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Ion attachment and ion drag to dust particles near the edge of a nonthermal plasma sheath are of interest
to better understand how particles become trapped in such sheath regions. While electron-particle collisions in
plasmas and sheaths can often be described by orbital motion limited theory, quantification of ion transport
about dust particles in collisional sheath regions requires a distinct modeling approach. In this work, the
dimensionless ion attachment coefficients and dimensionless collection forces on negatively charged particles
are calculated using ion trajectory models accounting for an external electric field in a collisional sheath, ion
inertia, and finite ion mobility. By considering both ion inertia and finite ion mobility, results apply for ion
transport from the fully collisional regime into a regime of intermediate collisionality. Ion collection forces
are calculated in two related limits; first, the nondissipative limit, wherein the dimensionless collection force
function coincides with the dimensionless attachment coefficient (anticipated in the collisionless regime), and
second, a dissipative limit, wherein neutral gas collisions dissipate ion momentum, which strongly affects the
resulting collection force (anticipated in the fully collisional regime). We show that ion motion about a charged
particle can be parametrized by the ion Stokes number, which is the ratio of ion inertia to gas resistance to
motion and dimensionless electric field strength (the external field strength normalized by the electric field at the
particle surface). At intermediate Stokes numbers (101–102), ions adopt trajectories that are extremely sensitive
to the initial ion-particle impact parameter. Plots of the resulting collision angle at fixed Stokes number and
dimensionless field strength as a function of impact parameter contain multiple discontinuities. Nonetheless,
we obtain smooth curves for the ion attachment rates and collection forces in both the nondissipative and fully
dissipative limits. Increasing the ion Stokes number is found to significantly decrease the dimensionless ion
attachment coefficients and ion collection forces in comparison to coefficients evaluated with expressions derived
in the fully collisional limit. In all instances, including the dissipative limit, we find the ion collection force acts in
the direction of ion migration. Neural network fits are utilized to parametrize the resulting attachment coefficients
and ion collection forces, and we apply these fits to examine the charge levels on 1-μm radius particles in external
fields in the 3 × 102–3 × 103 V m−1 range and pressures in the 5 × 10−1–5 × 101 Torr (66.7–6667 Pa) range. We
find the charge level is strongly sensitive to both field strength and pressure in the plasma sheath, ranging from
2 × 102 to 2 × 103 over the conditions examined. Calculations are also used to demonstrate that the ion collection
force can be sufficiently strong to trap particles not only close to the bottom electrode of a parallel-plate reactor,
but also close to the top electrode, with a critical ion density required for trapping.

DOI: 10.1103/PhysRevE.102.063212

I. INTRODUCTION

The sheath region near the electrodes of nonthermal,
parallel plate plasma reactors are characterized by a large
time-averaged electric field directed towards the electrodes,
corresponding to high ion migration velocities towards the
electrodes, reduced ion densities, and further reduced electron
densities in comparison to the plasma volume [1–3]. Inter-
estingly, in particle-laden, dusty systems, particles invariably
become trapped in this sheath region [4–12]. Particles are
negatively charged both in the plasma volume and within the
sheath region, and trapping is facilitated by a combination
of electrostatic forces away from the electrodes, gravitational
forces, and ion drag forces in the direction of net ion mi-
gration. The charging and forces on dust particles near the
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edge of the plasma sheath are hence of interest in studies of
dusty space plasmas, fusion devices, and in plasma processing
[13–20].

Nonetheless, the description of particle charge states and
the magnitudes of forces on particles across a wide range of
collisionality remains incomplete, particularly for collisional
sheaths. Aside from their reduced density, electrons remain
at high energy in the sheath, such that in most conditions,
electron-particle collisions can be described by the orbital
motion limited approach [21] that also applies in the plasma
volume. However, ion attachment and ion momentum transfer
to particles are less clearly described in plasma sheath regions.
While ion attachment [22–25] and ion drag [14,19,20,26–32]
have been studied extensively under conditions more relevant
to the volume of a dusty plasma, the large field strengths in
plasma sheaths can yield significantly higher ion velocities
than are encountered in the plasma volume, and there is hence
a need to develop ion-particle transport relationships relevant

2470-0045/2020/102(6)/063212(16) 063212-1 ©2020 American Physical Society

https://orcid.org/0000-0001-7655-4980
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.063212&domain=pdf&date_stamp=2021-05-04
https://doi.org/10.1103/PhysRevE.102.063212


ONO, KORTSHAGEN, AND HOGAN, JR. PHYSICAL REVIEW E 102, 063212 (2020)

to plasma sheath regions, which has been largely studied in
the collisionless limit with respect to particle-ion interactions
[33–35].

In many regards, ion-particle interactions in collisional
sheath regions resemble the interactions between two dis-
parately sized and oppositely charged aerosol particles in
an external field, which have different migration velocities
[36,37]. In such systems, trajectory calculations find utility in
determining transport rates and can be applied to examine col-
lision dynamics. Here, we adopt such trajectory calculations
to determine ion-particle attachment rates (defining particle
charging rates) and ion collection forces (the contribution
to ion drag from direct collisions) for particles trapped in
the sheath region of a plasma. The resulting relationships
apply in conditions wherein plasma species are dilute, the
particle is negatively charged, plasma screening effects are
negligible, and the electric field strength leads to ion velocities
above thermal velocities. We believe the results are particu-
larly useful in evaluating ion-particle collisions and the ion
collection force in instances where ion motion about a particle
in collisional sheaths is strongly influenced by ion-neutral col-
lisions. Following from approaches applied in aerosol science,
we demonstrate that under these conditions, dimensionless
transport rates can be defined in terms of a dimensionless
representation of the external field strength and an ion Stokes
number, quantifying ion inertia relative to frictional resistance
to motion provided by neutral background gas. Fitting the di-
mensionless attachment rates and forces via a neural network,
we compare the attachment coefficient derived for the sheath
region to prior work analyzing attachment both in the presence
of an ion-particle velocity difference [38] and in the plasma
volume [25].

II. CALCULATION METHODS

A. Ion equations of motion

In developing relationships for ion transport rates to neg-
atively charged particles in sheath regions, we make the
simplifying approximations that (1) the initial thermal motion
of ions is negligible in comparison to the electrostatically
driven ion migration velocity and (2) ion and electron den-
sities are sufficiently dilute to neglect electrostatic screening,
i.e., ion motion can be monitored about a charged parti-
cle neglecting ion-ion and ion-electron interactions. Figure 1
displays a schematic diagram of ion trajectories about a nega-
tively charged particle, applying these assumptions. Each ion,
at a prescribed impact parameter from the particle center (b,
aligned with the y axis for simplicity), initially has x-direction
velocity V0 = K ( E

N )Ex, where Ex is the electric field strength
in the sheath region and K ( E

N ) is the ion’s mobility, which
depends upon the field strength to gas density ratio ( E

N ) [39].
Considering finite ion inertia and mobility, as well as a nega-
tively charged particle interacting Coulombically with the ion,
the resulting equations of motion for the ion are

mi
d2x

dt2
= −eEx − qex

4πε0(x2 + y2)3/2 − e

K
(

E
N

) dx

dt
, (1a)

mi
d2y

dt2
= − qey

4πε0(x2 + y2)3/2 − e

K
(

E
N

) dy

dt
, (1b)

FIG. 1. Schematic diagram of the ion trajectory calculations.
Two initial impact parameters, b, are shown; the smaller results in
an ion impinging upon the front face of the particle, while the larger
impact parameter leads to an impinging ion on the back face of
the particle. Ions impinge upon particles at locations (x∗

r , y∗
r ), with

θ = tan x∗
r

y∗
r
.

where mi is the ion mass, e is the unit electron charge, ε0 is
the permittivity of free space, q is the absolute integer charge
on the particle (a positive value). We assume Ex is a constant
in the vicinity of the particle with a negligible gradient. In
actual dusty plasma where particles are trapped in an electrode
sheath, Ex is not constant but increases towards the electrode
surface [40], and an appreciably large gradient relative to the
particle size would require corrections to the present analy-
sis. Introducing the length scale normalizations x∗ = x

ap
and

y∗ = y
ap

, where ap is the particle radius, and the time-scale

normalization τ = tK0Ex
ap

, yields the following dimensionless
equations of motion:

St
d2x∗

dτ 2
= −1 − x∗

E∗(x∗2 + y∗2)3/2 − 1

f
(

E
N

) dx∗

dτ
, (2a)

St
d2y∗

dτ 2
= − y∗

E∗(x∗2 + y∗2)3/2 − 1

f
(

E
N

) dy∗

dτ
, (2b)

where f ( E
N ) = [K ( E

N )/K0] is a dimensionless mobility func-
tion normalizing the mobility by the ion’s mobility at a field
strength Ex (K0), E∗ is the dimensionless field strength, and
St is the Stokes number [41,42]. We assume f ( E

N ) = 1 for
simplicity here, but note the calculation procedure can be
modified to account for the variation in mobility with field
strength [43]. E∗ and St are given by the equations

E∗ = 4πε0Exa2
p

qe
, (3a)

St = K2
0 Exmi

eap
. (3b)

The Stokes number, quantifying the influence of ion inertia
on the resulting ion trajectories in comparison to the resistance
to a motion brought about by collisions with background gas,
is proportional to the product of the ion Mach number (Ma,
which itself is proportional to the ion migration velocity to
ion mean thermal speed ratio) and mass-transfer (diffusive)
Knudsen number (Kn, a ratio of ion diffusion coefficient to a
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product of particle radius and ion mean thermal speed). This
yields St ∝ KnMa, as discussed in prior studies of aerosol
transport [44,45], though with Ma represented as a transla-
tional energy to thermal energy ratio proportional to Ma2.
Because of this proportionality Eqs. (2a) and (2b) do describe
ion motion across a wide range of collisionality; in the St → 0
limit Eqs. (2a) and (2b) converge to the system described by
Khrapak et al [46] and commented on by Hutchinson [47],
while in the St → ∞ limit the last term in Eqs. (2a) and
(2b) is negligibly small, and ballistic or collisionless kinetics
describe ion-particle transfer rates. Interestingly, the equations
of motion implemented show that increasing the Mach num-
ber has the same effect as reducing the pressure in the system.
Therefore, for ion migration about a charged particle in the
presence of an external electric field, the terms fully inertial
and collisionless, as well as inertialess and fully collisional,
coincide with one another. We remark that degree of colli-
sionality in this work refers to the extent to which ion-neutral
collisions affect ion motion about a particle, i.e., over the rel-
evant length scale of ion-particle collisions, and strictly apply
in instances where ion transport in the sheath region is fully
collisional (leading to the assumption that the initial ion ve-
locity is the product of its mobility and the field strength). We
also note that although these equations enable approximation
of ion motion on approach to a negatively charged particle,
they only enable determination of ion mass and momentum
transport rates to particles with particle size and charge known
and in the dilute ion density limit, and we presently neglect
motion of the particle induced by the approaching ion. For
this reason, the simulations performed cannot be described
as self-consistent [48] (i.e., particle charge needs to be de-
termined through other means, as does the ion density and
initial velocity). We also neglect the influence of charge ex-
change [49,50], wherein during ion migration, the positive
charge is transferred to a neutral of significantly lower trans-
lational energy. In the fully collisional, inertialess limit, by
definition, charge exchange has no influence on trajectories.
We performed preliminary trajectory calculations accounting
for charge exchange; these revealed that charge exchange
could occur (using estimates for the charge exchange cross
section from prior studies) for ions in trajectory calculations;
however, such reactions would not influence the resulting
final impact location and impact velocity unless the charge
exchange cross section greatly exceeded values determined
from prior experiments and computations.

B. Attachment rates and collection forces

For E∗ = 10−4–101 and St = 0–500, as well as selected
instances in the E∗ = 10−5–10−4 range (for subsequent neural
network fitting), we solve Eqs. (2a) and (2b) for variable
initial impact parameters (i.e., y∗ locations) to determine the
critical impact parameter (b∗

c) below which collision occurs
and above which ions do not collide with particles. Cal-
culations are performed using the Störmer-Verlet method,
described in the Appendix, with initial conditions of x∗(0) =
104, dx∗

dτ
(0) = 1, and with an empirically tuned moving time

step based on the criterion dτ = ( 2 ×104

x∗2+y∗2 + 0.1)−1. In systems
of Coulombically attracting inertial particles in a shear field
[35], trajectories leading to noncollision for y∗ < b∗

c have

been observed. However, we do not find similar instances
here and for all instances where, y∗ < b∗

c , collision occurs.
The ion attachment coefficient αi is used to define the rate
at which ions impinge upon and transfer positive charge to
particles; the charging rate is the product of ion attachment
coefficient and ion concentration. Because collision occurs for
all y∗ < b∗

c , the dimensionless ion attachment coefficient (α∗
i )

can be directly calculated from trajectory calculation results as

α∗
i = αi

πK
(

E
N

)
Exa2

p

= 2πni
∫ bc

0 yidyi

πniK
(

E
N

)
Exa2

p

= b∗2
c , (4)

where yi denotes the initial y location of an ion. Assuming that
upon collision, ions yield their full momentum to particles (the
diffuse model of momentum transfer), then the dimensionless
ion collection force (F ∗

i ) in the direction of ion migration can
be determined as

F ∗
i = Fi

πnimiK2
(

E
N

)
E2

x a2
p

= 2πniK
(

E
N

)
Ex

∫ bc

0 �p(yi )yidyi

πnimiK2
(

E
N

)
E2

x a2
p

= 2
∫ b∗

c

0
�v∗(y∗

i )y∗
i dy∗

i , (5)

where Fi is the dimensional ion collection force, ni is the
ion density in the sheath region, �p(yi ) is the change in
momentum brought about by impingement of an ion initially
at y location yi, and �v∗(y∗

i ) is the dimensionless ion momen-
tum transfer to the particle per unit ion mass. Calculation of
�v∗(y∗

i ) requires application of conservation of momentum
during each trajectory where collision occurs. In doing so, we
examine two limits for �v∗(y∗

i ). First, we consider a scenario
where the ion and particle minimally exchange momentum
with the neutral gas on close approach, independent of input
E∗ and St. In this “nondissipative” limit, which applies exactly
when ion motion is fully collisionless (high Stokes number),
momentum is fully conserved in the isolated ion-particle sys-
tem, and �p(yi ) = miK ( E

N )Ex, hence �v∗(y∗
i ) = 1 for all y∗

i .
This instance, therefore, leads to F ∗

i = b∗2
c = α∗

i , as is the case
for the ion collection force derived in the fully collisionless
limit previously [51]. Furthermore, with minimal influence
of neutral gas, the orbiting force due to grazing collisions
described and derived previously [27,51] is applicable, with
the ion drag force the sum of the collection and orbiting
forces.

In contrast, in a fully dissipative limit (applicable in the
fully collisional, low Stokes number limit), neutral gas colli-
sions are so prevalent such that grazing trajectories impart no
momentum to the particle directly (though can by influencing
neutral motion, i.e., via hydrodynamic interaction). Momen-
tum exchange between the ion and particle only occurs at
the point of collision, and the fully dissipative limit leads
to �v∗(y∗

i ) = v∗
f ,x (y∗

i ), the ion velocity in the direction of
the electric field, at the point of collision, as a function of
initial impact parameter. Therefore, in addition to tracking the
critical impact parameter, at the point of collision, we track
the ion velocity in the direction of the external field, denoted
as v∗

f ,x.
We subsequently report both α∗

i , the dimensionless attach-
ment coefficient and dimensionless collection force in the
nondissipative limit, and F ∗

i from Eq. (5) applying the as-
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FIG. 2. Calculated ion trajectories for selected collision parameter b∗, E∗, and St > 10. Trajectories are centered on the region near to the
particle.

sumptions of the fully dissipative system. Fully dissipative
limit calculations are performed assuming immobile parti-
cles. Further clarification on the collection force, which falls
intermediate to these two limits, would require additional cal-
culation of the particle trajectory during approach by the ion,
and is hence dependent on an appropriately defined particle
Stokes number as well (as both particle inertia and neutral
drag need to be considered).

The integrations required for Eqs. (5) in the fully dissipa-
tive limit were carried out similarly to the methods of Goudeli
et al. [52]. Specifically analyzing v∗

f ,x as a function of St and
b∗ for a given dimensionless field strength, we first used linear
interpolation with Delaunay triangulation [53] in between di-
rectly calculated conditions. Further smoothing of v∗

f ,x (b∗, St)

was conducted using thin plate spline interpolation [54] prior
to integration.

III. RESULTS AND DISCUSSION

A. Ion trajectories

Individual trajectory calculations result in ion path lines in
the x-y plane and either collision or noncollision with the cen-
tral particle for each prescribed St, E∗, and b∗ input. Figure 2
depicts selected zoomed-in views of ion path lines at elevated
Stokes number, with lower Stokes number trajectories noted
in Fig. 3. At low Stokes numbers, ion trajectories reveal rather
simple behavior. Below a particular Stokes number-dependent
and dimensionless field strength-dependent impact parameter,
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FIG. 3. Calculated ion trajectories for selected collision parameter b∗, E∗, and St < 10. Trajectories are centered on the region near to the
particle.

ions collide on the front face, where θ, the collision an-
gle, remains below 90◦. For E∗ < 1, within a narrow range
of larger impact parameters, ions collide on the back face
(90◦ < θ < 180◦). These scenarios are both depicted in Fig. 1
(red and blue ions, respectively). However, as has been ob-
served in evaluations of trajectories of finite inertia charged
dust grains in shear fields [42], significantly more complex
ion trajectories are observed at intermediate Stokes number

and lower energy ratio values (i.e., the scenarios depicted in
Fig. 2). Specifically, as the impact parameter increases, ele-
vated Stokes number ions can adopt (1) spiraling trajectories
which completely orbit the particle a finite number of times
prior to collision [Figs. 2(a)–2(c)], (2) trajectories wherein
the ion passes far into the second quadrant of the computa-
tional domain before returning and colliding with the particle
[lower right of Figs. 2(a)–2(e)], and (3) collision angles which
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TABLE I. α∗
i for variable E∗ and St, as determined by trajectory calculations.

E* St = 0.0 St = 0.1 St = 0.42 St = 1.07 St = 2.79 St = 4.49 St = 7.21 St = 11.6 St = 18.7 St = 30 St = 50 St = 100 St = 200 St = 500

0.0001 39832.1 39960.0 39840.1 39601.0 39047.3 38497.58 37632.12 36256.0 34077.2 30723.1 25312.8 14884.0 4225.00 42.250
0.000316 12622.5 12624.8 12561.9 12441.2 12145.8 11837.01 11365.69 10611.1 9446.29 7758.44 5343.61 1814.76 118.810 13.690
0.001 3999.9 3990.62 3955.81 3885.15 3718.12 3555.691 3286.78 2889.78 2323.43 1584.82 739.840 72.250 10.890 4.840
0.00316 1266.6 1258.66 1242.81 1200.01 1109.73 1016.324 878.988 689.222 447.005 205.496 39.690 7.290 4.000 2.310
0.01 400.278 396.404 386.113 364.408 314.665 266.607 202.125 123.599 50.802 9.057 4.840 2.890 1.960 1.346
0.0316 126.666 124.669 119.103 106.608 80.900 57.909 33.711 12.290 4.289 2.900 1.960 1.440 1.323 1.000
0.1 40.031 38.976 35.820 29.579 17.074 9.021 3.247 2.563 1.928 1.441 1.210 1.000 1.000 1.000
0.316 12.670 11.544 10.199 7.211 2.792 1.962 1.692 1.441 1.211 1.001 1.000 1.000 1.000 1.000
1 4.003 3.433 2.633 1.934 1.490 1.211 1.211 1.001 1.001 1.001 1.000 1.000 1.000 1.000
3.16 1.734 1.554 1.296 1.274 1.146 1.001 1.001 1.001 1.001 1.001 1.000 1.000 1.000 1.000
10 1.211 1.029 1.025 1.017 1.041 1.001 1.001 1.001 1.001 1.001 1.000 1.000 1.000 1.000

FIG. 4. The collision angle θ as a function of impact parameter b∗ (a) and the collision velocity v∗
f ,x as a function of the impact parameter

b∗ (b). The red shading indicates ions imparting momentum in the direction of ion migration, while blue denotes ions imparting momentum
opposing the direction of ion migration.
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TABLE II. F ∗
i in the fully dissipative limit for variable E∗ and St, as determined by trajectory calculations.

E∗ St = 0.0 St = 0.1 St = 0.42 St = 1.07 St = 2.79 St = 4.49 St = 7.21 St = 11.6 St = 18.7 St = 30 St = 50 St = 100 St = 200 St = 500

0.0001 53400 47500 34400 23700 25500 22200 41100 31400 41200 27600 29500 27100 23900 24072
0.000316 9504.0 8166.0 10600 10798.0 18179.0 15487.0 13900.0 20300.0 14351.0 14793.0 18157.0 13230.0 8686.4 5257.6
0.001 7310.0 7280.0 7290.0 7370.0 6710.0 7450.0 6980.0 6670.0 6610.0 4360.0 3407.5 2496.5 1580.5 1231.1
0.00316 1731.0 1726.0 1721.0 1740.0 1620.0 1810.0 1380.0 1450.0 953.00 984.00 509.55 436.04 370.04 295.04
0.01 565.34 411.00 410.00 402.00 404.00 359.00 310.00 319.00 242.00 153.00 124.54 105.15 90.36 76.27
0.0316 113.19 98.70 97.70 90.90 93.40 77.90 69.30 54.30 43.70 40.60 31.04 26.96 24.66 22.55
0.1 26.86 24.50 23.60 21.50 19.40 16.50 14.30 13.60 12.90 12.40 8.606 7.797 7.775 7.730
0.316 8.490 7.160 6.730 6.260 5.510 5.270 5.070 4.910 4.760 4.590 3.125 3.124 3.120 3.115
1 3.460 3.170 3.000 2.810 2.640 2.510 2.500 2.390 2.390 2.390 1.663 1.665 1.666 1.667
3.16 1.720 1.960 1.850 1.850 1.790 1.710 1.710 1.710 1.710 1.710 1.208 1.210 1.210 1.211
10 1.210 1.500 1.500 1.510 1.530 1.500 1.510 1.510 1.510 1.510 1.066 1.066 1.066 1.067

change discontinuously with small changes in impact param-
eter [Fig. 2(d)]. The consequence of type (3) trajectories are
the plots in Fig. 4 of the collision angle as a function of impact
parameter [Fig. 4(a)] and v∗

f as a function of impact parameter
[Fig. 4(b)]. Red and blue shading are utilized to highlight
whether the impinging ion collides moving parallel to (red) or
against (blue) the direction of ion migration. For cases in the
range 7.2 � St � 30 we find multiple discontinuities in both
collision angle and collision velocity with changing impact
parameter; in some instances (e.g., St = 18.7 and E∗ = 10−3)
there are more than ten discontinuities in plots. We are not
able to discern any systematic evolution of collision angle
with Stokes number, although the number of discontinuities
appears to be maximized for Stokes numbers from 100 to 101,
as it tends to zero at low and high Stokes numbers, i.e., in the
fully collisional (low Stokes number) and collisionless limits
(high Stokes number).

B. Attachment coefficient and nondissipative collection force

Integration results are summarized in Tables I and II, which
list α∗

i , and F ∗
i in the fully dissipative limit, respectively. How-

ever, before directly calculating ion attachment coefficients
utilizing critical impact parameters, we remark that in the
fully collisional, St → 0 limit, the dimensionless attachment
coefficient, and nondissipative collection force resulting from
the applied equations of motion has the functional form [47]

α∗
1 = 4

E∗ E∗ � 1, (6a)

α∗
2 = 1 + 1

E∗2 + 2

E∗ E∗ > 1. (6b)

Equation (6a) coincides with the Langevin fully collisional
ion-ion recombination coefficient [55]. In the Langevin ap-
proach, the attachment coefficient is evaluated in the absence
of a net migration velocity for either of the colliding enti-
ties. Its recovery from the equations of motion neglecting
ion inertia (originally by Maxwell [56]) demonstrates that
the applied equations of motion and initial conditions still
properly lead to the low Mach number attachment coefficient.
Figure 5 displays plots of the dimensionless ion attachment
coefficient from Eq. (4) as a function of the dimension-
less electric field for 0 � St � 500. Curves corresponding to
Eqs. (6a) and (6b) are also plotted. St = 0 calculations are
in excellent agreement with Eqs. (6a) and (6b) in the low

and high field limits, respectively, demonstrating the proper
convergence of trajectory calculations results to analytical
solutions. In contrast with the complex behavior of individual
trajectories themselves, the ion attachment coefficients dis-
play systematic and clearly discernable dependencies on St
and E∗. As Stokes number increases, greater deviations from
Eqs. (6a) and (6b) are evident. More specifically, at infinite
Stokes number, α∗

i → 1, and as Stokes number increases, α∗
i

hence remains near 10° for increasingly low values of E∗. A
consequence of this behavior is that the dimensionless attach-
ment coefficient is strongly sensitive to Stokes number, e.g.,
for E∗ near 3.16 × 10−3, the attachment coefficient decreases
by nearly three orders of magnitude as St varies from 1 to 500.

C. Fully dissipative collection force

In the fully dissipative limit, ion collection force calcula-
tions at fixed dimensionless field strength and Stokes number

FIG. 5. Nondimensionalized ion attachment coefficient and
nondissipative collection force as a function of dimensionless field
strength.
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FIG. 6. Contour plots of the ion velocity in the x direction at collision as a function of both dimensionless impact parameter and Stokes
number. Labels are provided to denote lines of constant impact velocity.

depend upon the impinging ion velocity as a function of im-
pact parameter. Contour plots of the dimensionless velocity
at impact in the direction of ion migration are provided in
Fig. 6 for the range St = 0–30, where the independent vari-
ables are dimensionless impact parameter and Stokes number
(integration to determine the ion drag force hence occurs over
horizontal lines). At large values of the dimensionless field

strength, ions never attain negative velocities at the point
of collision, as ions only collide at collision angles below
θ . However, as the dimensionless field strength drops below
unity, ion collisions at 90◦ < θ < 270◦ become possible, and
at each Stokes number, there exists an impact parameter be-
yond which the ion velocity at impact switches from positive
to negative. As Stokes number increases, the impact parameter
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FIG. 7. Nondimensionalized ion collection force in the fully dis-
sipative limit as a function of dimensionless field strength at selected
Stokes numbers.

where the switch in the sign of impinging ion momentum
transfer occurs becomes smaller. Interestingly, at intermedi-
ate Stokes numbers, low values of E∗ (< 10−1), and impact
parameters beyond the initial “flip” to negative momentum
transfer at collision, a second flip back to positive momentum
transfer is observed at a larger impact parameter. Proceeding
to further increase the impact parameter, this is followed by a
third flip again to negative momentum transfer, and finally, an
impact parameter is reached at which the ion does not collide
with the particle. As this flipping behavior occurs in neither
the inertialess nor fully inertial limits, it results in an “island”
of positive ion drag contribution visible in the Fig. 6 contour
plots for ions of elevated inertia and large impact parameter.

In the inertialess limit, the equations of motion yield the
fully dissipative dimensionless ion collection force as [47]

F ∗
1 = 16

3E∗ , E∗ � 1 (7a)

F ∗
2 = 1 + 8

3E∗ + 2

E∗2 − 1

3E∗4 E∗ > 1. (7b)

These functions yield positive ion drag values (in the di-
rection of ion migration) for all values of E∗. In the fully
inertial limit, with a constant electric field, F ∗

i = 1, hence the
force remains positive in the two limits of interest. However,
because of ion impingement on the back face of the particle
at elevated impact parameters, which contribute more heavily
to the integrated ion drag, there is no guarantee that the ion
drag force remains positive across all of St, E∗ space. Inte-
grated ion collection forces from Eq. (5) are plotted in Fig. 7.
At small Stokes numbers, plots show reasonable agreement
with Eqs. (7a) and (7b) in the low and high field strength
limits, respectively. At the lowest field strength examined,
the deviations evident with Eq. (7a) likely result from the
need to interpolate and numerically integrate a function with

multiple discontinuities. Immediately evident is that for all
examined conditions, the net ion collection force on a par-
ticle remains positive [57]. Furthermore, similar to the ion
attachment coefficient, deviations of the dimensionless col-
lection force from the inertialess limit increase in magnitude
with increasing Stokes number. At the same time, the fully
dissipative collection force is found to be significantly less
sensitive to Stokes number than the ion attachment coefficient;
as St is varied from 0 to 500, for all examined E∗ values the
fully dissipative collection force varies by less than an order of
magnitude. This is presumably because of the noted “islands”
of positive collection force observed in the Fig. 6 contour
plots; their existence maintains a net positive collection force
in the intermediate Stokes number range.

D. Case studies

With dimensionless attachment coefficient and ion col-
lection force expressions established, we compare results to
those obtained in prior analyses of ion attachment with a
net velocity difference between particle and ion [38] and ion
attachment in the plasma bulk [25]. Comparison is made in
the limit of large screening length relative to both the particle
radius and the mean free path of the ions, where our results
apply. We also apply the relationships developed here to make
predictions of charge levels on microparticles, as well as the
collection forces on microparticles in sheath regions of pre-
scribed electric field strength. To facilitate all calculations,
we developed a neural network that fits trajectory calculation
results. The deep learning toolbox in MATLAB was utilized
to obtain the neural networks, with inputs lnE∗ and lnSt∗

and outputs ln(α∗
i /α

∗
i |St=0) and ln(F ∗

i /F ∗
i |St=0) (for the fully

dissipative limit), where the subscript St = 0 refers to the iner-
tialess limiting expressions for the ion attachment coefficient
and ion drag force, respectively. Fitting hence resulted in the
expressions

α∗
i = α∗

i |St=0exp( f [ln(E∗), ln(St∗)]), (8a)

F ∗
i = F ∗

i |St=0exp(g[ln(E∗), ln(St∗)]), (8b)

where f [ln(E∗), ln(St∗)] and g[ln(E∗), ln(St∗)] are the neural
network outputs. The networks each had 15 layers, and the
Levenberg-Marquardt algorithm was used in training [58].
Comparisons of neural network predictions to the attachment
coefficients and drag forces from trajectory calculations are
displayed in Fig. 8, confirming that the neutral networks re-
cover trajectory calculation results with high accuracy.

We first compare our results to the physical model devel-
oped and applied by Khrapak and colleagues [38] for ion
attachment to a particle in the presence of a velocity differ-
ence between ions and particles, as would be encountered
for trapped particles in a sheath region. They note that in
the collisionless limit, the dimensionless attachment coef-
ficient (α∗

K,WC ) can be expressed as (using the notation in
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FIG. 8. A comparison between trajectory-calculated (input) and neural network output values for the dimensionless ion attachment
coefficient and nondissipative collection force (a) and the dimensionless ion collection force in the fully dissipative limit (b).

this work):

α∗
K,WC =

[
1 +

(
Kn

St

)2

+ 2Kn2

E∗St3

]
erf

(
St

1.414Kn

)

+ 0.798
Kn

St
exp

[
−1

2

(
St

Kn

)2]
, (9a)

where Kn is the mass transfer or diffusive Knudsen number
[59,60], expressed as

Kn = (kT mi )
1/2K (E/N )

eap
(9b)

with k representing Boltzmann’s constant and T the ion tem-
perature (assumed to be the background neutral temperature).
In the strongly collisional limit, Khrapak et al. [38] then apply
Eqs. (7a) and (7b), and the intermediate collisionality regime,
proposing the equations

α∗
K = ([α∗

K,WC]−γ + [α∗
1 ]−γ )

−1
γ E∗ � 1, (9c)

α∗
K = ([α∗

K,WC]−γ + [α∗
2 ]−γ )

−1
γ E∗ > 1, (9d)

where γ is a tunable constant. Equations (9a) and (9b) are
highly similar to harmonic average approaches successfully
utilized to approximate both the drag force on aerosol parti-
cles in the intermediate collisionality regimes [61] as well as
the transition regime particle-particle collision rates [62]. We
remark that the collisional contribution in the weak collisional
limit as discussed by Khrapak et al. [38] is neglected in
Eqs. (9c) and (9d), mainly because the provided expression
depends upon the Debye length to particle radius ratio, which
is assumed infinite for the present calculations (leading to an
ill-defined expression). The ratio of the Khrapak et al. attach-

ment coefficient to the results from trajectory calculations can
be expressed as

Rα1 =
[( α∗

K,WC

α∗
1

)−γ + 1
]−1/γ

exp( f [ln(E∗), ln(St∗)])
E∗ � 1, (10a)

Rα1 =
[( α∗

K,WC

α∗
2

)−γ + 1
]−1/γ

exp( f [ln(E∗), ln(St∗)])
E∗ > 1. (10b)

We examine the ion attachment coefficient ratio for a 1-μm
radius particle with net charges from 10 to 3000, with pressure
ranging from 0.5 to 50 Torr (66.7–6666 Pa) and field strengths
Ex from 300 to 3000 V m−1. Figure 9 displays plots of Rα1 for
these conditions, with γ = 1 utilized, as proposed by Khrapak
et al. [38] in comparison to particle-in-cell model results
[63]. While higher in pressure than many laboratory-scale
reactors used to examine dusty plasmas, this pressure range
is encountered in plasma synthesis reactors [64–66] and leads
to fully collisional sheath regions. Pressures in excess of 10
Torr (1333 Pa) are also examined to understand the effect of
reducing Stokes number and Knudsen number on results. By
construction, at low Stokes numbers (high pressures), both
models converge to Eqs. (6a) and (6b), and at high Stokes
numbers, they converge to a dimensionless attachment coeffi-
cient of 1.0. The major difference between the two approaches
is an additional Kn dependence in Eq. (9a), which is a conse-
quence of relaxing the assumption of high ion Mach number
(compared to the neutral speed of sound or thermal speed).
Evident in the figure, at low electric field strengths, trajectory
equation results are in strong agreement with the equations of
Khrapak et al. [38]. Greater deviations manifest at higher elec-
tric field strengths, particularly for highly charged particles at
lower pressures. This deviation can be attributed to the need
for an appropriate collisional term to be added to Eq. (9a).
Deviations may also be attributable to the approximate nature
of the neural network fit, which is slightly extrapolated to
E∗ < 10−4 for higher charge, lower field strength calcula-
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FIG. 9. Ratio of ion attachment rate coefficients for net charges from 10 to 3000 with pressure from 0.5 Torr to 50 Torr (66.7–6667
Pa) and electric field strengths Ex from 300 to 3000 V m−1. Rα1 is described by Eq. (10). (a) E = 300 Vm−1, (b) E = 1000 Vm−1, and (c)
E = 3000 Vm−1.

tions. Acknowledging omission of a weakly collisional term
and neural network imperfections, we find the two approaches
agree reasonably well, with attachment coefficients within an
order of magnitude of one another or better.

We next compare results to the ion attachment co-
efficient expression developed by Gatti and Kortshagen

[25], which is applicable to ion-particle collisions within
the bulk of a nonthermal plasma across a wide range
of collisionality. Using the framework provided here, the
ratio (Rα2) of the Gatti and Kortshagen attachment co-
efficient to that defined from Eq. (4) can be expressed
as

Rα2 = 1

α∗
i

(
1.595Kn

St
+ 1.595

KnE∗ + 0.962

E∗Kn2
R

)
exp

(
− 1

KnR

)
+ 4

α∗
i E∗

[
1 −

(
1 + 1

KnR

)
exp

(
− 1

KnR

)]
, (11a)

where KnR is the Gatti-Kortshagen capture radius Knudsen number, which, for large Debye length, can be expressed as

KnR = 0.92
E∗Kn3

St
. (11b)

Substituting Eq. (8a) into Eq. (11a) yields

Rα2 =
(

0.399KnE∗
St + 0.399

Kn + 0.241
Kn2

R

)
exp

(− 1
KnR

) + [
1 − (

1 + 1
KnR

)
exp

(− 1
KnR

)]
exp( f [ln(E∗), ln(St∗)])

E∗ � 1 (12a)

Rα2 =
(

1
E∗2 + 2

E∗ + 1
)−1( 1.595Kn

St + 1.595
KnE∗ + 0.962

E∗Kn2
R

)
exp

(− 1
KnR

) + (
1

4E∗ + 1
2 + E∗

4

)−1[
1 − (

1 + 1
KnR

)
exp

(− 1
KnR

)]
exp( f [ln(E∗), ln(St∗)])

E∗ > 1.

(12b)

In Fig. 10, Eq. (12) is used to examine the difference
between the Gatti-Kortshagen expression and results in this
study, for the same conditions as examined in Fig. 9. As
pressure increases, Rα2 approaches unity for all conditions.
For all charge states, at the lower field strengths examined,
Rα2 is below unity, however, at the higher field strengths,
Rα2 increases at lower pressures. The latter finding is a
result of α∗

i decreasing sharply as the field strength in-
creases at intermediate Stokes numbers, in the narrow but
relevant range of E∗ (Fig. 5). At the same time, for the
cases examined, Rα2 largely remains in the 10−1–101 range,
also suggesting that the attachment coefficients derived from
theories applicable to the plasma bulk and from trajectory
calculations do not differ strongly from one another for mi-

croparticles in the electric field and pressure ranges examined
here.

We then examine the charge on particles at steady state in
Fig. 11. To compute these results, we assumed the electron
attachment coefficient (αe) is described by orbital motion
limited theory, which, using the framework provided here, is
expressed as

αe = a2
p

(
8πkTe

me

)1/2

exp

(
− St

Kn2E∗θT

)
, (13a)

where Te is the electron temperature, θT is the ratio of electron
temperature to ion temperature, and me is the electron mass.
Balancing the ion current (product of ion concentration and
ion attachment coefficient) and electron current (product of
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FIG. 10. Ratio of ion attachment rate coefficients for net charges from 10 to 3000 with pressure from 0.5 to 50 Torr (66.7–6667 Pa),
and electric field strengths Ex from 300 to 3000 V m−1. Rα2 is described by Eq. (12). (a) E = 300 Vm−1, (b) E = 1000 Vm−1, and (c)
E = 3000 Vm−1.

electron concentration and electron attachment coefficient) to
the particle yields the equation

E∗ = St

Kn2θT ln
[
1.595

(
Kn
St

)( θnθ
1/2
T

θ
1/2
m

)(
1
α∗

i

)] , (13b)

where θn is the ratio of electron to ion density and θm is the
ratio of electron to ion mass. Considering a sheath region
wherein θn = 0.25, the electron temperature (Te) is 2 eV,
T = 300 K, and argon is the background gas, Fig. 11(a) is
a contour plot of 1/E∗ as a function of Kn and St, deter-
mined through an iterative solution to Eq. (13b) (necessary
as α∗

i depends on St and E∗). 1/E∗ is a dimensionless rep-
resentation of the particle charge level. Lines of constant
1/E∗ approximately align with lines of constant Kn2/St (or
Kn/Ma), which follows from inspection of Eq. (13b); the
dimensionless charge level decreases with increasing Stokes
number and increases with increasing Knudsen number. The
resulting steady-state charge on 1 μm particles is plotted in

Fig. 11(b). We find that beyond 1 Torr (133 Pa), the charge
level increases with increasing pressure, as the dimensional
ion attachment rate decreases with increasing pressure. At
high pressure, the charge level additionally decreases with
increasing field strength Ex. Interestingly, at the two higher
field strengths examined, we find that there is a minimum in
the charge level in the 1–2 Torr (133–266 Pa) range.

In conjunction with examining charge levels, the developed
equations can be used to evaluate the conditions required
for particle trapping due to a balance between electrostatic
forces, gravitational forces, and ion drag forces, assuming for
the present test that the ion drag force is solely due to the
ion collection force. At the top and bottom electrodes of a
capacitively coupled parallel plate reactor, this force balance
can be expressed as

πnimiK
2

(
E

N

)
E2

x a2
pF ∗

i − qeEx ∓ 4

3
πγ a3

p = 0, (14a)

FIG. 11. The calculated 1/E∗ value as a function of ion Stokes number St and Knudsen number Kn (a) as well as the steady-state surface
charge from a collision rate balance as a function of pressure from 0.5 to 50 Torr (66.7–6667 Pa), and fields strengths Ex from 300 to 3000 V m−1

for a 1-μm-radius particle in argon at 300 K, with an electron temperature of 2 eV and an electron to ion density ratio of 0.25 (b).
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FIG. 12. Ion densities required for particle trapping predicted from Eqs. (14b)–(14d) as a function of pressure (in the 0.5–50-Torr range,
or 66.7–6667-Pa range) for a 1-μm-radius particle in argon at 300 K, with an electron temperature of 2 eV and an electron to ion density
ratio of 0.25. Ion drag calculation in fully dissipative and nondissipative limits is considered. UE: upper electrode. LE: lower electrode. (a)
E = 300 Vm−1, (b) E = 1000 Vm−1, and (c) E = 3000 Vm−1.

where γ is the specific gravity of the particle. The gravita-
tional term and electrostatic term act in the same direction at
the upper electrode and in opposite directions at the bottom
electrode. Rearrangement of Eq. (14a) yields

ni =
( q

πa3
p
± 4γ

3eEx

)
StF ∗

i

. (14b)

In the limit where the ratio
4πγ a3

p

3qeEx
is small, Eq. (14b) can be

further simplified to

ni = q

πa3
pStF ∗

i

. (14c)

With 104 charges on a 1-μm particle,
4πγ a3

p

3qeEx
= 0.051 for

γ = 9.81 × 103 N m−3 and Ex = 5 × 102 V m−1, hence for
highly charged particles, Eq. (14c) can be applied to link the
charge level, Stokes number, dimensionless ion drag force,
particle size, and ion density. In the fully dissipative low
Stokes number and small field limit, Eq. (14c) additionally
yields

ni = 3ε0

4K2
(

E
N

)
mi

. (14d)

Equation (14d) suggests that for sufficiently highly charged
particles (small E∗), with small Stokes numbers, and when
gravitational effects are negligible, all particles, independent
of particle size, will be trapped at a specific location where
ion density reaches a critical value governed by the ion prop-
erties (and not the field strength). Figure 12 displays plots
of the ion densities required for particle trapping close to
the electrodes calculated via Eq. (13b) for specific gravity
of 9.81 × 103N m−3 and the conditions examined in Fig. 11,
along with Eqs. (14c) and (14d) calculated ion densities.
This leads to a gravitational force of 0.011 pN, 0.052 pN,

and 0.337 pN for field strengths of 3 × 102, 103, and 3 ×
103 V m−1, respectively, at 1 Torr (133 Pa). The ion den-
sities plotted lead to a complete balance with these forces.
We remark that these calculations represent a minimum ion
density in order for balance, as the ion orbiting force is not
considered in these calculations. Results are reported for the
nondissipative (F ∗

i = α∗
i ) and fully dissipative limits, and re-

sults with Eq. (14b) are shown for both the top and bottom
electrode of a parallel plate system. The agreement between
(14b) and (14c) predictions under most conditions, along with
the aforementioned example calculations, shows that grav-
itational forces minimally influence microparticle trapping.
Furthermore, while Eq. (14d) predictions are shifted from the
less simplified curves, they reveal the same scaling between
pressure and requisite ion density and are within an order of
magnitude of Eq. (14b) for the fully dissipative limit. Corre-
spondingly, in nearly all instances, we find that the ion density
required for trapping increases approximately with the square
of the pressure; this suggests that ion collection facilitated
trapping is more likely at reduced pressures. Meanwhile, the
electric field minimally affects the conditions required for
trapping.

Finally, the minimum ion density required for trapping de-
viates noticeably between the fully dissipative and nondissipa-
tive predictions. This points to the need to further clarify test
models of ion collection forces in future work. Nonetheless,
both the fully dissipative and nondissipative ion collection
force models suggest that at pressures near and below 100

Torr, ion densities in sheath regions are strong enough for
particle trapping at both the upper and lower electrodes
in parallel-plate reactors, with lower ion densities typically
required in the nondissipative limit. Meanwhile, trapping re-
quires much higher ion concentrations at increased pressure;
examination of trapping at such ion densities would require
consideration of screening effects (finite Debye length), and
hence calculations beyond those presented here.
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IV. CONCLUSIONS

Based on the performed trajectory calculations, we make
the following concluding remarks:

(1) In the presence of a constant external field, ion motion
about a charged particle can be parametrized at intermediate
collisionality through the ion Stokes number and dimension-
less field strength. We find that increasing Stokes number
decreases the dimensionless ion attachment coefficients, and
ion drag forces relative to the fully collisional (St = 0) limit,
with the largest influence on the attachment coefficient.

(2) At intermediate Stokes number (100–102), we observe
ion trajectories, including finite spirals and with a strong
sensitivity to impact parameter, with resulting discontinuities
in collision angle versus impact parameter curves. Such ob-
servations appear to be unique for Coulombically attracting
collision partners in an intermediate collisionality regime and
have been observed in prior examinations of ion trajectories
about particles in dusty plasmas [20,31] as well as trajectory
calculations to examine ion-ion recombination at intermediate
collisionality [59], and charged dust grains in shear flows
[42] with finite Stokes number. Intermediate collisionality,
Coulombically attracting objects are encountered in a diverse
array of systems, from the plasma sheath conditions examined
in this study to fluidized beds [67], aerosol-cloud interactions
[36], and atmospheric ions [68]. While trajectory calculations
typically serve as a key tool to examine collisions, there has
been limited prior effort to develop a unified approach to
understand mass, momentum, and energy transfer rates in

such systems in terms of appropriately defined dimensionless
ratios. We assert that expressing rate coefficients as func-
tions of the Knudsen number (defined differently for different
processes and inversely proportionality to the dimensionless
collisionality referred to elsewhere [38]) and Stokes number
will find applicability in parametrizing a variety of other sys-
tems beyond particle-ion collisions.

(3) The relationships provided for the dimensionless trans-
port rates can be coupled with models of the field strength, ion
densities, and electron densities in the plasma sheath region
to predict the charge distributions and forces on particles
in the sheath region of parallel plate capacitively coupled
plasma reactors. The developed equations suggest that ion
collection forces are sufficiently strong in the sheath region
to balance with electrostatic forces and trap particles, pro-
vided the ion density is at a critical value. The ion density
required for trapping is strongly dependent on the system
pressure, but less so on electric field strength and particle
size. At the same time, future studies will need to better
clarify the applicability of nondissipative and fully dissipative
models of ion momentum transfer to particles at intermediate
collisionality.
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APPENDIX: ION TRAJECTORY CALCULATIONS

The basic Störmer-Verlet method is applied to determine ion trajectories with the initial ion location of x∗
1 = 10 000, initial ion

velocity v∗
1,x = −1, and time step dτ = ( 2 ×104

x∗2+y∗2 + 0.1)−1. By applying our nondimensional equations, we obtain the following
for the initial type step:

x∗
2 = x∗

1 + v∗
1, xdτ + 1

2St

(
−1 − x∗

1

E∗(x∗
1

2 + y∗
1

2
)3/2 − 1

f
(

E
N

)v∗
1,x

)
dτ 2, (A1)

y∗
2 = y∗

1 + v∗
1, ydτ + 1

2St

(
−1 − y∗

1

E∗(x∗
1

2 + y∗
1

2
)3/2 − 1

f
(

E
N

)v∗
1,y

)
dτ 2. (A2)

Subsequently, ions are moved according to the equations

x∗
n+2 = 2x∗

n+1 − x∗
n + 1

St

(
−1 − x∗

n+1

E∗(x∗
n+1

2 + y∗
n+1

2
)3/2 − 1

f
(

E
N

)v∗
n+1,x

)
dτ 2, (A3)

y∗
n+2 = 2y∗

n+1 − y∗
n + 1

St

(
−1 − y∗

n+1

E∗(x∗
n+1

2 + y∗
n+1

2
)3/2 − 1

f
(

E
N

)v∗
n+1,y

)
dτ 2. (A4)

The ion velocity at each time is then evaluated as

v∗
n+1,x = x∗

n+1 − x∗
n

dτ
, (A5)

v∗
n+1,y = y∗

n+1 − y∗
n

dτ
. (A6)
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