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We systematically investigate finite-size effects in the dynamic structure factor S(q, ω) of the uniform electron
gas obtained via the analytic continuation of ab initio path integral Monte Carlo data for the imaginary-time
density–density correlation function F (q, τ ). Using the recent scheme by Dornheim et al. [Phys. Rev. Lett. 121,
255001 (2018)], we find that the reconstructed spectra are not afflicted with any finite-size effects for as few as
N = 14 electrons both at warm dense matter (WDM) conditions and at the margins of the strongly correlated
electron liquid regime. Our results further corroborate the high quality of our current description of the dynamic
density response of correlated electrons, which is of high importance for many applications in WDM theory and
beyond.
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I. INTRODUCTION

Over the recent years, there has been a high interest in
the study of matter at extreme conditions [1]. Of particular
importance is so-called warm dense matter (WDM) [2], a
remarkable state with high densities (rs = a/aB ∼ 1, with a
and aB being the average interparticle distance and first Bohr
radius) and temperatures (θ = kBT/EF ∼ 1, with EF being
the usual Fermi energy). These conditions are well-known to
occur in astrophysical objects like giant planet interiors [3–5]
and brown dwarfs [3,6]. Moreover, they are expected to occur
on the pathway toward inertial confinement fusion [7], which
promises a potential abundance of clean energy in the future.
Consequently, WDM research constitutes a topical frontier at
the intersection of plasma physics and materials science, and
WDM is nowadays routinely realized in large research centers
around the globe such as NIF [8] and LCLS [9] in California,
or the brand new European X-FEL [10] in Germany. Other
techniques include diamond anvil cells and heavy-ion beams,
see Ref. [11] for a recent review article on WDM experiments.
Indeed, there have been many spectacular recent discoveries,
e.g., Refs. [12–15].

Yet, the theoretical description of WDM is notoriously dif-
ficult due to the intriguingly intricate interplay of (i) Coulomb
coupling, (ii) quantum degeneracy effects, and (iii) thermal
excitations [2,16,17]. This renders WDM theory a marvel-
lous challenge, and to this date there does not exist a single
method that is capable to provide an accurate and reliable
description of WDM applications in all situations. Among
the most promising approaches are quantum Monte Carlo
(QMC) methods, such as the well-known path integral Monte
Carlo (PIMC) technique [18–20]. On the one hand, QMC
methods can take into account the effects (i)–(iii) without any
approximations and, thus, are capable to provide highly
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accurate input for other simulation methods. On the other
hand, QMC simulations of electrons are severely limited by
the notorious fermion sign problem (FSP), which leads to
an exponential increase in computation time with decreasing
temperature or increasing system size [21–23]. For these rea-
sons, there has been a remarkable spark of new developments
concerning the QMC simulation of fermions at finite temper-
ature [24–48].

An important milestone was given by the construction
of the first accurate QMC-based parametrizations of the
exchange–correlation free energy fxc of the uniform electron
gas (UEG) [39,49], which allow for the possibility to perform
density functional theory (DFT) calculations of WDM on the
level of the local density approximation. Indeed, it has been
revealed in several independent studies by different groups
that using fxc—in contrast to the usual ground-state approx-
imation where the temperature-dependent fxc is replaced by
the zero-temperature limit limT →0 fxc = εxc [50–52]—that
temperature-effects in the exchange–correlation functional
cannot be neglected in the WDM regime [53–55].

Another important field of investigation is the electronic
density response to an external perturbation. Within linear re-
sponse theory [56], this is fully characterized by the dynamic
density response function [57]

χ (q, ω) = χ0(q, ω)

1 − ṽ(q)[1 − G(q, ω)]χ0(q, ω)
. (1)

Here, χ0(q, ω) denotes the density response function of
the ideal Fermi gas and the dynamic local field correc-
tion (LFC) G(q, ω) contains the full wave-number- and
frequency-resolved description of exchange–correlation ef-
fects in the system. For example, setting G(q, ω) = 0 in
Eq. (1) corresponds to a mean-field description of the dynamic
density response, and is typically referred to as the random
phase approximation (RPA). Naturally, the information con-
tained in G(q, ω) is vital for many applications, like the
construction of advanced exchange-correlation functionals
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for DFT [58–61] and time-dependent DFT [62], including
electronic correlations into quantum hydrodynamics [16,63–
65], taking into account electronic screening into effective
ion–ion potentials [66–68], and the computation of many
physical observables like electrical and thermal conductivities
[69,70], energy-loss characteristics [71], and energy-transfer
rates [72,73]. Moreover, we mention the interpretation of
x-ray Thomson scattering (XRTS) experiments [74,75],
e.g., within the framework of the Chihara decomposition
[76,77]—a de facto standard method of diagnostics in WDM
experiments.

Unfortunately, QMC methods are inherently incapable to
directly compute time-dependent (or, equivalently, frequency-
dependent) properties due to an additional dynamical sign
problem [78,79]. Therefore, the first accurate results for the
electronic density response have been obtained in the static
limit (i.e., ω → 0) based on the ground-state QMC simu-
lations by Moroni et al. [80–82]. Very recently, Dornheim
et al. [83] were able to extend this description to finite tem-
perature by presenting extensive new PIMC results for the
static LFC over a broad parameter range. These new data
were subsequently used to train a fully connected deep neural
network, which provides an accurate description of the static
LFC G(q) := G(q, ω = 0) (and, thus, also χ (q), etc.) cov-
ering the entire WDM regime (0.7 � rs � 20 and 0 � θ �
4). Furthermore, the same group also presented similar data
for the static density response both for the strongly coupled
electron liquid [84] (20 � rs � 100) and the weakly cou-
pled high energy density limit regime [85] (0.05 � rs � 0.5).
Last, we mention that accurate PIMC data for the static re-
sponse have become available even for the nonlinear regime
[46].

However, an unbiased ab initio description of the full
frequency dependence of either χ (q, ω) or, equivalently,
G(q, ω) is most challenging. For example, the nonequilibrium
Green function method [86,87] is based on a perturbative
expansion around the noninteracting system and, thus, can-
not fully take into account the effects due to electronic
correlations that are important in the WDM regime. Other
approximate methods include the extension of a dynamical
mean-field description by using known static limits for the
exchange–correlation effects within the frame-work of the
method of frequency moments by Tkachenko and cowork-
ers [88–90], or the ground-state many-body approach by
Takada [91,92]. Yet, the accuracy of these methods had re-
mained unclear, and reliable benchmark data were highly
needed.

While real-time dependent simulations still remain out of
reach, there does exist a neat alternative: the analytic con-
tinuation of an imaginary-time correlation function. More
specifically, the PIMC method allows one to obtain exact
results for the imaginary-time density–density correlation
function F (q, τ ) [cf. Eq. (7) below], which can be used as in-
put for the reconstruction of dynamic properties. The required
inverse Laplace transform is a well-known, but notoriously
difficult problem [93,94] as the reconstructed spectra might
not be unique, and the problem statement is ill-posed with
respect to the inevitable Monte Carlo error bars. This prob-
lem was recently solved for the specific case of the dynamic
density response of the UEG by Dornheim et al. [95–97],

who were able to obtain the first PIMC data for the dynamic
structure factor S(q, ω) going from WDM conditions (rs =
2) to the margins of the electron liquid regime (rs = 10).
These new results have opened up many avenues for future
investigations, like the investigation and possible experimen-
tal verification of an incipient excitonic mode that appears
with increasing electronic correlation effects [91,95]. Another
hands-on application of the results from Refs. [95,96] would
be the construction of a dynamic exchange–correlation kernel
for time-dependent DFT simulations [62]. Yet, one detail of
this new approach to the dynamic properties of WDM has
remained unaddressed: the finite size of the simulation cell
in any PIMC simulation.

Typically, these calculations use N = 30 . . . 100 electrons,
and the respective PIMC data explicitly depend on the sys-
tem size. For example, to obtain accurate results for the
interaction energy per particle v in the thermodynamic limit
(i.e., limN→∞ V/N), even N ∼ 102 − 103 electrons are not
necessarily sufficient [17,37,41]. In contrast, wave-number
resolved quantities like the static structure factor S(q) or the
static density response function χ (q) are known empirically
to converge much faster with N [37,83,98,99]. Moreover,
finite-size effects in χ (q) can even be removed from the
QMC data by applying a subsequent finite-size correction
[80,81,83–85,99].

In this work, we verify that these findings do indeed
also hold for the reconstructed results for S(q, ω) from
Refs. [95,96]. To this end, we have carried out extensive ab
initio PIMC simulations of the UEG for different system sizes
N = 8, . . . , 100 for two relevant parameter combinations: (a)
WDM conditions with rs = 2 (metallic density) and θ = 2,
and (b) the margins of the electron liquid regime with rs = 10
and θ = 1. Conditions as in case (a) are more relevant as they
are close to states of matter as in state-of-the-art experiments.
Yet, the impact of dynamic local field effects is limited and ex-
hausts itself in a red-shift of the dispersion relation compared
to RPA. However, the UEG at conditions (b) exhibits a highly
interesting behavior, with a negative dispersion relation and
nontrivial double-peak structures in S(q, ω) at intermediate
wave numbers. Moreover, it has been shown in Ref. [37]
that the full frequency-dependence of G(q, ω) must be taken
into account to get accurate results for S(q, ω). Therefore,
our current investigation of both regimes (a) and (b) will
be very useful both for practical WDM applications like the
construction of XC-kernels for TD-DFT, and for theoretical
challenges like understanding the physics behind a possible
new mode at large rs.

This paper is organized as follows: in Sec. II, we introduce
the required theoretical background covering both the path
integral Monte Carlo method (Sec. II A) and the reconstruc-
tion of the dynamic structure factor (Sec. II B). We start our
investigation in Sec. III with a brief discussion of the fermion
sign problem and then investigate finite-size effects both in
the PIMC input data and the reconstructed dynamic structure
factors both at WDM conditions (Sec. III A) and at the mar-
gins of the strongly correlated electron liquid regime (III B).
The paper is concluded by a brief summary and outlook in
Sec. IV.

Note that we assume Hartree atomic units throughout this
work.
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II. THEORY

A. Path integral Monte Carlo

The path integral Monte Carlo method (see Ref. [18] for an
extensive review article) is based on a stochastic evaluation of
the canonical (i.e., particle number N , temperature T , and vol-
ume V = L3 are fixed) density matrix evaluated in coordinate
space,

Z = 1

N↑!N↓!

∑
σ↑∈SN↑

∑
σ↓∈SN↓

sgnf(σ↑, σ↓)

×
∫

dR 〈R|e−βĤ |π̂σ↑ π̂σ↓R〉. (2)

Here N↑ = N↓ = N/2 denote the number of spin-up and -
down electrons, and the double sum over the respective
permutation groups Si are needed for a proper antisym-
metrization, i.e., to take into account Fermi statistics [22,23].
Moreover, π̂i are the permutation operators for a particular
element from each group, and the sign function sgnf(σ↑, σ↓)
is positive (negative) for an even (odd) number of pair per-
mutations. At this point, we note that a complete introduction
and derivation to the PIMC method has already been presented
elsewhere [18–20] and does not have to be repeated here.

For the present purpose, it is fully sufficient to work with
the abstract expression

Z =
∫

dX W (X), (3)

which can be interpreted in the following way: the full par-
tition function has been recast into an integration over all
possible paths X in imaginary time (see, e.g., Ref. [22] for
examples and graphical depictions), and each path has to
be taken into account with the appropriate weight W (X).
For bosons and boltzmannons (i.e., distiguishable particles
[100,101]), W (X) is strictly positive and it is straightforward
to use the Metropolis algorithm [102] to generate a Markov
chain of random configurations that are distributed according
to the probability P(X) = W (X)/Z . For fermions, however,
W (X) can be both positive and negative [cf. Eq. (2)], and P(X)
cannot be interpreted as a proper probability distribution.

As a practical workaround, we instead generate the paths
according to the modulus value of the weights, W ′(X) =
|W (X)|. It is easy to see that the fermionic expectation value
of an arbitrary observable Â is then given by

〈Â〉 = 〈ÂŜ〉′
〈Ŝ〉′

, (4)

where 〈. . .〉′ denotes the expectation value taken with respect
to the modified weights W ′, and S(X) = W (X)/|W (X)| is the
estimator for the sign. The denominator of Eq. (4) is com-
monly known as the average sign S and constitutes a measure
for the amount of cancellations due to positive and negative
terms within a fermionic PIMC simulation. More specifically,
the sign scales as

S = exp[−βN ( f − f ′)], (5)

where f and f ′ denote the free energy densities of the original
and the modified systems, respectively. This is highly prob-
lematic as the statistical uncertainty 
A of a fermionic PIMC

expectation value [Eq. (4)] is inversely proportional to S, and,
thus, exponentially increases with increasing the system size
N or increasing the inverse temperature β = 1/kBT ,


A

A
∼ 1

S
√

NMC
∼ exp[βN ( f − f ′)]√

NMC
. (6)

Evidently, the error bar can only be decreased by increas-
ing the number of Monte Carlo samples as 1/

√
NMC, which

quickly becomes unfeasible. Therefore, Eq. (6) constitutes an
exponential wall with respect to N and β that is being referred
to as the fermion sign problem [21,22,103,104].

For completeness, we mention that all PIMC simulations
in this work have been carried out using a canonical adaption
[105] of the worm algorithm introduced by Boninsegni et al.
[106,107].

B. Reconstruction of dynamic properties

As a side effect of its formulation in imaginary time,
the PIMC method allows for a straightforward evaluation
of a variety of imaginary-time correlation functions, such
as the Matsubara Green function [106,108] or the velocity
autocorrelation function [109]. In this work, we are interested
in the imaginary-time version of the intermediate scattering
function,

F (q, τ ) = 1

N
〈ρ̂(q, τ )ρ̂(−q, 0)〉, (7)

which is nothing else than the density–density correlation
function evaluated at an imaginary-time argument τ ∈ [0, β],
see, e.g., Refs. [83,96,108,110,111] for a few examples.

One practical application of Eq. (7) is its relation to the
static density response function, which is simply given by a
one-dimensional integral over the τ axis [112],

χ (q, 0) = −n
∫ β

0
dτ F (q, τ ). (8)

In fact, this relation was paramount for our current under-
standing of the static density response of correlated electrons
at finite temperature [83–85] as it allows one to obtain the
complete wave-number description of χ from a single simu-
lation of the unperturbed system.

In the present work, we focus on the relation

F (q, τ ) =
∫ ∞

−∞
dω S(q, ω)e−τω, (9)

which means that F (q, τ ) is connected to the dynamic struc-
ture factor via a Laplace transform. The problem statement
is thus to solve Eq. (9) for S(q, ω) by numerically performing
an inverse Laplace transform, which is a notoriously hard and,
in fact, ill-posed problem [93]. The main obstacle is given by
the fact that the PIMC data for Eq. (7) are afflicted with a
statistical error [cf. Eq. (6)]. Therefore, there could potentially
exist an infinite number of possible trial solutions Strial(q, ω)
that, when being inserted into Eq. (9), reproduce the PIMC
values for F (q, τ ) for all τ points within the given confidence
interval. To somewhat constrain the space of possible trial
solutions, one can make use of the frequency moments of
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S(q, ω),

〈ωk〉 =
∫ ∞

−∞
dω S(q, ω)ωk, (10)

with the cases k = −1, 0, 1, 3 being known from different
sum-rules, see Ref. [96] for a detailed overview.

Over the years, many reconstruction methods have been
proposed, including genetic algorithms [113,114], maxi-
mum entropy methods [93,115,116], Monte Carlo sampling
[108,117], or machine-learning schemes [118]; see Ref. [119]
for a recent comparison of different methods. More specif-
ically, the reconstruction of the dynamic structure factor
starting from Eq. (9) has allowed for profound insights into
the physics of, e.g., ultracold atoms like 4He [110,113] or
quantum-dipole systems [108] and even supersolids [120].
Yet, for the case of the warm dense electron gas, the combined
information within F (q, τ ) and 〈ωk〉 did still not sufficiently
constrain the space of possible trial solutions Strial(q, ω), and
additional input was needed.

To overcome this obstacle, Dornheim et al. [95] proposed
to invoke the fluctuation–dissipation theorem [56],

S(q, ω) = − Imχ (q, ω)

πn(1 − e−βω )
, (11)

which states that the dynamic structure factor is fully de-
fined by the dynamic density response function introduced in
Eq. (1). Moreover, we have already mentioned that the only
unknown part of χ (q, ω) is the dynamic local field correction
G(q, ω). In this way, the reconstruction of S(q, ω) has been
recast into the quest for G(q, ω).

This has turned out highly advantageous, because many
additional exact properties of the dynamic LFC are known in
advance [96]:

(1) The Kramers-Kronig relations between ReG(q, ω) and
ImG(q, ω) allow to compute one from the other in both direc-
tions [57].

(2) It is known that ReG(q, ω) [ImG(q, ω)] is an even
[odd] function with respect to the frequency ω.

(3) It holds ImG(q, 0) = ImG(q,∞) = 0.
(4) The exact static limit of ReG(q, ω) can be easily ob-

tained from Eq. (8) and is also available as a convenient
neural-net representation [83].

(5) The high-frequency asymptotic of ReG(q, ω) is given
by

ReG(q,∞) = I (q) − 2q2Kxc

ω2
pl

, (12)

where the exchange–correlation contribution to the kinetic
energy Kxc is obtained from the parametrization by Groth et al.
[39], and the interaction integral is defined as

I (q) = 1

8π2n

∫ ∞

0
dk k2[1 − S(k)]

×
[

5

3
− k2

q2
+ (k2 − q2)2

2kq3
log

∣∣∣∣∣k + q

k − q

∣∣∣∣∣
]
. (13)

The new reconstruction procedure from Refs. [95,96] is
based on a stochastic sampling of trial solutions Gtrial(q, ω),
with the above exact properties being automatically satisfied.

FIG. 1. PIMC results for the average sign S as a function of
the system size N . The red circles and blue diamonds correspond
to rs = 10, θ = 1 and rs = 2, θ = 2, respectively. The black dashed
lines correspond to exponential fits according to Eq. (16) for N � 20.
PIMC simulations are computationally feasible for S � 0.01.

These are subsequently substituted into Eq. (1) to obtain the
corresponding χtrial(q, ω), and the fluctuation–dissipation the-
orem [Eq. (11)] allows one to finally compute the trial solution
for the dynamic structure factor, Strial(q, ω).

In the end, the Strial(q, ω) are then substituted into Eqs. (9)
and (10) and compared to the PIMC data for both F (q, τ )
and the sum-rule results for 〈ωk〉; those Strial(q, ω) that do not
agree to these data within the given confidence interval are
discarded. The final solution for, e.g., the dynamic structure
factor is then computed as the average over all Nt valid trial
solutions Si(q, ω),

S(q, ω) = 1

Nt

Nt∑
i=1

Si(q, ω). (14)

Moreover, this procedure allows for a straightforward estima-
tion of the corresponding uncertainty as the variance of the
{Si(q, ω)},


S(q, ω) =
(

1

Nt

Nt∑
i=1

[S(q, ω) − Si(q, ω)]2

)1/2

. (15)

III. RESULTS

Let us start our investigation of the finite-size effects in the
reconstructed PIMC results for the dynamic structure factor
S(q, ω) by briefly touching upon the fermion sign problem
within the PIMC simulations for both parameter combinations
to be discussed in this work. To this end, we show our PIMC
data for the average sign S [i.e., the denominator of Eq. (4)] as
a function of the system size N in Fig. 1. Here the red circles
and blue diamonds correspond to electron liquid and WDM
conditions, respectively and exhibit a qualitatively similar be-
havior. More specifically, the sign is strictly monotonically
decreasing with N , and the dashed black lines depict expo-
nential fits according to

S(N ) = e−aN , (16)

with a being the free parameter. This is motivated by Eq. (5),
and fits well to our PIMC data points for both cases.
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Furthermore, we note that the sign decays faster for the
WDM case, which actually is a nontrivial finding. For higher
densities (smaller values of rs), electronic correlation effects
become less important, and the particles are not that strongly
separated. Consequently, fermionic exchange effects are more
important, which results in a stronger amount of cancellations
of positive and negative contributions, i.e., a decreasing av-
erage sign S. In this sense, the faster decrease of S at rs = 2
surely is expected.

However, the electron liquid example has been obtained
at half the value of the reduced temperature θ . Let us for a
moment consider the case of an ideal Fermi gas. In that case,
the degree of quantum degeneracy, and, thus, the value of
the corresponding average sign S is fully defined by θ and
does not depend on the density parameter rs. Therefore, the
sign for rs = 10 and θ = 1 would have been substantially
lower compared to rs = 2 and θ = 2. Hence, the slower decay
of S in the red circles for the interacting case is purely a
result of the increased Coulomb repulsion upon decreasing
the density. This conclusion is supported by considering the
real coupling parameter � = 〈V̂ 〉/〈K̂〉, which we define as the
ratio of the expectation value of the interaction energy and the
kinetic energy, respectively. In particular, we find � ≈ 0.18
and � ≈ 2.1 for the WDM and electron liquid case.

For completeness, we note that data with a sufficient ac-
curacy for the reconstruction of S(q, ω) can be obtained for
S � 0.1 [resulting in a hundredfold increase in computation
time compared to bosons or boltzmannons, cf. Eq. (6)], i.e.,
N � 54 and N � 66 electrons for the WDM and electron
liquid examples.

A. Warm dense matter regime: rs = 2 and θ = 2

Due to the high current interest in the WDM regime, we
will start our investigation of the system-size dependence of
the dynamic structure factor at rs = 2 and θ = 2. However,
before we consider S(q, ω) itself, it makes sense to first in-
vestigate any finite-size effects in the quantities that are used
as input for the reconstruction. The imaginary-time density–
density correlation function constitutes the most important
ingredient and is depicted in Fig. 2 for N = 20 (blue dotted)
and N = 34 (red dashed) unpolarized electrons in the τ -q-
plane. First and foremost, we note that a direct comparison
between the two data sets is not possible, as F is available at
different q-points. This is an immediate consequence of the
momentum quantization due to the finite box length L; see
Refs. [37,38] for a detailed explanation. The discretization in
the τ -direction, however, is defined by the selected number of
imaginary-time propagators within a PIMC simulation, and
can be chosen arbitrarily fine. In this work, we always use
P = 200 primitive propagators (see Refs. [43,121,122] for
a detailed and accessible discussion), which is sufficient to
ensure convergence and allows for an adequate resolution with
respect to the imaginary time τ . We note that not all τ points
are depicted in Fig. 2 to make it more accessible.

The red crosses and blue stars depict the τ → 0 limit of
F (q, τ ), which is given by the usual static structure factor

F (q, 0) = S(q) =
∫ ∞

−∞
dω S(q, ω). (17)

FIG. 2. PIMC data for the imaginary-time density–density cor-
relation function F [cf. Eq. (7)] in the τ -x plane for rs = 2 and
θ = 2. The red (dashed) and blue (dotted) data have been obtained
for N = 34 and N = 20 electrons. Note that F approaches the static
structure factor in the τ = 0 limit (crosses and stars) and that it is
symmetric with respect to τ = β/2, i.e., F (q, τ ) = F (q, β − τ ).

In other words, Eq. (17) means that the normalization of
the reconstructed S(q, ω) (or, equivalently, 〈ω0〉) is known in
advance.

Let us next come to the topic at hand, which is the de-
pendence of F (q, τ ) on the number of electrons N . Although
no difference between the two particle numbers can be seen in
Fig. 2, the depicted surface plot is not optimal for this purpose.
A more systematic investigation is presented in Fig. 3, where
we show F (q, τ ) for four fixed values of the imaginary time
along the q-direction. This has the advantage that we can
directly compare PIMC results for different particle numbers,
namely N = 8 (yellow triangles), N = 14 (red circles), N =
20 (green squares), N = 34 (blue diamonds), and N = 54
(gray crosses). As a side note, we mention that it is fully
sufficient to consider imaginary time values within the interval
τ ∈ [0, β/2], as F (q, τ ) is symmetric around β/2.

In the top left panel, we show results for τ = 0, i.e., for the
usual static structure factor S(q). At these conditions, there
is not much spatial structure in the system, and S(q) is a
monotonically increasing function without any correlation-
induced peaks. Moreover, the PIMC data for the different
particle numbers are in excellent agreement over the entire
depicted q range, and no system-size dependence can be
resolved within the given statistical uncertainty even for as
few as N = 8 electrons. While certainly being remarkable,
this result is not unexpected, and similar observations have
been reported both at finite temperature [17,37,38] and in the
ground state [123,124].

Moving on to τ = β/20 (top right panel), the situation
somewhat changes. First, F (q, τ = β/20) is no longer mono-
tonically increasing, but it exhibits a maximum around twice
the Fermi wave number qF. In addition, the results for N = 8
are clearly shifted upward compared to the other particle
numbers. A similar effect for N = 14 is possible, but cannot
be confirmed due to the given Monte Carlo error bars, and all
other data agree within the statistical uncertainty. For τ = β/4
(bottom left panel) and τ = β/2 (bottom right panel), we
find the same trends regarding N as for τ = β/20, and the
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FIG. 3. PIMC data for the imaginary-time density–density correlation function F [cf. Eq. (7)] for rs = 2 and θ = 2. Shown is the q-
dependence for different imaginary-time arguments, τ = 0 (i.e., F (q, 0) = S(q)), τ = β/20, τ = β/4, and τ = β/2 (clockwise). The different
symbols correspond to N = 14, 20, 34, and 54 electrons. The insets show magnified segments around the respective maxima.

maximum is somewhat shifted towards smaller wave numbers
with increasing τ .

Based on this investigation of F (q, τ ) alone, we would thus
predict that the reconstructed spectra for N � 20 exhibit no
finite-size effects, whereas they seem possible for N = 14 and
even likely for N = 8.

The second main ingredient to the reconstruction is the
static limit of the LFC, i.e., G(q) = ReG(q, 0), which can be
readily computed from by solving Eq. (1) for G after inserting
the PIMC data for χ (q) that is obtained via Eq. (8). This pro-
cedure is explained in detail, e.g., in Refs. [83,85]. The results
are shown in Fig. 4 for N = 14 (red circles) and N = 66 (gray
crosses) electrons. We note that the comparatively larger error
bars at N = 66 are a direct consequence of the fermion sign
problem, see Eq. (6) in Sec. II A.

Let us next focus on the left panel that has been directly
obtained from the PIMC data for χ (q) without any additional
finite-size correction. The solid blue line corresponds to the
recent neural-net representation [83] of G(q) and has been in-
cluded as a guide to the eye. Evidently, all three curves exhibit
a similar progression and can hardly be distinguished within

the Monte Carlo error bars. Yet, we note that the N = 66 data
points are in excellent agreement to the neural net, whereas
the N = 14 data appear to be somewhat too high for small
wave numbers q.

The explanation is illustrated in the right panel, where
the PIMC data for G(q) have been finite-size corrected (see
Ref. [99] for a detailed discussion of the finite-size correction
of both χ (q) and G(q)). While the gray data set is hardly
affected by this procedure, the red circles are shifted down-
wards towards the neural net representation. We thus note that
finite-size effects in the static limit of the local field correction
are quite small, but are noticeable in the case of N � 14
electrons.

Let us conclude our analysis of the system-size depen-
dence of the ingredients to the reconstruction procedure
with an investigation of the high-frequency limit G(q,∞) =
ReG(q,∞), which is defined in Eq. (12) in Sec. II B. Apart
from some trivial pre-factors, this limit is defined by (a)
the exchange–correlation contribution to the kinetic energy
Kxc and (b) the interaction integral Eq. (13) that depends on
the static structure factor S(q). Contribution (a) is computed
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FIG. 4. PIMC data for the q-dependence of the static local field correction G(q) = G(q, 0) for rs = 2 and θ = 2. The black crosses and
red circles depict simulation results for N = 66 and N = 14 electrons, and the blue curve has been obtained from the neural-net representation
from Ref. [83]. Panels (a) and (b) correspond to the raw and finite-size corrected (FSC) PIMC data, respectively.

from the parametrization of the exchange–correlation free
energy (in the thermodynamic limit) by Groth et al. [39],
and, therefore, does not depend on the particle number N .
The evaluation of contribution (b), however, is nontrivial and
deserves our attention.

Evidently, Eq. (13) requires us to integrate the static struc-
ture factor S(q) (or, to be precise, a function thereof) over
continuous momenta q. This, however, is problematic as (1)
PIMC data for S(q) are only available for discrete q values
and (2) no PIMC data are available below a minimum value
of qmin = 2π/L. In practice, we overcome this obstacle by
performing cubic basis spline fits that combine the exact
long-wavelength limit of S(q) that is known from the perfect
screening sum-rule [125],

S0(q) = lim
q→0

S(q) = q2

2ωp
coth

(
βωp

2

)
, (18)

with a smooth interpolation of the PIMC data elsewhere; see
Ref. [38] for a detailed discussion of this procedure.

In Fig. 5, we show results for the interaction integral I (q)
that have been obtained by integrating the basis splines for

FIG. 5. PIMC data for the q-dependence of the interaction func-
tion I (q) [see Eq. (13)] for rs = 2 and θ = 2. The different symbols
correspond to N = 8, 14, 20, 34, and 66 electrons and the inset
shows a magnified segment for large q.

different particle numbers. The behavior with respect to N
is quite similar to F (q, τ ) and we find noticeable finite-size
effects for both N = 14 and N = 8, which increase towards
large wave numbers.

This can be understood by investigating the corresponding
spline-fits of the static structure factor, which is shown in
Fig. 6. The different symbols correspond to the q values that
are accessible in a PIMC simulation of N = 14 (red circles),
N = 34 (blue diamonds), and N = 66 (gray crosses) elec-
trons, and the solid yellow curve to the exact long-wavelength
behavior of S(q) that is given by Eq. (18). The corresponding
spline representations of S(q) have been obtained by combin-
ing the yellow curve up to an empirically chosen maximum

FIG. 6. Spline interpolation of the static structure factor. The
solid yellow and dash-dotted green lines correspond to S0(q) [cf.
Eq. (18)] and STLS. The red circles, blue diamonds, and dark gray
crosses show PIMC results for S(q) obtained for N = 14, N = 34,
and N = 66 electrons, respectively, and the corresponding curves
cubic basis splines (see Ref. [38] for details) connecting S0(q) for
small q with the PIMC data elsewhere. Further, the vertical dashed
gray line depicts the maximum q value where S0(q) is used for
N = 14.
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FIG. 7. Reconstructed dynamic structure factors at WDM conditions (rs = 2 and θ = 2). (a) Solutions for N = 14 (dotted red), N = 20
(dash-dotted green), and N = 34 (dashed blue) electrons at selected q values. (b) Solutions for all q values in the depicted q range for N = 34.
Dynamic structure factors for different wave numbers have been shifted proportional to their respective q (left y axis), see the dotted gray
horizontal lines. The corresponding values of S(q, ω) itself are shown on the right y axis.

q value (cf. the vertical dashed gray line) with the PIMC
data for a specific N elsewhere. The dash-dotted green curve
corresponds to the finite-temperature version [126,127] of the
dielectric theory by Singwi et al. [128] and has been included
as a reference. Evidently, the splines for N = 34 and N = 66
electrons cannot be distinguished over the entire depicted q
range, and the blue curve correctly predicts the data point for
S(qmin) for N = 66 although it lies outside the fitting range.
For N = 14 (dotted red line), however, the range between qmin

and the validity range of S0(q) is significantly larger, which
makes the interpolation in between much less reliable. As
a result, the red curve substantially deviates from the other
two for q ∼ 0.5qF, and this trend gets only more pronounced
for N = 8. The subsequent integration over these splines in
Eq. (13) then leads to the finite-size effects in I (q) observed
in Fig. 5.

In a nutshell, we have found that the input data for the re-
construction procedure are afflicted with substantial finite-size
errors for N = 8 and noticeable errors for N = 14 electrons.

This brings us to the central topic of this work, which is the
investigation of the system-size effects in the reconstructed
dynamic structure factors S(q, ω) themselves. To this end, we
show the full frequency-dependence of S(q, ω) for selected
wave numbers in the left panel of Fig. 7 for N = 14 (red
dotted), N = 20 (dash-dotted green), and N = 34 (dashed
blue) electrons. We note that the data for S(q, ω) for different
system size N and wave number q have been shifted according

to their respective wave number (see the left y axis) and each
respective shift can be seen by the dotted gray vertical lines.
The corresponding values of the DSF itself can be found on
the right y axis. In addition, we mention that it is sufficient
to only show the positive ω range, since the DSF obeys the
detailed balance relation [56]

S(q,−ω) = S(q, ω)e−βω. (19)

Let us start by briefly touching upon the physical effects.
In the limit of small wave numbers, the random phase ap-
proximation becomes exact and S(q, ω) becomes a δ-function
around the plasma frequency ωp = √

3/r3
s . With increasing

q, the DSF broadens in the frequency domain, and the nor-
malization [i.e., the static structure factor S(q), cf. Eq. (17)]
increases until it saturates around one. Here, too, the random
phase approximation becomes exact, as the impact of the local
field correction is reduced by the 4π/q2 pre-factor, cf. Eq. (1).

Regarding the reconstructed solutions for S(q, ω) for dif-
ferent q, we find that the subsequent curves exhibit a smooth
progression in the q-ω plane, and even the results for N = 14
electrons do not exhibit any noticeable deviations from this
trend. We again note that solutions for different N are avail-
able at different q and, thus, cannot be directly compared.
Indeed, the different q values are the reason for the slightly
different S(q, ω); see also Fig. 8 and the corresponding discus-
sion. While only certain wave numbers are included in Fig. 7,
we show the full spectrum of all q-values in the depicted wave
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FIG. 8. Dynamic structure factor of the UEG at rs = 2 and θ = 2. The dotted red, dash-dotted green, dashed blue and solid black lines
correspond to N = 14 (q/qF ≈ 1.460), N = 20 (q/qF ≈ 1.496), N = 34 (q/qF ≈ 1.536), and N = 54 (q/qF ≈ 1.520) electrons, where the
numbers in brackets indicate the respective wave number q. Panel (a) shows the full reconstructed solutions for S(q, ω), and panel (b) shows
the corresponding curves from the static approximation that has been included as a reference.

number range for N = 34 electrons in the right panel of Fig. 7.
A common feature of both panels is given by the increased
uncertainty for small frequencies, which is consistent with the
previous findings from Refs. [95,96] in this regime. In princi-
ple, this would allow for the possibility of a diffusive feature
for small ω (see, e.g., Ref. [88]), but this is not expected for
the present case of a quantum one-component system.

To more rigorously discard the possibility of finite-size
effects in our data for the DSF, we show S(q, ω) for similar
wave numbers around q = 1.5qF in the left panel of Fig. 8
for N = 14 (dotted red), N = 20 (dash-dotted green), N = 34
(dashed blue), and N = 54 (solid gray). First and foremost,

FIG. 9. Dispersion relation of S(q, ω) for rs = 2 and θ = 2. The
blue diamonds, green squares, and red circles correspond to the posi-
tion of the maximum of S(q, ω) [see also Fig. 7] for N = 34, N = 20,
and N = 14, respectively. In addition, the dashed blue, dash-dotted
green, and dotted red lines show the corresponding full-width-at-
half-maximum.

we note that all curves exhibit a very similar behavior over the
entire ω-range. Yet, while the curves agree within the given
confidence interval for ω � 3ωp, there appear systematic de-
viations for larger frequencies. In principle, these could be (1)
due to finite-size effects, (2) inconsistencies in the reconstruc-
tion procedure that are not accounted for by the confidence
interval [cf. Eq. 15)], or (3) due to the different q-values for
the four cases, see the caption.

To resolve this issue, we compute the same curves within
the so-called static approximation, i.e., by inserting the
exact static limit G(q, 0) into Eq. (1) to get χstatic(q, ω)
and subsequently evoking the fluctuation–dissipation theorem
[Eq. (11)] to compute the corresponding DSF Sstatic(q, ω). The
results are shown in the right panel of Fig. 8, and exhibit
precisely the same order as the fully reconstructed curves in

FIG. 10. PIMC data for the imaginary-time density–density cor-
relation function F [cf. Eq. (7)] in the τ -x plane for rs = 10 and
θ = 1. The red (dashed) and blue (dotted) data have been obtained
for N = 34 and N = 20 electrons. Note that F approaches the static
structure factor in the τ = 0 limit (crosses and stars) and that it is
symmetric with respect to τ = β/2, i.e., F (q, τ ) = F (q, β − τ ).
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FIG. 11. PIMC data for the imaginary-time density–density correlation function F [cf. Eq. (7)] for rs = 10 and θ = 1. Shown is the q-
dependence for different imaginary-time arguments, τ = 0 (i.e., F (q, 0) = S(q)), τ = β/20, τ = β/4, and τ = β/2 (clockwise). The different
symbols correspond to N = 8, 14, 20, 34, and 66 electrons. The insets show magnified segments around the respective maxima.

the left panel. For instance, the insets of both panels depict
magnified segments for the large-ω regime, and, the curves
are ordered with decreasing wave number starting from the
top.

We thus conclude that the observed differences are due to
explanation 3), and no finite-size effects can be resolved in the
reconstructed solution for S(q, ω) even for as few as N = 14
electrons.

In contrast, for N = 8 our reconstruction procedure was
not able to find viable solutions for S(q, ω) which were then in
agreement to the PIMC data for F (q, τ ) and 〈ωk〉. This means
that finite-size effects do not manifest as an N-dependence in
the reconstructed spectra, but as an inconsistency between the
exact constraints on G(q, ω) (cf. Sec. II B) and the potentially
system-size dependent PIMC data.

Let us finish the investigation of the WDM case by briefly
touching upon the dispersion relation depicted in Fig. 9,
which is a key quantity for the interpretation of XRTS ex-
periments [74]. The blue diamonds, green squares, and red
circles correspond to the position of the maximum of S(q, ω)
(see Ref. [129] for an extensive discussion on different ways

to obtain the dispersion relation) for N = 34, N = 20, and
N = 14 electrons, respectively. Evidently, the three data sets
are in excellent agreement, and no dependence on the sys-
tem size can be resolved. Further, the different lines depict
the corresponding full-width-at-half-maximum values, which,
too, are in close agreement.

B. Strongly correlated regime: rs = 10 and θ = 1

The second parameter regime to be explored in this work is
given by the margins of the electron liquid (rs = 10 and θ =
1). Despite being less relevant for current WDM experiments,
these conditions offer a plethora of interesting physical ef-
fects. Of particular relevance is a possible incipient excitonic
mode that was predicted by Takada [91] (see also Ref. [130]
for a discussion of the excitonic nature of this feature) and
substantiated by Dornheim et al. [95]. Further, we mention
that this regime is particularly interesting from a theoretical
perspective, as the full frequency-dependence of G(q, ω) is
needed for an adequate description. This is in stark contrast to
the WDM regime, where using the static limit G(q, 0) is often
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FIG. 12. PIMC data for the q-dependence of the static local field correction G(q) = G(q, 0) for rs = 10 and θ = 1. The black crosses and
red circles depict simulation results for N = 66 and N = 14 electrons, and the blue curve has been obtained from the neural-net representation
from Ref. [83]. Panels (a) and (b) correspond to the raw and finite-size corrected (FSC) PIMC data, respectively.

sufficient to obtain highly accurate results for all ω. In the
latter case, the difference between RPA and the exact S(q, ω)
is relatively small, and G(q, 0) is sufficient to reproduce the
red-shift observed in our PIMC results [95–97]. However, the
increased coupling strength at rs = 10 and θ = 1 significantly
shapes the ω-dependence of the DSF, and the deviation to
RPA is substantial and qualitative. In particular, this nontrivial
difference cannot be described by a simple static LFC alone,
and the full frequency-dependence of G(q, ω) is required.

Since this analysis is mostly analogous to the discussion
of WDM parameters in the previous section, here we only
briefly state the most important findings. In Fig. 10, we show
the imaginary-time density–density correlation function in the
q-τ plane again for N = 20 (blue) and N = 34 (red) unpo-
larized electrons. In contrast to the WDM example shown in
Fig. 2, here F (q, τ ) exhibits a more complicated structure,
and the static structure factor S(q) = F (q, 0) has a small
maximum around twice the Fermi wave number and is thus
non monotonous. Although, in general, the direct physical in-
terpretation of this quantity is rather difficult, it was found that
the amount of structure substantially increases with coupling
strength, with a progression of several maxima and minima in
the electron liquid regime [84]. Still, no difference between
the two system sizes can be spotted in Fig. 10.

A more detailed investigation is presented in Fig. 11, where
we show the q-dependence of F for fixed τ values. Inter-
estingly, no finite size effects are evident anywhere even for
as few as N = 8 electrons. This is not fully unexpected, as
the system size dependence is known to increase both with
density and with temperature [37] at these conditions. For
completeness, we mention that for even lower temperatures
(θ � 0.25), shell-filling effects in momentum-space become
important that can be mitigated by simulating commensu-
rate particle numbers (i.e., N = 33 or N = 66 electrons for
a spin-polarized or unpolarized system) and by carrying out
an additional twist-averaging procedure [131,132].

The next relevant input quantity to the reconstruction pro-
cedure is given by the static limit of G(q, ω), which is shown
in Fig. 12. Again, even for N = 14 electrons almost no finite-
size effects are visible in the pure PIMC data (left panel), and
the finite-size correction (right panel) only affects the data for
q � 3qF.

Finally, we show results for the interaction integral I (q)
[cf. Eq. (13)] in Fig. 13. In contrast to F (q, τ ), here there
do appear some differences between N = 8 (yellow triangles)
and the other curves. We thus conclude that there should be
no finite-size effects in the reconstructed dynamic structure
factors except possibly for N = 8.

Let us proceed with this study with an analysis of S(q, ω)
itself, which is shown in the q-ω plane for selected wave
numbers in the left panel of Fig. 14 for N = 14 (dotted red),
N = 20 (dash-dotted green), and N = 34 (dashed blue) elec-
trons. We again note that the DSFs for different q and N have
been shifted proportional to the respective q; see the dotted
gray horizontal lines and the left y axis. Moreover, the actual
values of S(q, ω) are shown on the right y axis.

Due to the reduced density and the lower temperature com-
pared to the WDM case shown in Fig. 7, the curve for the
smallest q value for N = 34 exhibits a rather sharp peak that
is only slightly shifted away from the plasma frequency. In

FIG. 13. PIMC data for the q-dependence of the interaction func-
tion I (q) [cf. Eq. (7)] for rs = 10 and θ = 1. The different symbols
correspond to N = 8, 14, 20, 34, and 66 electrons and the inset
shows a magnified segment for large q.
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FIG. 14. Fully reconstructed dynamic structure factor of the UEG at rs = 10 and θ = 1 for selected wave numbers. The dashed red,
dash-dotted green, dashed blue, and solid black curves have been obtained for N = 14, N = 20, and N = 34 electrons, respectively. Dynamic
structure factors for different wave numbers have been shifted proportional to their respective q (left y axis), see the dotted gray horizontal
lines. The corresponding values of S(q, ω) itself are shown on the right y axis.

this context, we remark that our reconstruction scheme has no
problem with such distinct features, which is in stark contrast
to other inversion methods where the obtained spectra are
often artificially broadened. Furthermore, we have obtained
the familiar dispersion with the superposition of a mean-field
contribution around ωmf = q2/2 + ωp and an additional in-
cipient mode at lower frequencies that has been reported in
Ref. [95].

Yet, the important point for the present investigation is that
no systematic finite-size effects occur between the curves for
different N at subsequent wave numbers. For completeness,
we note that there do occur some small variation for some
larger wave numbers, these are an artifact of the reconstruc-
tion procedure itself and not related to N . To verify this claim,
we also show the full spectrum (i.e., all q-values in the de-
picted wave-number range) for N = 34 in the right panel of
Fig. 14. Here, one can clearly see that the dynamic structure
factor for the third-largest q value is somewhat inconsistent
to the other curves, although the system size is the same
everywhere.

The lack of finite-size effects in the dynamic structure
factor can also be seen even more clearly in Fig. 15, where
S(q, ω) is shown for different particle numbers at similar wave
numbers around q = 1.5qF. The left panel shows the recon-
structed solutions [i.e., using the full frequency dependence
of G(q, ω)] and, similar to the WDM example depicted in
Fig. 8, only minor differences occur, mainly for large frequen-
cies. Again, these small deviations are fully explained by the
slightly different q values for the four curves and completely

reproduced by the static approximation shown in the right
panel; see also Sec. III A for a more detailed discussion.

Finally, we mention that here, too, no consistent solutions
could be found for N = 8, which further substantiates our
previous finding from the WDM regime that finite-size effects
manifest not in an N-dependence of S(q, ω) itself, but in the
impossibility to match the exact constraints on G(q, ω) [cf.
Sec. II B] with the PIMC data.

Let us conclude this study of finite-size effects in the recon-
struction of dynamic properties with a brief consideration of
the dispersion relation shown in Fig. 16. Like in Fig. 9 shown
above, the blue diamonds, green squares, and red circles
depict the position of the maximum of S(q, ω) for N = 34,
N = 20, and N = 14 electrons, and no significant dependence
on the system size can be resolved. In particular, all three
data sets exhibit the negative dispersion relation that has been
discussed in Refs. [95,96]. In addition, the different lines show
the corresponding full-width-at-half-maximum, which, too, is
in very good agreement for all N over the entire depicted q
range.

IV. SUMMARY AND OUTLOOK

In this work, we have investigated in detail the possibility
of finite-size effects in the dynamic structure factor of the
uniform electron gas both at WDM conditions, and at the
margins of the strongly coupled electron liquid regime. More
specifically, S(q, ω) can be accurately reconstructed on the
basis of ab initio PIMC data, which, while being exact with
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FIG. 15. Dynamic structure factor of the UEG at rs = 10 and
θ = 1. The dotted red, dash-dotted green, dashed blue and solid
black lines correspond to N = 14 (q/qF ≈ 1.460), N = 20 (q/qF ≈
1.496), N = 34 (q/qF ≈ 1.536), and N = 66 (q/qF ≈ 1.508) elec-
trons, where the numbers in brackets indicate the respective wave
number q. Panel (a) shows the full reconstructed solutions for
S(q, ω), and panel (b) shows the corresponding curves from the static
approximation that has been included as a reference.

respect to exchange–correlation effects, have been obtained
for a finite simulation cell. In a nut shell, we have found that
even as few N = 14 electrons are sufficient to give accurate
results for S(q, ω) that are converged with respect to N , and
no system-size dependence could be resolved within the given
confidence level. In contrast, no solutions for S(q, ω) could
be found for N = 8 electrons, as the exact constraints on the

FIG. 16. Dispersion relation of S(q, ω) for rs = 10 and θ = 1.
The blue diamonds, green squares, and red circles correspond to the
position of the maximum of S(q, ω) [see also Fig. 14] for N = 34,
N = 20, and N = 14, respectively. In addition, the dashed blue, dash-
dotted green, and dotted red lines show the corresponding full-width-
at-half-maximum.

dynamic local field correction G(q, ω) that are incorporated
into the reconstruction procedure cannot be matched to the
PIMC data when the latter are not converged with respect
to N .

Therefore, the current analysis further corroborates the
high quality of the electronic structure factors presented in
Refs. [95,96]. This is an important finding, as the dynamic
density response is of key relevance for many applications
(see Sec. I) like the construction of dynamic exchange–
correlation kernels for time-dependent DFT simulations [62]
or the ongoing investigation of the incipient excitonic mode in
the UEG [95].
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