

The PLD growth kinetics has been investigated in situ by
several x-ray scattering methods; however, the analysis of the
experimental data requires a suitable model. Several models of
PLD growth have been published so far. In the rate-equation
approach, the time development of the distribution of the
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monolayer islands during the deposition is described by a set
of differential equations, which can be easily solved [11–13].
A simpler way is based on the calculation of the time evolution
of the monolayer coverages [14]. These models, however,
cannot be used for the simulation of in situ x-ray scattering
since they do not describe the time evolution of island shapes.
The level-set method [15,16] presents a phenomenological
model for the simulation of the time development of the mor-
phology of a growing surface.

Another possible approach is to use a (kinetic) Monte
Carlo (kMC) algorithm based on the random generation of
a sequence of atomistic processes selected in each step with
respect to their probabilities. The film morphology is simu-
lated by kMC in a nonintegrated way, but with consequences
on the computational costs of the algorithm, in which the
diffusion of the units significantly slows the simulations. This
issue is even more substantial in the case of PLD simulations
with fast diffusion of energetic atoms or molecules. Using
this technique, without model simplifications, it is usually
possible to simulate only submonolayer growth [17] or few-
monolayer growth on small substrates ranging from 50 × 50
to 100 × 100 adsorption sites [18,19], which is less than the
coherence length of x-ray sources and thus insufficient for
simulations of in situ x-ray scattering. A more realistic ap-
proach in which the model simulates the whole deposition,
including the interaction of impinging atoms with inert gas,
has been applied on the growth of metal films [20]. In the
case of diatomic molecules, the model has been expanded
to include the chemical processes necessary to create the
molecules [21]. However, these techniques are not suitable for
simulations of complex materials such as perovskites due to
their complicated structure and number of possible chemical
reactions influencing the growth.

Here we present a modification of the kMC simulation of
the LBL growth by PLD, which overcomes this limitation and
substantially speeds up the simulation. As the main approx-
imation, we use a 2D gas of noncondensed material instead
of a random walk of each unit. It allows us to compute the
growth on several micrometers large substrates over tens of
minutes of deposition time. The simulated domain size is
higher than the coherence length of the x-ray sources used in
techniques sensitive to the morphology of the growing layer,
such as grazing-incidence small-angle x-ray scattering, which,
in principle, allows interpretation of these experiments on a
microscopical level. Here the model is successfully applied
to simulate the experimentally obtained interlayer transports
of SrTiO3 (STO) [14], providing an alternative explanation of
the underlying kinetics.

II. DESCRIPTION OF THE MODEL

The model introduced here was designed to simulate large
spatial and timescales of growth at affordable computational
costs. Diffusion of atoms or molecules consumes most of the
computer time of any kMC-based model used to study the
growth of thin films. This leads to compromises in the sim-
ulation domain size or simulated time. Our model was created
in order to simulate LBL growth of domains that are several
micrometers large during tens of minutes without the need
to use unrealistically high deposition rates. The diffusion of

FIG. 1. Illustration of possible processes implemented in the
model. (a) Side and top view of the initial state, (b) deposition,
(c),(d) condensation, (e),(f) dissolution, and (g) interlayer transport.
ρi is the 2D gas density on the ith level, represented by an area of the
filled part of hexagons. UN is a condensed unit with N neighbors.

atoms or molecules is not calculated realistically, instead, the
diffusing species are replaced—in the fast diffusion limit—by
a 2D gas entity with density ρi on the ith layer. This implies
that site-specific diffusion along the edges or corners of grow-
ing steps is not included in the model.

The model is coarse grained, with the smallest condensed
unit representing the periodically repeating cell of the growing
crystal. Note that the condensed unit may substitute several
chemically different atoms in the real growing layer. The
chemical interactions necessary for the units to form are not
considered, in order to keep the model as simple as possible.
Thus the deposited material can be found in two entities:
either as the condensed units on which further growth may
occur (gray color in Fig. 1) or as the 2D gas of free unbound
units (blue color in Fig. 1). The surface geometry is fixed and
the growth can occur only on top of the existing condensed
units. The 2D gas densities ρi are given by the discrete number
of the unbound units Ni on the layer i and by the exposed
condensed surface, θi, ρi = Niu/θi, where u is the amount of
material corresponding to one condensed unit.

There are four different processes which can occur during
any given time step, as shown in Fig. 1: deposition, conden-
sation, dissolution, and interlayer transport. The latter two
processes are thermally activated.

The deposition [Fig. 1(b)] occurs in time intervals defined
by the laser repetition frequency. In each deposition step, there
are multiple units added to the 2D gas based on the average
deposition rate. For each arriving unit, the target layer i is
chosen with a probability that is proportional to its exposed
surface θi. Consequently, ρi is increased by u/θi.

The process of condensation is illustrated in Figs. 1(c)
and 1(d). One unit is removed from the 2D gas on the given
layer and a new condensed unit is formed at a randomly cho-
sen position of the layer. It is assumed that the condensation
is a zero-barrier process and the probability of condensation
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FIG. 2. The dependence of computational time on the number of
cells.

at each uncovered position is given by ρiν0, where ν0 is the
frequency prefactor. Note that the unit condensation is not
sensitive to the configuration of the surrounding cells, e.g., the
processes in Figs. 1(c) and 1(d) have the same probabilities.

Dissolution [Figs. 1(e) and 1(f)] is the process opposite to
the condensation. During this event, a selected cell is removed
and the number of units in the 2D gas at the level is increased
by one. The activation energy of this process is given by the
binding energy to neighbors En and to the substrate Es,

�E = Es + iEn, (1)

where i is the number of neighboring condensed cells on the
same level. The more neighbors each cell has, the higher is
the activation energy and thus the lower is the probability of
dissolution.

The interlayer transport [Fig. 1(g)] is simulated by the
process, in which one unit is transferred from the 2D gas of the
selected level to the 2D gas of the level that is one tier lower.
The rate of this process is proportional to the number of step-
edge positions of the layer and to the corresponding 2D gas
density. The activation barrier is the parameter corresponding
to the Ehrlich-Schwoebel (ES) barrier, EES [22,23].

For simulations, we used the rejection-free Bortz-Kalos-
Lebowitz kinetic Monte Carlo algorithm [24]. The substrate
temperature was set to 900 K and the prefactor was set to
ν0 = 1011 s−1. All data presented in Secs. III and IV were
calculated using the substrate of 5000 × 2500 cells with
hexagonal geometry.

In order to determine the simulation-time efficiency of the
algorithm, we plot in Fig. 2 the runtime dependence on the
number of cells of the simulated area. The data were fitted by
the curve f (x) = axb + c, with the parameter b obtained from
the fit equal to 1.026, which is very close to the ideal linear
scaling with the grid size. The scaling with the number of
cells, N , in the case of standard models with realistic adatom
diffusion is typically N2, or N3/2 if the event choice procedure
is optimized [25]. The difference is due to a faster reaching of
a stable position by random trial than by the random walk.
For testing purposes, we compared the presented model with
a model with realistic adatom diffusion. The number of events
necessary to simulate the same period of growth increased
∼1000 times on the sample with 5000 units.

III. INFLUENCE OF DEPOSITION REPETITION
FREQUENCY

As the output of the results obtained from the kMC sim-
ulations, we use morphologies of grown layers together with
the calculated quantity IX corresponding to the time-resolved
surface x-ray diffraction (SXRD) measurements [26,27]. For
the SXRD measurements performed at the anti-Bragg posi-
tion, the scattering intensity reduces to a form involving the
difference in coverages for even and odd layers [28],

IX =
∞∑

n=0

(−1)n(θn − θn+1), (2)

where θn is the coverage of layer n. This equation is a basic
result in SXRD to study growth kinetics using x-ray diffrac-
tion.

At first, we confirmed the physically correct behavior of
the model on a testing set of simulations with varied binding
energies and ES barrier. The details are given in the Ap-
pendix A. The parameters of the PLD layers can be tuned
by the laser repetition frequency. In the following, we study
the influence of the repetition frequency on film morphology
using the presented model. Figure 3 shows the results for three
repetition frequencies, 5, 0.5, and 0.05 Hz. In all of the cases,
the mean deposition rate was 0.0135 ML/s. The neighbor and
surface binding energies were 0.5 eV, while the ES barrier was
set to zero. The snapshots of morphologies were taken right
before a new deposition flux, i.e., in the most stabilized states
during the growth. The presented morphologies are recorded
after the same period of time since the beginning of growth,
long enough to eliminate an influence of the initial substrate
state (which can vary in experiment) on the morphology.

The results, simulated in a quasicontinuous mode with rep-
etition frequency 5 Hz, are shown in Fig. 3(a). The snapshot
of morphology shows that the simulation is producing small
compact faceted islands randomly connected by a coales-
cence. Coverages of successive layers [right panel of Fig. 3(a)]
show that for this combination of parameters, the growth is
close to exactly layer by layer: a new layer starts growing
when the previous one is almost fully occupied. The same
observation can be made from the SXRD which shows pe-
riodical peaks reaching the peak value close to unity. A true
LBL growth mode would be obtained if the binding energies
were set close to zero. However, the instability of condensed
units would result in the simulation time approaching infinity.

The results for the repetition frequency 0.5 Hz are shown
in Fig. 3(b). As evident from the morphology snapshot, the
decrease of the repetition frequency results in a much smaller
size of the islands, while their shape is not affected. The size
difference is caused by the pronounced nucleation after each
pulse due to the higher amount of material deposited per pulse.
The time evolution of the level coverages and SXRD are not
strongly affected by the decreased repetition rate, except for
the appearance of small steps.

Figure 3(c) was obtained with repetition frequency
0.05 Hz, which corresponds to ∼3.7 pulses per deposited
layer. The islands can no longer be considered compact or
close to circular, and the morphology is rather semicontin-
uous. This is again caused by the high amounts of material
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FIG. 3. Morphologies and SXRDs for various repetition frequencies: the L1–L9 labels denote the layer, the blue line is 0.5 μm long, and
the size of one molecule is considered to be 0.533 nm. The size of the insets is 500 × 500 units, i.e., 266.5 × 266.5 nm.

deposited per pulse and the resultant pronounced nucleation.
The system quickly gets to a stable state after each pulse, as
evident from the steplike shape of evolution of the level cover-
ages. Another visible effect is the appearance of small peaks at
the coverages of one level higher than the currently active one,
for example, “Level 4” at 200 seconds. These peaks quickly
disappear due to the interlayer transport mediated by the zero
ES barrier. The same effect can be seen on the shape of the
SXRD as well. Immediately after each pulse, the value of the
SXRD drops because of deposition on top of the active layer,
and the value of the SXRD starts growing again due to filling
of the active layer by the interlayer transport.

IV. APPLICATION OF THE MODEL ON GROWTH OF STO

Next, we discuss application of the model to the data ob-
tained by experimental studies of interlayer transport during
STO growth by PLD. In Ref. [14], the authors used SXRD to
monitor the evolution of coverage on active layers after depo-
sition pulses. The observed interlayer transport has been fitted
by a biexponential function [14], which was interpreted by the
coexistence of fast and slow mechanisms of the transport. The
timescales of the fast and slow transport are few milliseconds
and several seconds, respectively. Using our model, we were

able to reproduce the SXRD data from Ref. [14] by calculating
proper energy barriers without the need of any further model
modifications.

We assumed that the observed biexponential behavior, and
hence slow and fast interlayer transport, are caused by dis-
solution of units with zero and one neighbor, respectively,
with a subsequent jump down to the lower level. Because only
the dissolved units can get to the lower level, the rate of the
observed interlayer transport is expected to be proportional to
the dissolution rate.

The time constants τ1 and τ2 of both interlayer transports
have been calculated in Ref. [14] from the time change of the
level coverages. Binding energies Es and En can be obtained
by solving two equations:

τ−1
1 = ν0 exp

(
− Es

kbT

)
, (3)

τ−1
2 = ν0 exp

(
−Es + En

kbT

)
. (4)

The values corresponding to τ1 = 0.9 and τ2 = 12.4 s with
parameter T = 940 K are Es = 2.05 and En = 0.2 eV.

In Fig. 4, we present the simulated SXRD intensity and
the level coverages. The time period between pulses was 50 s
and during one pulse 0.083 monolayers were deposited. Both
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FIG. 4. (a),(d) The SXRD of part of the deposition and (b),(e) a detail on one transient with the biexponential fit proposed in [14]. (c),(f)
The sample of the morphology; the blue line is 100 nm long. The rectangle in (a) and (d) marks the range displayed in (b) and (e), respectively.
L1–L4 denote four different layers growing at the given time.

parameters were set to be the same as in the experiment.
The simulated SXRD peaks in Fig. 4(a) are very similar to
those in Ref. [14]. Figure 4(b) shows a detail of the transient
coverage after a selected pulse. The fast increase at the be-
ginning corresponds to the rapid condensation of new units in
the layer, while the transient part is a result of the interlayer
transport from the higher level. The transient part is fitted by
the biexponential curve, with parameters taken from Ref. [14].
It can be seen that even though the overlap is not perfect, the
points are very close to the line. We note that an analogous
biexponential behavior observed in a somewhat different case
of molecular beam epitaxy growth has been explained in a
similar way [29].

The morphology can be significantly altered by introducing
the ES barrier and lowering the surface binding energy corre-
spondingly, as shown in Figs. 4(c) and 4(f). The increased ES
barrier causes the resulting islands to be more compact, while
the SXRD shape [Fig. 4(d)] is similar to the one in Fig. 4(a).
The interlayer transport [Fig. 4(e)] can still be successfully fit
using the same time constants as in Fig. 4(b) and in Ref. [14].

The similarity of the results obtained by our model and
from experiments suggests that the biexponential behavior of
the changes of the coverages can be simulated considering
the basic processes, dissolution, and interlayer transport. The
model, even though strongly simplified, describes well the bi-
exponential character of the interlayer transport, without need
of separation to fast and slow transports. One scale is given by

the dissolution and jump down of units with no neighbors and
the other is given by dissolution and jump down of units with
one neighbor.

V. DISCUSSION

In the previous section, we applied our model on the LBL
growth by PLD. We proceed by discussing the model limita-
tions arising due to the implemented simplifications.

First, the model neglects the inner chemical structure of the
growing material and all partial chemical processes, assuming
the final unit is much more stable than the intermediates. In
some cases, the intermediates may influence the kinetics and
the model could not be used. For example, if two chemical or
crystal structures are competing during the growth, the model
would necessarily fail.

The model in the present form also cannot be applied when
binding energies vary from layer to layer, typically due to
relaxation of the lattice during a strained growth. It can be
adapted to the growth in which the relaxation can be approx-
imated by level-dependent binding energies without the need
to change the layer geometries. Such modification would not
significantly increase the computational time.

Another application for which the model cannot be used
is the diffusion-controlled growth, in which case the diffusion
speed cannot be approximated as infinitely fast. For example,
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FIG. 5. Morphologies and SXRDs for various binding energies and Ehrlich-Schwoebel barriers: the L1–L9 labels denote the layer, the
blue line is 0.5 μm long, and the size of one molecule is considered to be 0.533 nm. The size of the insets is 500 × 500 units, i.e.,
266.5 × 266.5 nm.

the model does not realistically describe situations in which
some kinetically blocked sites cannot be reached by diffusion.

Finally, we discuss the consequences of 2D gas density
ρi common for whole level i. As an example, we use the
morphology in Fig. 5(c), where the growth is close to 3D
island growth. Note that levels i of islands separated by deep
trenches share the same units of the gas. However, this is not
an issue for the simulation of the growth, if it is not diffusion
controlled, as discussed above. In a realistic case with a large
ES barrier, the probability of impingement and condensation
of a unit on a selected island A is proportional to its uncovered
area SA. In the presented model, the unit impinges to whole
level i with the probability proportional to θi, but its conden-
sation on island A is proportional to SA/θi, thus giving the
same results as in the realistic case.

In this paper, we used the results of the kMC simulations
for the calculation of the SXRD intensity IX in an anti-Bragg
point using Eq. (2). This intensity depends only on the mono-
layer coverages θn and is not affected at all by the surface
morphology. In order to asses the island sizes and shapes,
diffuse x-ray scattering is used, which measures the distribu-
tion IX (Q) of scattered x-ray intensity in point Q of reciprocal

space close to a chosen reciprocal lattice point [30]. The
kMC method presented here is quite suitable for this kind of
simulation since the simulation area is larger than the co-
herence width of a typical x-ray experiment so that the
calculating function IX (Q) is nearly averaged over a statistical
ensemble of all surface configurations. These simulations,
along with a comparison with experimental data, will be the
subject of a forthcoming paper.

VI. CONCLUSION

We have presented the kinetic Monte Carlo model which
can be very well used to simulate the LBL growth of homo-
geneous thin films. By using a 2D gas of units as a source of
condensing particles, we reached linear scaling of the compu-
tational time with the size of the substrate. This scaling allows
simulations of large substrates and long deposition times with-
out the need to use nonphysical deposition rates. We have
demonstrated that the model is well suited for simulations of
PLD growth far from thermodynamic equilibrium.

The model has been applied to the problem of interlayer
transport during STO growth by PLD [14]. Our model fits well
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the experimental data by simulating the interlayer transport
driven by the dissolution of differently bound units and their
subsequent jump to a lower layer. The fast and slow transports
reflect the dissolution of units without and with one condensed
neighbor, respectively.

The model can be used as a base for large-scale simulations
of layered growth via fast diffusing units in the case of a
wide range of materials, if intermediate chemical reactions
can be neglected. The micrometer domain size, not achievable
by the standard kMC technique, will allow simulations of in
situ x-ray scattering, highly sensitive to the morphology of the
growing layer.
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APPENDIX: INFLUENCE OF INTERACTION ENERGIES
AND THE EHRLICH-SCHWOEBEL BARRIER

Here we demonstrate the physically relevant behavior of
the model by varying the binding energies and the ES barrier.
The comparison also shows the wide range of different kinds
of growth modes for which the model can be used. As a
reference, we use the growth simulation shown in Fig. 3(a).

Figure 5 shows morphologies, SXRDs, and coverages of
discrete layers obtained by varying important parameters of
the model—the binding energies and the ES barrier. In all
cases, the repetition and deposition rates were 5 Hz and
0.0135 ML/s.

The results of the simulation with the surface binding en-
ergy Es increased to 0.9 eV are presented in Fig. 5(a). The
morphology shows that the size of the islands is smaller than
in the reference case. This is caused by the fact that the prob-
ability of cluster dissolution is lower when the binding energy
is increased. The rate at which the small clusters dissolve
is smaller, thus allowing the nuclei to live long enough to
form larger stable islands. From the enlarged part, it is also
observable that the shape is not as faceted as in the reference

case because of the higher stability of the low-coordinated
units. The maxima in SXRD plots are not as high as in the
reference case, which means that each layer starts growing
before the previous one is fully closed. This is, again, caused
by the lower dissolution rate of the small clusters.

Figure 5(b) contains results for the neighbor binding en-
ergy En increased to 0.9 eV. The islands are even smaller than
in both previous cases. From the detail of the morphology, it is
obvious that the islands can no longer be considered faceted,
but with a rather ragged shape. This is caused, again, by the
decreased dissolution rate. The effect is stronger than in the
previous cases because, in the calculation of the activation
energy [Eq. (1)], the neighbor binding energy is multiplied
by the number of neighbors. As a result, any condensed unit
with three or more neighbors is stable in the timescales of the
simulation. A close inspection of the detail of the morphology
shows that there are some condensed units on the higher
level—tiny bright dots. Since the picture is taken right before
a deposition pulse, the dots indicate that a new level starts
growing before the currently active one is fully closed. This
claim is also supported by the corresponding SXRD and level
coverages. The maxima of the SXRD are lower and the lines
showing the coverages of each level are slightly bent near zero
and unity.

The effect of the nonzero ES barrier is shown in Fig. 5(c).
The difference is immediately obvious. Because of the limited
flux of material to the lower level, the growth is no longer
2D island growth, but instead 3D islands are formed. Since
both binding energies Es and En are small, the edges of the
islands are again smooth and faceted, as in the reference case
[Fig. 3(a)], and there are no small unstable clusters present.
From the SXRD, it is observed that the growth is LBL only at
the beginning. After that the layers are not fully closed before
a new layer starts growing. This causes the coverages to not
grow as fast as in the other cases.

The growth of 3D islands can be achieved only with a
nonzero ES barrier or with another mechanism effectively
decreasing the material transport to lower levels. If the binding
energies are set high to slow down the dissolution, a hit-and-
stick growth is obtained. In order to get more compact islands,
the binding energies must be decreased, which results in 2D
growth if the ES barrier is not active.
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