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First-principles calculation of the configurational energy density of states for a solid-state ion
conductor with a variant of the Wang and Landau algorithm
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In this work, a variant of the Wang and Landau algorithm for calculation of the configurational energy density
of states is proposed. The algorithm was developed for the purpose of using first-principles simulations, such
as density functional theory, to calculate the partition function of disordered sublattices in crystal materials.
The expensive calculations of first-principles methods make a parallel algorithm necessary for a practical
computation of the configurational energy density of states within a supercell approximation of a solid-state
material. The algorithm developed in this work is tested with the two-dimensional (2d) Ising model to bench
mark the algorithm and to help provide insight for implementation to a materials science application. Tests
with the 2d Ising model revealed that the algorithm has good performance compared to the original Wang and
Landau algorithm and the 1/t algorithm, in particular the short iteration performance. A proof of convergence
is presented within an adiabatic assumption, and the analysis is able to correctly predict the time dependence
of the modification factor to the density of states. The algorithm was then applied to the lithium and lanthanum
sublattice of the solid-state lithium ion conductor Li0.5La0.5TiO3. This was done to help understand the disordered
nature of the lithium and lanthanum. The results find, overall, that the algorithm performs very well for the 2d
Ising model and that the results for Li0.5La0.5TiO3 are consistent with experiment while providing additional
insight into the lithium and lanthanum ordering in the material. The primary result is that the lithium and
lanthanum become more mixed between layers along the c axis for increasing temperature. In part, the simulation
of the disordered Li0.5La0.5TiO3 system serves as a benchmark for what size systems are currently and in the near
future practical to calculate with density functional theory methods.

DOI: 10.1103/PhysRevE.102.063304

I. INTRODUCTION

For crystalline materials with disordered sublattices, such
as the lithium ion solid-state electrolyte LLTO, it is desirable
to calculate from first-principles methods (such as density
functional theory [1]) the configurational energy density states
G(Ej ), which will simply be referred to as the density of
states. Here, the density of states refers to the number of
distinct lattice configurations for a given energy. With the
density of states, the partition function,

Z =
�∑
i

e
−ei
kBT =

�∑
j

G(Ej )e
−E j
kBT , (1)

can be determined and from it many important thermo-
dynamic properties such as the free energy, entropy, spe-
cific heat, and ensemble averages can be calculated. In
Eq. (1), � corresponds to the total number of possible
configurations (�i) and energies (ei) referred to by the set
{�i, ei}�, � is the number of possible distinct energies Ej that
appear in {�i, ei}�, kB is Boltzmann’s constant, and T is the
temperature. If � is small enough, one of the simplest ways to
estimate G(Ej ) could be direct random sampling of the con-
figuration space [2], which does have the advantage of being
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completely parallel. For most problems, � will be too large for
direct random sampling of the configuration space to be prac-
tical, making an importance sampling algorithm necessary. A
very well-known importance sampling method to solve this
problem could be temperature-dependent simulations involv-
ing the Metropolis algorithm and sampling with probability
proportional to exp( −ei

kBT ) along with histogram reweighting
techniques [3–5]. Another more advanced method is the mul-
ticanonical method proposed by Berg et al. [6,7]. A variant
of multicanonical sampling that samples the density of states
directly known as entropic sampling developed by Lee [8]
could also be used. The multicanonical method requires a
careful choice of simulation parameters while the entropic
sampling requires a good estimate of the density of states to
be effective. Another algorithm called the Wang and Landau
algorithm [9,10], which is temperature independent, is based
on a random walk in energy space with probability inversely
proportional to the current estimate of the density of states,
and the density of states builds up as the algorithm progresses.
An issue with these algorithms (if using a single walker) with
first-principles methods such as density functional theory is
the large number of iterations needed, which would require a
prohibitively long wall time at the current performance power
of computers. In this paper, an algorithm is proposed that
combines the use of random sets along with the importance
sampling method of the Wang and Landau algorithm. The
algorithm also uses the principle of the Wang and Landau
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algorithm to build up an estimate of the density of states as
the algorithm progresses. The proposed algorithm is meant to
work toward the goal of a highly parallel importance sampling
algorithm that directly calculates the density of states, meshes
well with midlevel high-performance computing architectures
(such as Argonne’s Bebop), and has a minimum of parameters
for implementation. The algorithm developed in this work is
referred to as the BLENDER (BLend each new density each
round) algorithm.

The Wang and Landau method does have parallel ver-
sions, including restricting random walkers to specific energy
ranges, allowing the walkers to explore the entire space
while periodically communicating with each other, and meth-
ods based on a replica exchange framework [11–14]. The
BLENDER algorithm is characterized by allowing the walkers
to explore the entire energy range and communication with
each other through an update to the density of states at each
iteration. In principle, many of the different forms of Wang
and Landau sampling currently used are based around the con-
cept of sampling until a flat histogram of the visited energies
is reached, followed by a reduction in a modification factor
to the density of states, and multiplication of the calculated
density of states by this factor every time an energy level
is visited. One issue with these types of Wang and Landau
simulations is that, being based on a flat histogram of the
visited energies, the energy range must be specified a priori.
The practice of restricting the energy range in Wang and
Landau simulations to improve sampling in dominant energy
subspaces has been covered thoroughly in the literature for
disordered and pure systems by Fytas and Malakis et al.
[15–20]. Another issue is that the original Wang and Landau
formulation for the reduction in the modification factor to the
density of states has been shown to be nonconvergent [21–24].
There have been advancements made in understanding how to
reduce the modification factor by Belardinelli et al. [25], who
developed the 1/t algorithm which is proven to be convergent;
this result was verified by Zhou et al. [24]. An issue with
the 1/t algorithm as presented by Belardinelli et al. is that
it requires a nontrivial preconditioning using what is referred
to as the N-fold way to be most effective. The ordinary 1/t
algorithm relies on the original Wang and Landau algorithm
for this preconditioning. The N-fold way requires a careful
analysis of the method to perturb the systems affect on the
energy, which for local models like the Ising model is pos-
sible, but for first-principles simulations this is not feasible.
The novel aspects of the BLENDER algorithm include a con-
tinuous adaptation of the modification factor to the density
of states using the current sum of the density of states as a
regulator, using the number of configurations as a parameter in
the modification factor, and using a histogram of the currently
visited energies as a parameter in the modification factor. The
algorithm in this work is believed to be convergent based on
a mathematical analysis within an adiabatic assumption. The
algorithm is also natural to parallelize as it is based on a set of
random walkers. The algorithm was developed for ease of use
in the application to disordered sublattices of crystal systems.

In this work, the formulated algorithm is bench marked
with the 2d Ising model as a standard means of testing perfor-
mance. The tests allow for a comparison to exact results and
to previous benchmarks of other algorithms. The tests with

the 2d Ising model also allow for insight in how to implement
the algorithm to a materials science problem. The main goal
in this work was to calculate with first-principles methods the
density of states of the lithium ion conductor Li0.5La0.5TiO3.
There have been reports of the Wang and Landau algorithm
used with linear scaling density functional theory methods
to calculate magnetic properties of materials and order to
disorder properties of alloys [26,27]. There has also been a
report of first-principles calculations with replica exchange
canonical Metropolis sampling for investigating ion disorder
in solids by Kasamatsu et al. [28]. Li0.5La0.5TiO3 is part of a
family of possible stoichiometries Li3xLa2/3−xTiO3 of interest
as solid-state lithium ion conductors [29–35]. For all of the
possible stoichiometries, there is a tendency toward ordering
of the lithium and lanthanum into lithium-rich layers and
lanthanum-rich layers. The primary calculation of this work
is that of the temperature-dependent order parameter related
to the lanthanum-rich layer in Li0.5La0.5TiO3. This calculation
serves both to benchmark the application of the algorithm to
a materials science problem with experimental known quan-
tities and to provide further insight into the physics of the
material.

The rest of the article is organized as follows: Section II
explains the BLENDER algorithm, Sec. III covers the test-
ing of the algorithm with the 2d Ising model including a
comparison with the original Wang and Landau algorithm
and the 1/t algorithm, Sec. IV covers an adiabatic analysis
of the algorithm’s convergence and the time dependence of
the modification factor, Sec. V covers the application of the
algorithm to LLTO along with the computational details of
the first-principles methods, and Sec. VI is the conclusions.

In this work, the software packages XMGRACE [36] and
VESTA [37] were used respectively in the generation of plots
the generation of structural images of LLTO. The software
package MATLAB [38] was utilized in generating movies pro-
vided in the Supplemental Material [39].

II. ALGORITHM

The BLENDER algorithm proposed in this work is given
as follows for S random walkers (note that the following
algorithm is in terms of producing a relative density of states
Gr (Ej )I , where I is the iteration number):

1. Gr (Ej )
I , {�s, es}I

S

2. {�s, es}I
S → {�′

s, e′
s}I
S

3. �′I
s , e′I

s → �I+1
s , eI+1

s P = min[1, Gr (es)I/Gr (e′
s)I ]

else �I
s , eI

s → �I+1
s , eI+1

s (2)

4. Gr (Ej )
I+1 = Gr (Ej )

I + CoHI

(AI )
1
N

Gr (Ej )
I

= Gr (Ej )
I

(
1 + CoHI

(AI )
1
N

)
,

where HI ≡ H(Ej, {es}I+1
S ), which is a histogram function

that counts the number of the currently visited energies Ej

in the set {es}I+1
S . The “instantaneous” histogram HI is re-

lated to the total histogram of visited energies H (Ej )I by
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H (Ej )I = ∑I
i=0 Hi. The value AI ≡ ∑

j Gr (Ej )I . In this
work, {�s, es}0

S is a randomly drawn set of S walkers from
the configuration space {�i, ei}�. Also in this work, the
initial guess of the density of states was set to Gr (Ej )0 =
1 + Co

S H(Ej, es
0), but in principle there could be other ways

to initialize the initial guess to the density of states. In the
second step, a random change is applied to each element
of the sampled set {�s, es}I

S to produced a “perturbed” set
{�′

s, e′
s}I
S ; for the Ising model, this could be randomly flipping

a spin. In the third step, a random number is drawn between
zero and one for every sampled configuration: If this number
is less then the ratio of the current density of states of the
unperturbed to perturbed energies Gr (es)I/Gr (e′

s)I then the
perturbed configuration and energy �′I

s , e′I
s goes to �I+1

s , eI+1
s ;

else the unperturbed configuration and energy �I
s , eI

s goes to
�I+1

s , eI+1
s . This step (third) is derived from the Wang and

Landau method of sampling with probability inversely propor-
tional to the density of states. In the fourth step, a histogram
of the updated {es}I+1

S energies is made and added (blended)
into the current density of states Gr (Ej )I by multiplying by
a constant Co (which affects the convergence properties) and
Gr (Ej )I divided by the sum of the density of states to the 1/N
power. The 1/N power is introduced as a tuning parameter to
affect the convergence properties and was discovered through
empirical testing with the 2d Ising model. A better under-
standing of the algorithm and evidence for its convergence
is found in Sec. V with a mathematical analysis within an
adiabatic assumption. The mathematical analysis in Sec. V
provides evidence that 1/N and Co are simply computational
parameters that will effect the initial dynamics of the sim-
ulation but not whether the algorithm will converge in the
long iteration limit. The fourth step is also shown in terms
of multiplication, which is discussed later. In this work, it
was found that Co = �

1
N was computationally efficient. After

the algorithm is deemed to be complete, it is necessary to
renormalize the iterated relative density of states Gr (Ej ) f at
the final iteration I = f as follows,

1. A f =
∑

j

Gr (Ej )
f

2. Gcalc(Ej ) = Gr (Ej )
f �

A f
,

(3)

to produce the properly normalized estimated value of G(Ej ).
In principle, Gr (Ej ) can also be renormalized based on in-
formation of the number of configurations in a given bin.
For example, if the ground state is known to have a given
degeneracy, then the entire density of states can be normalized
such that the ground-state bin has the correct degeneracy.

An important discussion point of this algorithm [Eq. (2)]
is the update of the relative density of states (step 4) being
presented as addition and multiplication. In typical Wang and
Landau sampling, the update of the density of states is per-
formed by multiplication of the density of states by a factor
greater than 1 every time an energy level is visited, combined
with a periodic reduction of the multiplication factor toward
1; when a histogram of visited energies reaches a predeter-
mined flatness criteria, the histogram of the visited energies
is then reset to 0. In the multiplication form of step 4 of this
algorithm [Eq. (2)], it is seen that the dependence on 1 over

the sum of the density of states serves to naturally reduce the
multiplication factor toward 1 as the simulation progresses.
The multiplication form is also useful when � is large and the
sum of the density of states is larger than a typical floating
point number. In this case, the log of the density of states can
be stored and the update performed through addition of logs.
Taking GM

r ≡ max[Gr (Ej )], the log of AI can be written as

log[AI ] = log

[
GM

r

AI

GM
r

]

= log
[
GM

r

] + log

[∑
j

blogb[Gr (Ej )]−logb[GM
r ]

]
. (4)

With log[AI ] from Eq. (4), the log update form of step 4 of the
algorithm [Eq. (2)] can be written as the following

log

[
Gr (Ej )

I

(
1 + CoHI

(AI )
1
N

)]

= log[Gr (Ej )
I ] + log[1 + HI blogb[Co]− 1

N logb[AI ]]. (5)

In this form, the algorithm can be implemented even when �

is large. To implement the ratio of the density of states in step
2 of the algorithm,

blogb[Gr (es )I ]−logb[Gr (e
′
s )I ] (6)

can be used.

III. BENCH MARK WITH 2D ISING MODEL

In this work, the algorithm discussed is tested using the
2d square zero-field Ising model with lattice dimension of
even number [40–42] and periodic boundary conditions. The
configurations �i and energies ei of the 2d Ising model are
inherently defined by the lattice site spin variables σk,l , which
take the values ±1 and coupling constant J . Explicitly, the
energy, ei, for a given configuration, �i, of an n × n Ising
lattice is given by

ei = −J
n∑

k,l=1

σ i
k,l

(
σ i

k+1,l + σ i
k,l+1

)
. (7)

A. Performance and properties of the BLENDER algorithm

The first test is the effectiveness of the algorithm in cal-
culating the density of states of the 2d Ising model. To test
the accuracy of the simulations, the results will be compared
to the exact result solved by Beale [43]. The accuracy of the
simulation will be determined by the error, defined as

E (I ) = 〈|ε(Ej, I )|〉 j

= 1

�

�∑
j=1

| ln[Gex(Ej )] − ln[Gcalc(Ej, I )]|
| ln[Gex(Ej )]|

, (8)

where Gex(Ej ) is the exact density of states, Gcalc(Ej, I ) is the
calculated density of states from Eq. (3) at iteration number I ,
and |ε(Ej, I )| is the absolute value of the fractional error for
a specific energy level. The perturbed configurations in this
work were generated by randomly flipping one spin on the
Ising lattice.
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FIG. 1. Average error from 36 simulations calculated with
Eq. (8) with S = 1, 10, 100, 1000, and 104 for (a) the 32 × 32
Ising model with 1/N = 0.1 and (b) the 10 × 10 Ising model with
1/N = 1.

The first test of the algorithm is with the 32 × 32 Ising
model. In a materials science problem with first-principles
calculations, the system size is not expected to be anywhere
near the size of the 32 × 32 Ising model, so these results
are included to show the algorithm has potential for larger
system sizes. While the ideal value of 1/N is not known prior
to the calculation, it was found in this work that a value of
1/N = 0.1 was computationally efficient for the 32 × 32 Ising
model. In Fig. 1(a), the value of the average error calculated
with Eq. (8) is shown up to 107 iterations for S = 1, 10,
100, 1000, and 104. The data in Fig. 1(a) are averaged over
36 individual simulations for each value of S . At I = 107,
the results show linear scaling from S = 1 to S = 10 and
then another order of magnitude improvement from S = 10
to S = 1000, and at S = 104 there is marginal improvement
at I = 107 but worse performance for I < 106. The periodic
fluctuations in the average error are also noted in going to
larger S; these fluctuations are due to the calculated density
of states oscillating about the exact solution and for larger S

these fluctuations are more in sync with each from one calcu-
lation to the next, leading to a smooth average. For large S ,
movies of convergence show that the wings of the density of
states get more stretched before the walkers have completely
scanned the energy range, which leads to calculated solu-
tion experiencing large oscillations about the exact solution
on the wings. Movies of the convergence of ln[Gr (Ej )I �

AI ]
compared to the exact value ln[G(Ej )] along with movies
of ln[Gr (Ej )I �

AI ] − ln[G(Ej )] are found in the Supplemental
Material [39] (SM1a,b through SM5a,b for S = 1, 10, 100,
1000, and 104 respectively).

The next test is with the 10 × 10 Ising model. In Fig. 1(b)
are the results for the average error of 36 independent simula-
tions of a 10 × 10 Ising model simulated to 107 iterations for
the different number walkers S = 1, 10, 100, 1000, and 104,
with 1/N = 1. The results show that the scaling is quite good
as the number of walkers increases. This result is encouraging
because the number of configurations that are currently and
in the near future accessible with density functional theory
simulations is not expected to exceed the large number of
≈1030 configurations in the 10 × 10 Ising model, although
Kahn et al. [27] did tackle a configuration space of size
of 1074 using linear scaling density functional theory for a
250-atom supercell. Typical density functional theory calcu-
lations scale roughly as the cube of the number of atoms,
so their calculation was only feasible using the linear scaling
methods.

Another aspect of the algorithm to consider is the de-
pendence on the value of 1/N and of Co. In Figs. 2(a) and
2(b), the dependence on 1/N is shown for the 32 × 32 and
10 × 10 Ising models, simulated to I = 107 and I = 106

respectively for S = 100 (a) and S = 10 (b). The results
in Figs. 2(a) and 2(b) were averaged over 36 independent
simulations. The results in Fig. 2(a) show that for the larger
32 × 32 model with S = 100 the dependence on 1/N is more
pronounced and that the optimal value of 1/N is lower than
for the 32 × 32 model with S = 10 and the smaller 10 × 10
model for both S = 10 and S = 100. The more pronounced
convergence dependence on 1/N for the larger 32 × 32 model
at larger S does pose a problem if one were to implement
the algorithm for a new system where the density of states is
not known beforehand because there is no current evidence to
predict what the optimal parameter would be. The tests with
the 10 × 10 model suggest that for a smaller system size that
the convergence dependence on 1/N is less pronounced and
that 1/N = 1 is sufficient. The results presented here suggest
that if one was to use the algorithm for a larger system size
some method of predicting the optimal value of 1/N would
be required. These tests have used a value of Co = �1/N ; this
value was based on tests showing this to be a computationally
efficient choice that can be predicted based on knowledge of
the system. In Figs. 3(a) and 3(b) are shown the errors for the
32 × 32 and 10 × 10 Ising models vs Co/�

1/N with 1/N =
0.1 and 1/N = 1 respectively, I = 107 and I = 106 respec-
tively, and with S = 100 [Fig. 3(a)] and S = 10 [Fig. 3(b)].
The results in Figs. 3(a) and 3(b) were averaged over 36
independent runs. The results in Figs. 3(a) and 3(b) show
that the errors are relatively insensitive to the value of Co

within several orders of magnitude of �1/N and that the main
feature is a sudden increase in error going below some lower
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FIG. 2. Average error calculated from Eq. (8) from 36 simu-
lations for (a) S = 10 and (b) S = 100 vs the value of 1/N for
the 32 × 32 (red circles) and 10 × 10 (blue squares) Ising models
simulated to 107 and 106 iterations respectively. Error bars show the
standard deviation of the mean.

bound of Co and a plateau of the error for Co above this lower
bound.

B. Comparison with original Wang and Landau and the 1/t
algorithms

In Wang and Landau’s original work, they simulated 32 ×
32 and 50 × 50 2d Ising models for comparison to the exact
density of states. The comparison in this section will use the
32 × 32 Ising model. To implement the original Wang and
Landau algorithm, the same parameters from their original
paper will be used [9]. In the original Wang and Landau algo-
rithm, a histogram H (Ej ) is kept of the visited energies and it
is periodically reset to 0 when a predetermined flatness criteria
is met. Also in the original Wang and Landau algorithm,
a modification factor f is defined such that every time an
energy level is visited (accepted) then Gr (Ej )I+1 = Gr (Ej )I f .
In Wang and Landau’s original work, they used a flatness
criteria of 80% and a reduction schedule of f I+1 = √

f I . The
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FIG. 3. Average error from 36 simulations calculated from
Eq. (8) for the 10 × 10 (black circles) and 32 × 32 (red squares)
Ising model simulated to 106 and 107 iterations and with 1/N = 1
and 1/N = 0.1 respectively for (a) S = 10 and (b) S = 100 vs the
value of Co/�

1/N . Error bars show the standard deviation of the mean.

flatness criteria was described such that all energies Ej had
been visited and that min[H (Ej )]/avg[H (Ej )] > 0.8. When
the flatness criteria is met, the reduction schedule f I+1 = √

f I

is then implemented. The value of f 0 = e1 was used. In the
1/t algorithm as described by Belardinelli et al. [25], the
system is first simulated with the Wang and Landau algorithm,
and when ln[ f I ] < 1/t the time dependence of f I switches
to ln[ f I ] = 1/t , where t = I/� the Monte Carlo time. (Note
that the inequality ln[ f I ] is only checked when t > 1.) Initial
configurations were generated randomly and Gr (Ej )0 was set
to 1 when implementing the original Wang and Landau and
1/t algorithms. In this manner, the BLENDER algorithm with
1/N = 0.1 and S = 1 was compared to the performance of
the original Wang and Landau algorithm and 1/t algorithms.
The results are shown in Fig. 4(a), which are averaged over
36 independent simulations. The comparison shows a striking
difference in the error; the BLENDER algorithm tends to
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FIG. 4. Average error from 36 simulations for the original Wang
and Landau algorithm in red with circles, the BLENDER algorithm in
black with squares, and 1/t algorithm preconditioned with the Wang
and Landau algorithm in blue triangles for (a) S = 1 simulated to
1011 iterations and (b) S = 100 simulated to 1e10 iterations.

decrease over the entire time span while the original Wang
and Landau implementation rises to a large peak early in the
simulation and then abruptly drops. For the 1/t algorithm
(preconditioned with the Wang and Landau algorithm) for
greater than ≈109 iterations, it continues to converge, does
not saturate, and has marginal improvement improvement in
error compared to the BLENDER algorithm.

To compare potential parallel performance of the original
Wang and Landau and 1/t algorithms in a scheme similar to
the BLENDER algorithm, the update

Gr (Ej )
I+1 = Gr (Ej )

I f H
I

(9)

is adopted. For the 1/t algorithm in the parallel scheme, the
Monte Carlo time is calculated as t = SI/�, where {es}I+1

S
and HI are generated and function was the same as in Eq. (2).
In this manner, a simulation was carried out with 100 walk-
ers (S = 100) for the Wang and Landau algorithm, with the
same flatness criteria and reduction schedule as above, and
for the BLENDER algorithm to 107 iterations. The results are

shown in Fig. 4(b), which are averaged over 36 independent
simulations. The results show that both parallel implementa-
tions have significant improvement for equivalent number of
iterations but that the original Wang and Landau still suffers
the problem of rising to a large peak and then dropping sud-
denly. The Wang and Landau and BLENDER algorithms are
shown to have similar errors at a large number of iterations
until at some point the original Wang and Landau algorithm
saturates and the BLENDER algorithm continues to converge.
The 1/t algorithm (preconditioned with the Wang and Landau
algorithm) is seen to continue to converge as compared to
the Wang and Landau algorithm and have marginally better
convergence as compared to the BLENDER algorithm for
greater than 107 iterations. Movies of the convergence of the
Wang and Landau algorithm for the 32 × 32 Ising model for
S = 1 and 100 are found in the Supplemental Material [39]
movies SM6 and SM7.

One aspect of the tests so far in this work is that they
have used a system size only as large as the 32 × 32 Ising
model, which in terms of number of configurations is very
large for system sizes possible with density functional theory
simulations but is small compared to many statistical models
commonly studied in physics. In fact, Wang and Landau orig-
inally tested their algorithm with the 256 × 256 Ising model
[9], although they did this by placing walkers in different
energy windows which required either building the larger
model from smaller Ising lattices where the energy was known
or doing a preliminary energy scan. In this work, it was de-
sirable to perform a benchmark with an entirely exploratory
calculation of the large 256 × 256 Ising system. So, starting
from randomly generated configurations with S = 1000, the
BLENDER algorithm was compared to the original Wang
and Landau algorithm. It was found that utilizing 1/N = 0.01
made it possible to simulate this model quite efficiently with
the BLENDER algorithm as compared to the original Wang
and Landau using the same parameters as in this section.
These results can be considered as a preliminary test of the
BLENDER algorithm for large system size and are found
in the Supplemental Material [39], which includes movies
(SM8–SM10) of the convergence of the density of states and
free energy [40].

A final comment to make on this section is that the com-
parisons made between the three algorithms only span a small
part of the space of parameters available for each algorithm.
The BLENDER algorithm includes the choice of Co, and 1/N .
The Wang and Landau algorithm requires a choice of the
definition of flatness along with a threshold factor for this
definition, the value of b in f I+1 = ( f I )1/b, and the initial
value of f . The 1/t algorithm requires the same choices as
the Wang and Landau algorithm along with the choice of m
and p in m/t p. All algorithms require a choice for how to
generate and normalize an initial guess to the density of states.
The results in this section are meant to compare approximately
ideal parameters for the algorithms.

IV. ADIABATIC ANALYSIS OF THE ALGORITHM

To better understand the nature of the algorithm, we
will consider the adiabatic properties of the histogram
HI ≡ H(Ej, {es}I+1

S ). Considering that during a simulation
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the configurations are generated with probability proportional
to G(Ej ) and accepted inversely proportional to Gr (Ej )I , the
probability distribution, which we will write as �(Ej )I , of HI

will be attracted to the proportionality

�(Ej )
I ∝ G(Ej )

Gr (Ej )I
. (10)

For short, we will write Gr (Ej )I → GI
r , G(Ej ) → G, and

�(Ej )I → �I . Considering that the sum over HI is con-
strained to S , if we normalize �I to S , we get

�I = S
(∑

j

G

GI
r

)−1
G

GI
r

. (11)

Now an adiabatic analysis will be considered by inserting this
expression for the adiabatic distribution of the histogram HI

into the density of states update in step four of the algorithm
in Eq. (2). Doing this gives

GI+1
r = GI

r + CoS
(∑

j

G

GI
r

)−1
G

(AI )1/N
, (12)

which will be the basis for the adiabatic analysis of the al-
gorithm. One point to clarify is what is meant by adiabatic.
A rigorous definition of adiabaticity for the algorithm can be
defined that for any initial Gr (Ej )0, {�s, es}0

S , and ε, I , and n
can be found such that〈∑

j

∣∣∣∣ 1

n + 1

I+n∑
i=I

Hi − �I

∣∣∣∣
〉

o

< ε, (13)

where 〈〉o means average over trajectories (same initial con-
ditions at I but different subsequent random numbers) of
simulation. This is a statement that the algorithm will pro-
gressively scan the energy range more thoroughly before a
significant change to the density of states is made. From
here, the analysis will be continued assuming the algorithm
is adiabatic.

To continue the analysis, we will first determine if and un-
der what circumstances the algorithm will converge assuming
adiabacitiy. The first step is to note that

SCo

(∑
j

G

GI
r

)−1
1

(AI )1/N
(14)

is an iteration-dependent constant (same for each bin j in the
density of states); we will call this constant BI . In this manner,
we will look at the progression of changes to the relative
density of states,

GI+1
r = GI

r + GBI ,

GI+2
r = GI

r + GBI + GBI+1,

...

...

GI+n
r = GI

r + G
n−1∑
i=0

BI+i.

(15)

For short,
∑n−1

i=0 BI+i will be referred to as W n. The condition
for convergence can be defined such that for two bins of the
density of states l and k,

lim
n→∞

GI
r (Ek ) + G(Ek )W n

GI
r (El ) + G(El )W n

→ G(Ek )

G(El )
. (16)

For this to occur, W n must increase unbounded as n → ∞ and
not limit to zero or a constant. To make further progress, we
will first rewrite BI as

BI ≡ SCo

(∑
j

G

GI
r

)−1
1

(AI )1/N

= SCo

(∑
j

G

GI
r

)−1
1

AI (AI )1/N−1

= SCo

(∑
j

G

GI
r

)−1
(AI )x

AI
,

(17)

where x = 1 − 1/N . A sufficient condition to show conver-
gence would be to show that the terms BI+i do not go to
zero as limn→∞. In this context, the lower bound of BI will
be studied. Considering that min(GI

r )
�

� (
∑

j
G
GI

r
)−1 and that

min(GI
r )

�max(GI
r ) �

min(GI
r )

AI , we can bound BI as

SCo

��

min
(
GI

r

)
max

(
GI

r

) (AI )x � BI � SCo

��

max
(
GI

r

)
min

(
GI

r

) (AI )x. (18)

For the case of 0 � x < 1, convergence is clear because
min(GI

r )
max(GI

r ) cannot limit to zero and (AI )x � 1. The term min(GI
r )

max(GI
r )

cannot limit to zero for the adiabatic analysis because consid-
ering if the minimum is at the bin for Ek and the maximum at
the bin for El then ratio is of the form

G0
r (Ek ) + G(Ek )W I

G0
r (El ) + G(El )W I

. (19)

For the case of x < 0, convergence is not so clear, although
in theory the algorithm may still be convergent based on
contradiction. In Eq. (18), the upper bound on BI tells us
that for x < 0 if the algorithm does converge the BI will tend
toward zero since AI must grow unbounded if the algorithm
converges. This means that if the algorithm does converge for
x < 0 that the sum of the BI terms must increase unbounded,
although they tend toward zero. On the other hand, if the al-
gorithm does not converge, i.e., the sum of the BI terms tends
toward a constant, then AI will not grow unbounded. This is a
contradiction because if AI does not grow unbounded then the
BI terms cannot tend toward zero and the sum of them should
grow unbounded and the algorithm should converge. This
suggests that in theory the algorithm is convergent for x < 0
but it is dependent on the sum of terms that tend toward zero,
which is essentially predicting slow convergence. In practice,
tests with the 8 × 8 Ising model reasonable convergence could
only be achieved for “small” negative values of x.

So now, considering that the algorithm does converge
within the adiabatic assumption, we can derive the time
dependence of Fab(Ej )I = ln[ fab(Ej )I ], where fab(Ej )I =
(1 + G

GI
r
BI ) within this analysis. Here the label ab is used
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to distinguish the values of F (Ej )I and f (Ej )I calculated
within the adiabatic assumption; this point is discussed further
later in this section. First, by rewriting G

GI
r
BI as CoHI

(AI )1/N , it is

clear that G
GI

r
BI becomes arbitrarily small for I → ∞. With

ln(1 + a) ≈ a for small a, we now have for large I

Fab(Ej )
I = ln[ fab(Ej )

I ] ≈ GBI

GI
r

. (20)

Also, because the algorithm is converging, GI
r is approach-

ing W I G and
∑

j GI
r = AI is approaching W I� such that

(
∑

j
G
GI

r
)−1 1

AI ≈ 1
��

. With this, we write in the large iteration

limit BI ≈ CoS
��

(AI )x and GI
r ≈ GCoS

��

∑I−1
i=0 (Ai )x such that

F I
ab ≈ (AI )x∑I−1

i=0 (Ai )x
. (21)

The Ej has now been suppressed in Eq. (21) because in the
convergent limit F I

ab is uniform across bins j. In this form,
it is clear that the time dependence for the case of x = 0 is
of 1/I form. For x! = 0, the time dependence is not as clear
analytically but it can be simulated by using a boot-strapping
procedure. Assuming we start with G0

r = cG so that A0 = c�,
then

A0 = c�,

A1 = A0 + CoS
�

(A0)x,

A2 = A1 + CoS
�

(A1)x,

......

AI = AI−1 + CoS
�

(AI−1)x.

(22)

In this way, a numerical simulation can be done to predict the
value of F I

ab in Eq. (21). This was done using a starting value
of c = 1 for S = 1, 1/N = 0.1, and 0.5 to compare to results
from an explicit simulation of the 32 × 32 Ising model. An
important point to make is that the f I

ab calculated from the adi-
abatic analysis in the convergent limit is effectively an average
value per bin; this is because within the adiabatic analysis
when the distribution �I of HI is inserted in the density of
states update the inherently discrete walkers are continuously
spread over all the bins. To compare to the explicit BLENDER
simulation, we need to also calculate the average of f (Ej )I ,
which is defined as

〈 f (Ej )
I〉 j ≡

(
1 + 1

�

∑
j

HICo

(AI )1/N

)

=
(

1 + SCo

�(AI )1/N

)
.

(23)

With this, then the value

F I
avg ≡ ln[〈 f (Ej )

I〉 j] (24)

is calculated for comparison to F I
ab. The theoretical adiabatic

results and the results using the BLENDER algorithm are
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FIG. 5. F I
ab calculated with the boot-strapping method, Eq. (22),

and with an explicit simulation for the 32 × 32 Ising model using
F I

avg as defined by Eq. (24) for the BLENDER algorithm with S = 1
and 1/N = 0.1 and 0.5.

shown in Fig. 5. The agreement is very good and both results
have a m/I long time dependence with m = 10 and 2 for
1/N = 0.1 and 0.5 respectively. While the results in Fig. 5
were for only S = 1, other tests suggest that the long time
behavior of the modification factor is independent of S . In
fact, the long time behavior of F I

avg is predicted to be equiv-
alent for all S , Co, and the model studied. It is notable that
the predicted value of m is equal to the value of N in 1/N ;
this was confirmed for many other simulations using Eq. (22).
So, in general, for the BLENDER algorithm the long time
behavior of F I

avg is predicted to take the form N/I regardless
of the choice of Co and S .

V. APPLICATION TO LLTO

The purpose of developing the BLENDER algorithm was
to develop an algorithm suitable for the needs of solid-state
density functional theory calculations of disordered crystal
sublattices. Due to the long run time of density functional
theory calculations, the parallel nature of the BLENDER al-
gorithm allows for calculations of each energy to be done
as independent job submissions to a computer cluster. The
results can then be processed by a script running on the head
node and the implementation of the algorithm is relatively
simple. In this work, the BLENDER algorithm is applied to
the lithium and lanthanum sublattice of the solid-state lithium
ion electrolyte Li0.5La0.5TiO3. The goals of this study were
to perform a calculation with the BLENDER algorithm of a
real material system that is fairly well understood and to learn
something new in the process. Specifically, the desired knowl-
edge to be gained is a better understanding of the lithium and
lanthanum sublattice disordering.

A. Background on LLTO

LLTO is a complex material composed of a variety of stoi-
chiometries and phases, but in this work the study is restricted
to the reported tetragonal P4/mmm phase of the stoichiometry
Li0.5La0.5TiO3 [30,34]. A unit cell of this structure is shown
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FIG. 6. The 10-atom unit cell of P4/mmm Li0.5La0.5TiO3, where
dark blue spheres are lithium, green spheres are lanthanum, red
spheres are oxygen, and gray spheres inside of octahedra are
titanium.

in Fig. 6. The lattice parameters for this unit cell were taken
from the experimental results from Ibarra et al. [30]: 3.8688(4)
Å for a and b axes and 7.7463(2) Å for c axis. This unit
cell is representative of an ordered form of Li0.5La0.5TiO3

where the lithium and lanthanum are separated into separate
layers on the high-symmetry A sites, where A site refers to
the general perovskite formula unit ABX3. The structure in
Fig. 6 is actually structurally unstable and the energy can be
lowered by lattice distortions, which manifest as tilts in the
titanium oxygen octahedra and the lithium distorting off of
the high-symmetry A sites. The instability of the structure in
Fig. 6 is evidenced by the imaginary phonon modes calculated
by Moriwake et al. [31].

The physics of interest in this study is to understand the
disordering of lithium and lanthanum between layers. It is
reported for this phase that the lanthanum are mostly mixed
between layers when the samples are slow cooled during
synthesis and if quenched from high temperature the lan-
thanum ordering is reported to be completely mixed between
layers [30]. In this work, the BLENDER algorithm is used to
evaluate the density of states associated with local minimum
corresponding to the lithium and lanthanum ordering and as-
sociated lattice distortions.

B. Computational details

In this work, a 3 × 3 × 1 90-atom supercell with periodic
boundary conditions of the unit cell depicted in Fig. 6 was
used as an approximation to bulk Li0.5La0.5TiO3. While not
an ideal size, as it is restrictive of the possible lattice config-
urations and to the types of domains of octahedral tilting that
can form, it is the largest supercell practical for performing
the configurational Monte Carlo in this work.

An important aspect of completing this study is a scheme
for producing the initial and perturbed configurations in the
iterative process of the BLENDER algorithm. The scheme

used in this study was to first generate a set of lithium and
lanthanum randomly placed on the high-symmetry A sites
where occupancy is restricted to one, and then a small amount
of noise on the order of ±0.2 Å was added to each lithium
and lanthanum coordinate. These configurations were then
relaxed to a local minimum, which formed the first set of
configurations in the iterative process. Then the perturbed
configurations were formed by swapping a random lithium
and lanthanum atom and placing them back on the high-
symmetry A sites along with a new amount of random noise;
these configurations where then relaxed to a local minimum.
The random noise off the A sites served to assist searching the
distorted lattice configuration space.

The method used in the calculation of the total ener-
gies of the lattice configurations of LLTO in this work was
density functional theory using the Vienna Ab-initio Simula-
tion Package (VASP) [44–47] within the projector augmented
wave formalism (PAW) [48]. The local density approximation
(LDA) was used for the exchange and correlation functional
[49]. The valence electron configurations for the PAW data
sets were 5p65d16s2 for La, 2s1 for Li, 3p63d23s2 for Ti,
and 2s22p4 for O. The calculations also took advantage of
the “soft” option for La and O. The total energy cutoff for
expansion of the plane waves was 250 eV. Self-consistent
cycles were converged with a energy difference of <10−5 eV
and relaxation of atomic coordinates was terminated when the
difference in total energy between ionic relaxation steps was
<10−4 eV. Electronic occupations used Gaussian smearing
with a width of 0.05 eV. A 1 × 1 × 1 γ -centered k-point mesh
was used for the 3 × 3 × 1 supercells of the LiLaTiO6 unit
cell. These cutoffs and parameters were chosen to maximize
computational efficiency while retaining enough accuracy to
capture important physical properties of LLTO. Each cal-
culation of an energy was completed with a 36-processor
broadwell node with an average wall time of approximately
5 min per calculation. To test the accuracy of these methods,
10 structures were calculated with fixed coordinates at these
convergence criteria and more accurate PAW data sets and
cutoffs. The more accurate PAW data sets included the valence
electron configurations: 5s25p65d16s2 for La, 1s22s1 for Li,
3p63d23s2 for Ti, and 2s22p4 for O. The cutoffs for the more
accurate calculations were 500 eV for the plane-wave basis,
and 2 × 2 × 3 γ -centered k points. The average magnitude in
relative energy between structures from this test was 0.15 eV.

An important point to make about the calculations in this
research is that they included 0 K static lattice internal ener-
gies, did not include phonon free energies, and did not take
into account relaxation of lattice parameters [50]. Ideally,
for fixed lattice parameters, we would evaluate the partition
function [2]

Z =
�∑

i=1

e− [ui+ fi (T )]
kBT , (25)

where T is the temperature, kB is Boltzmann’s constant, ui

is the static lattice internal energy for configuration i, and
fi(T ) is the temperature-dependent phonon free energy for
configuration i. A configuration is defined in this work as
a local minimum of the Born-Oppenheimer potential energy
surface. This form of the partition function poses the problem
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that the density of states is now temperature dependent. Take
ui + fi(T ) ≡ ei(T ), let L be the number of unique ei(T ), and
let Fj (T ) be the unique ei(T ); then

Z =
L∑

j=1

G(Fj (T ))e− Fj (T )

kBT . (26)

This is a problem because to employ the Monte Carlo methods
discussed in this work they would have to be applied at dif-
ferent temperatures, which defeats the original purpose. This
problem could be addressed by taking Uj to be the unique ui

and � to be the number of Uj , and then considering a different
form of the partition function in Eq. (25),

Z =
�∑

j=1

〈e− fi (T )
kBT 〉 jG(Uj )e

− U j
kBT . (27)

Here 〈exp(− fi(T )/kBT )〉 j is the arithmetic average of
exp[− fi(T )/kBT ] over all configurations with static lattice in-
ternal energy Uj . In this form, the static lattice density of states
G(Uj ) could first be determined with the Monte Carlo meth-
ods described in this work and then the 〈exp(− fi(T )/kBT )〉 j

could then be approximated by randomly choosing some
of the perturbed configurations for each Uj to evaluate
the phonon density of states. With the randomly generated
phonon densities of states, the 〈exp(− fi(T )/kBT )〉 j could be
approximated for any temperature. Even in this form, though,
the computational expense is beyond the scope of this work
as phonon calculations require high cutoffs and even within
the harmonic approximation are much more computationally
expense than static lattice calculations [51]. So in this work
the approximation

Z ≈
�∑

j=1

G(Uj )e
− U j

kBT (28)

is made. This is reasonable because the phonon free ener-
gies are expected to vary much less from configuration to
configuration than the static lattice internal energies. A final
comment is that relaxation of the lattice parameters could be
accomplished by calculating the partition function on a grid
of lattice constants, and then a free energy surface could be
interpolated and the lattice parameters minimizing the free en-
ergy determined as a function of temperature. This procedure
is also beyond the scope of the current research.

The calculations were performed at the experimental lattice
parameters 3.8688 Å for a and b axes, and 7.7463 Å for the c
axis. The parameters for the BLENDER algorithm were S =
10 and 1/N = 1. The bin width used for determining Gr (Ej )
was chosen to be 0.05 eV. The value of � was estimated as
100 times the combinatoric number of configurations of the
lithium and lanthanum ordering onto the A site, given as

� ≈ 100
18!

9!9!
. (29)

While an exact value of � is not needed for the algorithm to
converge, experience from the 2d Ising model suggests that
being within several orders of magnitude is sufficient. Esti-
mating that � is greater than the combinatoric calculation of
the lithium and lanthanum in the A-site cages comes from the

possibility of multiple distinct lattice distortions for each type
of A-site cage configurations. An approximate upper bound on
the number of distinct lattice distortions for each A-site cage
configuration can be based on the experimental and theoretical
knowledge that lithium tends to occupy the six possible sites
corresponding to local minimum near the oxygen windows
connecting different A-site cages and that lanthanum tends to
occupy the center of the cages [31,35,52,53]. If every lithium
could occupy one of these six locations within the A-site cages
irrespective of the ordering of the other lithium, the number of
distinct lattice distortions could be estimated as 69 ≈ 107. So,
the approximation � � 107 18!

9!9! can be made. It is physically
reasonable that a significant fraction of these configurations
will be unstable so that the estimate of � in Eq. (29) is likely
to be within several orders of magnitude of �.

C. Results

Using the parameters and configurational enumeration
scheme specified above a simulation was performed to 10 000
iterations for the 3 × 3 × 1, 90-atom supercell. After 150 it-
erations, the algorithm was restricted to look in the energy
range less than 2.8 eV higher than the lowest energy found
at that time. This was to improve computational efficiency
by preventing the walkers from exploring an unnecessarily
high energy range. While 10 000 iterations is not ideally
converged, it was sufficient to gain further understanding of
the material. In principle, it would be desirable to use some
type of stopping criteria to determine convergence of the
simulation such as in the work of Caprica [54], who tracked
thermodynamic quantities such as the peak of specific heat to
determine convergence. In this work, convergence is limited
by computational resources. It is expected that the qualitative
aspects of the results are well accounted for despite the limited
number of iterations.

The main focus of the results is the nature of the lithium
and lanthanum sublattice ordering. To accomplish this, the
order parameter of interest is that of the occupancy of lan-
thanum in the lanthanum-rich layer along the c axis. In the
work by Ibarra et al. [30], they refer to this order parameter as
La1, and the same convention will be used in this work. This
order parameter, La1, is defined as the number of lanthanum
in the lanthanum-rich layer divided by the total number that
could occupy the layer. As an example, the unit cell in Fig. 6
would have La1 = 1. It is important to note in this work the
3 × 3 × 1 supercell restricts the configurations along the a
and b axes from having alternate layering of lithium- and
lanthanum-rich layers. Ideally, the calculations would be done
with at least a 4 × 4 × 1 supercell but the computational effort
is beyond the scope of this work. The results later will have
to be interpreted taking this systematic supercell error into
account.

To calculate the ensemble average of these order parame-
ters, first arithmetic averages of the order parameter at each
energy level Ej are calculated from the perturbed configu-
rations that occurred during the simulation. The arithmetic
average of a general order parameter O over all configurations
with energy Ej is denoted by 〈O〉 j . Then with these the en-
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semble average is computed as

〈O〉 =
�∑

j=1

〈O〉 jGr (Ej )
e− E j

kBT

Z
, (30)

where Z = ∑�
j=1 Gr (Ej )exp(− Ej

kBT ). It is noted that normal-
ization of the relative density of states to the appropriate
number of configurations is not necessary for the calculation
of the ensemble average of an order parameter. If wanting to
compare free energies [−kBT ln(Z )] between phases, it would
be necessary to normalize the density of states properly to
obtain an accurate calculation of the free energy.

The first main result is a view of the convergence of Gr (Uj )
as a function of the iterations. Here we have switched to
using Uj to highlight that the calculations only include 0 K
static lattice internal energies, as discussed before. In Fig. 7,
Gr (Uj ) is shown at I = 500, 2 000, and 10 000 with the y axis
plotted on a log scale. The Gr (Uj ) shown in Fig. 7 are plotted
such that the lowest energy of Gr (Uj ) found at the particular
iteration shown is set to zero on the x axis, the sharp cutoff at
higher energy was the upper limit to the energy range, and the
plots are normalized by dividing through by the minimum of
Gr (Uj ) at that iteration. The main characteristic of the results
by 10 000 iterations is the presence of some low-energy states
separated by gaps followed by a Gaussian-like distribution in
the density of states starting at ≈0.8 eV. It is noted, as the
iterations increase, that Gr (Uj ) for the spectrum of higher en-
ergy states becomes noticeably smoother. The lowest energy
configuration is characterized as having La1 = 1, that having
alternate layers of lithium and lanthanum along the c axis; in
fact, all of the structures found up to ≈0.6 eV have La1 = 1.
They are not, however, equivalent to the unit cell shown in
Fig. 6, in that the structures have distinct lattice distortions
due to the lithium sitting off of the high-symmetry A sites on
the oxygen windows separating A-site cages.

The next result is the arithmetic averages of the La1 order
parameter, which are shown in Fig. 8(a), along with the num-
ber of samples used to determine each value in Fig. 8(b). The
results in Fig. 8(a) show an overall tendency for more mixing
of lithium and lanthanum between layers for higher energies.
The ensemble average of La1 is shown in Fig. 9, which shows
a phase transition from completely segregated lithium and
lanthanum between layers to mostly mixed between layers
and increased mixing with increasing temperature. In Fig. 9,
the value of the ensemble average of La1 shows a transition
from a value of 1 to more mixed between layers starting at
≈1250 K; this is lower than typical sintering temperatures of
≈1600 K. The temperature is plotted to the arbitrarily high
temperature of 4000 K to show how the ensemble average of
La1 decreases for increasing temperature for this fixed lattice
parameter simulation. For the 3 × 3 × 1 model, the minimum
possible value of La1 is 5/9 = 0.56, which in part constrains
what value can be calculated. These differ from the value of
La1 = 0.53 reported by Ibarra et al. [30] in respect to the
calculated La1 being greater than the experimental value near
the sintering temperature (≈1600 K). The qualitative behav-
ior of La1 being more mixed for higher temperatures is in
agreement with experimental knowns. There are many sources
of error affecting the accuracy of the simulation, so it is
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FIG. 7. Plots of Gr (Uj ) at (a) 500 iterations, (b) 2 000 iterations,
and (c) 10 000 iterations. The plots are normalized by dividing
through by the minimum value of Gr (Uj ) at that particular iteration.
The plots are shown with a log scale on the y axis.

not expected that the temperature of the onset of this mix-
ing to be a highly accurate prediction. These factors include
the methodology (the local density approximation), the num-
ber of valence electrons, convergence criteria, k points, size
of supercell, relaxation of lattice parameters, and iterations
performed. At a minimum, to gain a better estimate of the
transition temperature, a calculation of a 4 × 4 × 1 supercell
along with relaxation of the lattice parameters would need to
be performed to an arbitrarily large iteration number.
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FIG. 8. (a) Arithmetic averages of the La1 order parameter as a
function of energy. (b) Number of counts to determine each value of
the La1 order parameter for each energy.

Some indication of convergence of the 10 000 iterations
comes from inspecting the flatness of the histogram H (Uj )
of visited energies during the simulation. Why this is in
an indicator of convergence can be understood by Eq. (11),
which indicates that the adiabatic distribution of HI is flat
for bins that are converged relative to each other. If HI is
flat, then the total histogram H (Ui )I = ∑I

i=0 Hi should form
a flat histogram. A histogram of the visited energies during
the simulation is shown in Fig. 10. The results show that
the histogram is qualitatively flat for �0.8 eV. This result
along with the counts for calculating the La1 order parameter
shown in Fig. 8(b) suggest that the results are best converged
for �0.8 eV. While the first-principles method used can be
considered coarse grained in terms of PAW data sets, total en-
ergy cutoffs, and k points as observed from testing with more
accurate methods, the trend seen in Fig. 8(a) spans an energy
range much greater than the expected relative error in energies
between structures. It must be said that the ensemble average
of La1 is highly dependent on the low-energy structures as per

0 500 1000 1500 2000 2500 3000 3500 4000
temperature ( K )

0.4

0.5

0.6

0.7

0.8

0.9

1

 <
L

a1
> 

FIG. 9. Ensemble average of the La1 order parameter calculated
with Eq. (30) as function of temperature.

the exponential nature of the partition function. In this regard,
the observed phase transition in Fig. 9 cannot be expected to
be an accurate prediction of a transition temperature. The most
important result of Fig. 9 is the high-temperature region above
the phase transition showing a tendency for greater mixing of
lithium and lanthanum for increasing temperature.

To gain some further insight into the structures found dur-
ing the simulation, the lowest energy structure and lowest
energy structure with La1 = 0.56 are shown in Figs. 11(a) and
11(b). In Fig. 11(a), it is seen that the lowest energy structure
has the lithium and lanthanum completely segregated between
layers along the c axis. In Fig. 11(b), the lowest energy struc-
ture with La1 = 0.56 has a fully occupied layer of lithium
along the a axis along with two partially occupied layers;
this structure is 0.75 eV in energy above the lowest energy
structure. Structures similar to that in Fig. 11(b) are in part
responsible for the drop in the La1 order parameter in Fig. 8(a)
starting at ≈0.75 eV. Due to the pseudocubic nature of the
system, it is expected that there would be nearly energeti-
cally identical structures consisting of completely segregated
lithium and lanthanum layers along the a and b axes. This

0 0.5 1 1.5 2 2.5 3
energy ( eV )

101

102

103

104

co
un

ts

FIG. 10. Plot of the histogram of the visited energies over the
10 000 iterations of the simulation. Visited here means the accepted
energies as per step 3 of Eq. (2).
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FIG. 11. (a) Lowest energy structure found during simulation.
(b) Lowest energy structure found during the simulation that has
La1 ! = 1. Dark blue spheres are lithium, green spheres are lan-
thanum, red spheres are oxygen, and light blue spheres are titanium.

feature of ambiguity of the orientation of how the lithium-
and lanthanum-rich layers can form are a likely driving force
for the numerous domain boundaries observed in experiments
for other stoichiometries synthesized by annealing from high
temperature [29,31]. It is a prediction of this work that if
images were taken of the Li0.5La0.5TiO3 stociometry they
would also reveal numerous domains characterized by seg-
regation of the lithium and lanthanum into different layers.
Due to the 3 × 3 × 1 supercell used in this study, these struc-
tures were not possible to fully realize in the simulation,
but as evidenced by Fig. 11(b) segregation of the lithium
and lanthanum into separate layers is still energetically fa-
vorable. A common feature of both Figs. 11(a) and 11(b)
is the lithium sitting off of the high-symmetry A sites near
the oxygen windows separating A-site cages. This feature has
been previously reported experimentally and theoretically in
the literature [31,35,52,53].

Another result of interest for this calculation is the value of
the modification factor to the density of states as determined
by Eq. (24). In Fig. 12, the modification factor calculated with
Eq. (24) is shown versus the iterations. As per the predictions
previously made in Sec. IV, a linear fit of the modification
factor on a log-log plot should approach log(N)-log(I), which
for this case would be 0 − log(I ). A log10-log10 fit to Fig. 12 in
the range I = 5 000 to 10 000 gives log10(2.32)-1.08log10(I),
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100

F av
gI

FIG. 12. Plot of F I
avg calculated with Eq. (24) vs the iteration

number I .

so the calculation does appear to be approximately following
the predictions. It would take significantly more iterations
(5–10×) to determine if the calculation continues to approach
the exact predicted value.

A final comment on this calculation of the energy density
of states of LLTO with first-principles methods is how it
highlights the great difficulty one faces in using this method
for evaluation of the partition function and ensemble average
order parameters. Due to the ≈N3 scaling of the density func-
tional theory calculations with number of electrons and the
factorial scaling of the number of configurations, the ability
to reach larger system sizes is daunting. It is expected that
without significant improvement in methods, algorithms, and
computing power it will remain challenging for more than
a decade to reach a reasonable calculation of the partition
function for even just the 4 × 4 × 1 Li0.5La0.5TiO3 system,
including lattice relaxation, using density functional theory
methods without the use of a very large amount of computing
resources. Using a quick Fermi problem calculation based
on the scaling in computing power for the methods used in
this work along with the increase in number of configura-
tions, we may expect that the computing power to achieve
similar convergence as for the 3 × 3 × 1 for the 4 × 4 × 1
system would take between 10 and 105 times the computing
resources. The lower bound represents equal number of iter-
ations for the 4 × 4 × 1 system and the upper represents the
number of iterations required scaling directly with the number
of configurations. If Moore’s law continues and computing
power doubles every 2 years, it is predicted that it will take
longer than 6 years and less than approximately 3 decades
before the 4 × 4 × 1 system could be computed with a similar
computational effort as the 3 × 3 × 1 system in this work
using the same methodology. Scaling in terms of iterations
for the 10 × 10 to the 32 × 32 Ising model suggests it will be
closer to 6 years than to the 3 decades.

VI. CONCLUSIONS

This work has presented a parallel variant of the Wang
and Landau algorithm referred to as BLENDER (BLend
each new density each round). The algorithm was developed
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purposely for use with disordered crystal sublattices and is
naturally parallel. Its design makes it facile to implement
on a midlevel high-performance computer such as Argonne’s
Bebop, where jobs for a structural energy calculation can
be independently submitted to compute nodes and managed
by a script running on a head node. It was trialed using
the 2d Ising model and showed good performance for the
10 × 10 Ising model with a minimal number of implementa-
tion parameters. Results for the 32 × 32 Ising model suggest
the algorithm could have applicability to larger system sizes
provided a tuning parameter is chosen appropriately to max-
imize performance; currently it is not known how to choose
this parameter beforehand without numerical testing. Com-
paring performance with the original Wang and Landau and
1/t algorithms showed that the BLENDER algorithm has
superior short time performance. Long time behaviors of
the BLENDER algorithm and the 1/t algorithm are found
to approximately equivalent in that they both appear to be
convergent, while the original Wang and Landau algorithm
suffers from a saturation in the error. Convergence of the
BLENDER algorithm is established within an adiabatic as-
sumption and this analysis was able to correctly derive the
time dependence of the modification factor for the algorithm
for the 32 × 32 Ising model. The long time dependence log
of the modification factor for the BLENDER algorithm is
predicted to take a N/I form. Knowledge gained from testing
with the 2d Ising model allowed for an informed implemen-
tation to the real material science problem of studying the
lithium and lanthanum sublattice disorder of Li0.5La0.5TiO3

using density functional theory methods. The simulations of
the disordered lithium ion conductor Li0.5La0.5TiO3 were in
qualitative agreement with experiment and provided further
insight into the disordered nature of the material. It was found
that lower energy structures favored segregating lithium and
lanthanum into separate layers and that structures with lithium
and lanthanum more mixed between layers were on average
higher in energy than more segregated structures. Thermody-
namic analysis of the order parameter related to lithium and
lanthanum intermixing between layers showed a phase transi-
tion between completely segregated to mostly mixed, tending

to more mixed at higher temperatures. Overall, the results
show that the algorithm performed well in simulating both the
2d Ising model and with first-principles calculations of a real
material system. The long iteration behavior of the modifica-
tion factor for the Li0.5La0.5TiO3 system on a log-log plot is
found to approximately follow the prediction made from the
adiabatic analysis to follow the log(N)-log(I) behavior. Over-
all, the results of this work present an algorithm for calculation
of the energy density of states that in principle, if one knows
the number of configurations of the system, only requires the
choice of one computational parameter along with a choice
in number of walkers. The application of the algorithm to a
materials science problem highlights its utility along with the
difficult task at hand with computing the energy density of
states of a disordered crystal with first-principles methods. In
part, the calculation of the Li0.5La0.5TiO3 system in this work
serves as a benchmark of what size systems are achievable
with the current state of the art in computing resources.
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