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The maximum particle kinetic energy that can be extracted from an initial six-dimensional phase space
distribution motivates the concept of free or available energy. The free energy depends on the allowed operations
that can be performed. A key concept underlying the theoretical treatment of plasmas is the Gardner free energy,
where the exchange of the contents of equal phase volumes is allowed. A second free energy concept is the
diffusive free energy, in which the contents of volumes are instead averaged. For any finite discretization of phase
space, the diffusive free energy is known to be less than the Gardner free energy. However, despite the apparent
fundamental differences between these free energies, it is demonstrated here that the Gardner free energy may
be recovered from the continuous limit of the diffusive free energy, leading to the surprise that macroscopic
phase-space conservation can be achieved by ostensibly entropy-producing microscopic operations.
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I. INTRODUCTION

One of the key problems in the field of plasma physics
is the instability of the plasma, which then begets the ques-
tion, if the plasma is unstable, then how much energy can
be released? A very important subset of these instabilities is
when the energy released is the kinetic energy of charged par-
ticles. This release of particle kinetic energy may be framed
as the reorganization of the particle phase space in which
high energy particles are reorganized to occupy lower energy
states. The release is stimulated by wave-particle interactions,
whereby when the particle energy is released, the wave grows
in amplitude. In practical devices, often these instabilities are
deleterious, but sometimes they are advantageous.

The release of this energy depends on the nature of the
allowed wave-particle interactions. The free energy can be
thought of as the maximum energy available for release sub-
ject to constraints. The most mild constraint, first presented
by Gardner [1], applies for any system in which densities of
volumes in six-dimensional phase space are conserved. Let
phase space be divided into small, discrete regions of constant
phase-space volume, so that the conservation constraint re-
quires that phase space can only be reconfigured by pairwise
exchange of the densities in these regions. Once the phase
space is rearranged so that the highest-density volumes are
assigned to the lowest-energy regions in phase space, it is not
possible to extract further energy while still preserving the
phase space densities. The process of rearranging the phase
space volumes so that density is anticorrelated with energy is
often called Gardner restacking. By construction, the Gardner
free energy obtained by Gardner restacking is the maximum
energy that can be released under the mildest of constraints.

However, when the plasma distribution function is viewed
with any finite granularity, many processes can appear to
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diffuse particles between volumes of phase space rather than
exchanging the contents of individual volumes [2,3]. As a
result, it is often useful to consider an alternative to Gardner’s
problem, where the maximum accessible energy is determined
by what can be extracted by diffusion between phase space
volumes (including elements which are not adjacent) rather
than Gardner restacking [4–7]. This is a qualitatively different
process from the pairwise exchange of phase space densities
that underlies Gardner restacking; for one thing, every diffu-
sive step creates entropy, whereas restacking is reversible.

Both the Gardner restacking problem and the diffusive
exchange problem have continuous and discrete variants. That
is, phase space can be considered continuous or can be divided
into discrete regions (either because the system is intrinsically
discrete or to represent averaging over those regions). The
continuous diffusive problem, as posed by Fisch and Rax in
1993 [4], is to minimize

Wfinal = lim
t→∞

∫
ε(v) f (v, t ) dv (1)

by evolving the distribution f (v, t ) according to

∂ f

∂t
=

∫
K (v, v′, t )[ f (v′, t ) − f (v, t )]dv′. (2)

Here ε(v) is the energy per particle and the kernel K must
satisfy K (v, v′, t ) = K (v′, v, t ) and K (v, v′, t ) � 0. Fisch and
Rax showed that f satisfies an H theorem, and that the sys-
tem will reach a steady state, but they left the matter of the
releasable free energy as an open problem, noting that it is
“quite formidable” given the necessity to search over all pos-
sible kernels K (v, v′, t ). Indeed, in the years since, substantial
progress has been made on the discrete diffusive exchange
problem [5–7], as well as on continuous Gardner restacking
[8–10], but the minimum energy state under continuous diffu-
sive operations remains unsolved.

This paper will show that, in fact, in the continuous limit,
the free energy available under the diffusive constraint is
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equivalent to the Gardner free energy under the restacking
constraint. This is a counterintuitive result: one problem in-
volves purely reversible operations and the other involves
irreversible operations. In proving this equivalence, this paper
now also solves for the minimum energy state under diffusion
in the continuous limit, a problem previously considered in-
tractable. In addition, in proving this equivalence, this paper
provides a prescription for constructing a kernel K (v, v′, t )
that approaches the minimum energy arbitrarily closely.

Recognizing this equivalence provides new intuitions re-
garding the broader nature of phase space granularity and
irreversible operations, which may be of interest to commu-
nities beyond the field of plasma physics. Although Gardner
restacking had been proposed to quantify the free energy in
plasma, the underlying concepts can be applied to a variety
of settings outside of plasma physics [11–15]. Interestingly,
the same concept has been treated within the mathematical
literature, where the equivalent of a Gardner restacked distri-
bution is called the “symmetric decreasing rearrangement” of
a function [16–20].

Also enjoying broad interest is the free energy under the
diffusion constraint. The free energy in plasma through dif-
fusion by waves is of practical interest in channeling energy
from the byproducts of the nuclear fusion reaction in con-
trolled magnetic confinement fusion. A variety plasma waves
at different frequencies have been proposed to accomplish this
diffusion [21–29] as well as combinations of these plasma
waves [30,31]. But the discrete diffusive problem also ap-
pears in a number of contexts outside of plasma physics,
including physical chemistry [32], income inequality [33–35],
and altruism [36]. The general problem of determining the
states accessible via an allowable set of operations has wide
applicability—from chemistry [37] to laser physics [38] to
quantum information theory and thermodynamics [39–41].

The paper is organized as follows: Section II describes the
discrete restacking and diffusion models and some of their
properties. Section III shows how restacking and diffusion
converge to the same behavior in the continuous limit. Sec-
tion IV shows how the entropy production associated with
diffusive exchanges can be suppressed in the continuous limit.
Section V discusses issues related to characteristic scales in
phase space. Section VI applies these results to the classic
bump-on-tail distribution. Section VII presents a summary
and broader discussion of the results.

II. DISCRETE RESTACKING AND DIFFUSION

Consider a distribution f that is a function of a phase space
coordinate (or vector of coordinates) x. Suppose a particle at x
has energy ε(x). Moreover, suppose f is piecewise continuous
and ε is Riemann integrable. If the domain of x is divided into
some set of equal-volume regions {Si}, define

fi
.=

∫
Si

f (x) dx (3)

and

εi
.=

∫
Si

ε(x) dx. (4)

Then the discrete Gardner restacking problem consists of ex-
changing the { fi} in order to minimize

∑
i εi fi and the discrete

diffusive problem consists of averaging pairs fi and f j to
minimize the same expression. The continuous restacking and
diffusion problems can be viewed as the infinitely fine-grained
limits of the corresponding discrete problems.

There are three things to note about the diffusive exchange
operation. First, fi and f j need not correspond to adjacent re-
gions in phase space in order to be averaged; the operation can
be macroscopically nonlocal. Microscopically local dynamics
can give rise to exchanges of material between noncontiguous
regions of phase space [4].

Second, the diffusive free energy is defined as the maximal
energy that can be extracted from an initial distribution. If
a ground state is any state from which no further energy
can be extracted, different sequences of diffusive exchange
operations on the same initial state can lead to different ground
states with different energies. Finding the diffusively accessi-
ble free energy is an optimization problem on the space of
sequences of diffusive exchanges. This is a large part of why
the diffusive problem tends to be analytically more difficult
than the restacking problem.

Finally, the energy that can be released through diffusive
exchanges never exceeds the Gardner free energy, and the two
are only exactly equal when both vanish (that is, when the
distribution begins in a ground state). To see this, note that
both processes produce final distribution functions in which
the most populated volumes of phase space are assigned to the
lowest-energy regions of phase space. The discrepancies in the
populations create the opportunities to release energy. How-
ever, each diffusive exchange reduces the difference between
the high-population and low-population volumes, leaving less
opportunity for reducing the energy in the final state.

III. RECOVERING GARDNER RESTACKING WITH
DIFFUSIVE OPERATIONS

The basic operation of Gardner restacking is to exchange
the populations of two equal-volume regions. For a suf-
ficiently fine discretization of phase space, f (x) can be
considered constant over each region. Suppose phase space
is then further subdivided into even smaller regions. Then, as
will be shown here, it is possible to use diffusive exchange
operations on this finer grid to approach the results of the
original Gardner restacking operation on the coarser grid.
In the limit of an arbitrarily fine discretization, the diffusive
operations can approach this limit arbitrarily closely.

To show this, consider two regions of phase space, A and
B, each with volume V . Both Gardner restacking and diffusive
exchange operations act only on the difference between two
populations, so for the sake of simplicity (and without loss of
generality) assume that region A initially has population den-
sity fA = 0 and region B initially has population density fB =
f0. Then a Gardner restacking operation between regions A
and B would exchange the populations, so that fA = f0 and
fB = 0.

Now consider a subdivision of A and B each into N regions
with volume V/N . Let ai f0 and bi f0 denote the population
densities of the ith subregions within A and B, respectively.
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If f (x) was originally constant over the regions A and B, then
before any diffusive exchanges, ai = 0 and bi = 1 ∀i.

To move the contents of B to A, perform the following
sequence of diffusive exchanges: first a0 with b0, then a0 with
b1, and so on until a0 exchanges with bN−1. Next, perform
the same exchanges but with a1 instead of a0, and so on for
each ai, until the final exchange is aN−1 with bN−1. In total,
there will be N2 diffusive exchange operations. For the sake
of concreteness, it may be useful to visualize this process for
small N . When N = 1, Gardner restacking takes

0 1 → 1 0 ,

whereas diffusive exchange takes

0 1 → 1/2 1/2 .

Half of the content in B is transferred to A. Now, when N = 2,
restacking operations can again fully transfer the populations:

0 0 1 1 → 0 1 1 0 → 1 1 0 0 ,

whereas the sequence of diffusive moves described above
does as follows:

0 0 1 1 → 1/2 0 1/2 1

→ 3/4 0 1/2 3/4

→ 3/4 1/4 1/4 3/4

→ 3/4 1/2 1/4 1/2 .

The prescribed sequence of moves transfers 5/8 of the total
population from B to A. Note that 5/8 is already greater than
1/2, meaning that it has already been shown in this simple
example that a sequence of diffusive operations can achieve
nondiffusive behavior when viewed on a coarser scale.

More generally, and more formally, let a(s)
i and b(s)

i denote
the values of ai and bi after the first s · N exchanges (in
other words, immediately after the exchange between as and
bN−1). The final value of ai will be fixed by the last exchange
involving ai, so after all exchanges, ai = b(i+1)

N−1 . The objective
is to prove that the entire content of B can be transferred to A
in the limit of large N , a statement which can be rewritten as

lim
N→∞

1

N

N−1∑
i=0

b(N )
i

?= 0. (5)

The value of any b(s+1)
i can be written recursively in terms

of the values of a(0)
s and b(s)

j . In particular,

b(s+1)
i =

N−1∑
j=0

Mi jb
(s)
j + 2−i−1a(0)

i , (6)

where Mi j is the lower triangular Toeplitz matrix given by

Mi j =
{

2−i+ j−1, i � j,
0, i < j.

(7)

For the initial conditions in this scenario, a(0)
i = 0, so the

corresponding term in Eq. (6) can be ignored. Then if (Ms)i j

denotes the i j element of the matrix M to the sth power,
Eq. (6) becomes

b(s)
i =

i∑
j=0

(Ms)i jb
(0)
j . (8)

For i < j, (Ms)i j = 0. It can be shown by induction on s that
the nonzero elements are

(Ms)i j = 2−i+ j−s �(i − j + s)

�(i − j + 1)�(s)
(i � j), (9)

where � is the usual gamma function. Then

b(s)
i =

i∑
j=0

2−i+ j−s �(i − j + s)

�(i − j + 1)�(s)
b(0)

j . (10)

Using the initial condition that b(0)
j = 1, it follows (after some

manipulation) that

N−1∑
i=0

b(N )
i =

N−1∑
i=0

i∑
k=0

2−N−k �(N + k)

�(k + 1)�(N )
(11)

=
N−1∑
k=0

N − k

2N+k

�(N + k)

�(k + 1)�(N )
. (12)

It is possible to show, using induction on M, that

M∑
k=0

N − k

2k

�(N + k)

�(k + 1)
= 1

2M

�(N + M + 1)

�(M + 1)
. (13)

Therefore,

1

N

N−1∑
i=0

b(N )
i = 1

22N−1

�(2N )

�(N )�(N + 1)
. (14)

Applying Stirling’s approximation, the large-N limit is

lim
N→∞

1

N

N−1∑
i=0

b(N )
i =

√
1

πN
+ O(N−3/2 ). (15)

This is sufficient to prove Eq. (5): in the large-N limit, an
arbitrarily large fraction of the population will be transferred
from B to A. The exact result and its asymptotic approximation
are shown in Fig. 1. Equation (15) is a major result of this
paper.

Note that this proof has not demonstrated that this partic-
ular sequence of diffusive exchanges is optimal. Therefore,
Eq. (15) provides a lower bound for how quickly the diffusive
free energy can approach the Gardner free energy as the scale
becomes finer. In principle there could be a sequence that
could do so in fewer steps. Of course the main point here is
the fact that the large-N limit does converge to complete pop-
ulation transfer, which implies that the optimal sequence must
also similarly converge. This is sufficient to show the coun-
terintuitive and rather remarkable result that, for a piecewise
continuous initial distribution, the free energy under the con-
tinuous diffusive exchange constraint is the same as that under
Gardner restacking in the continuous limit.

Also, note that in providing a prescription for releasing
the Gardner free energy, an upper bound is established on
the number of steps required to realize this energy release
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FIG. 1. Fractional content transfer between the two regions vs
N . Exact transfer (following the sequence of diffusive exchanges
described in Sec. III) as a function of N is well approximated by
1 − 1/

√
πN .

to any required accuracy. To see this, divide the phase space
first into M phase space volumes. The Gardner restacking
requires sorting these M volumes, which can be accomplished
in O(M ln M ) pairwise exchanges. Now upon a further sub-
division of each of the M volumes to N subvolumes, and
executing instead N2 diffusive steps, each of those exchanges
can be accomplished to accuracy N−1/2. Thus, the Gardner
free energy to accuracy N−1/2 may be realized in no greater
than O(N2M ln M ) pairwise diffusive exchanges.

IV. ENTROPY AND REVERSIBILITY

The previous section demonstrates how a series of irre-
versible operations can mimic the behavior of a reversible
operation. It is clear that the entropy production must some-
how be suppressed as N becomes large. To show how this
happens, we track when entropy is created and destroyed as
the procedure described in Sec. III is followed.

Consider an entropy defined by

S = −
∑

i

pi log pi, (16)

where pi is the probability that a particle will occupy state i.
For simplicity, pick a normalization such that initially, pA = 0
and pB = 1 (where A and B are the two regions described in
Sec. III).

Subdividing states changes the entropy S. If each state is
divided into N states with probability pi/N , entropy increases
by

�S = log N. (17)

Each of the subsequent diffusive averaging operations also
creates entropy. If states with probabilities pi and p j are
averaged, the increase in entropy is

�S = − (pi + p j ) log

(
pi + p j

2

)

+ pi log pi + p j log p j . (18)

FIG. 2. Scaling of the different entropy terms with N .

This is always non-negative. If p j/pi = 1 + δ, Eq. (18) can be
written as

�S = pi

[
δ2

4
+ O(δ3)

]
. (19)

After all of the diffusive steps, transforming back from the
finer discretization to the coarser one will then destroy en-
tropy. In the limit where each of the coarse-grid states will
be constructed out of N identical fine-grid ones, this will
exactly cancel the entropy production given in Eq. (17). If
the fine-grid states are not all equal, it will destroy somewhat
less entropy than was created when the coarse-grid states were
subdivided.

For the procedure described in Sec. III, denote the en-
tropy production due to subdividing the states by �S1; denote
the total entropy produced by diffusive averaging operations
by �S2; and denote the change in entropy when the result-
ing states are recombined back to the coarser discretization
by �S3. As N → ∞, the procedure is able to replicate a
reversible exchange, so it must be true that �S1 + �S2 +
�S3 → 0. In fact, �S1 and �S3 will cancel one another, and
�S2 will vanish on its own. The reason for this essentially fol-
lows from the quadratic scaling given in Eq. (19); increasing
N results in a larger number of diffusive operations between
states with more similar populations. The scaling of these
three terms is shown for N � 100 in Fig. 2.

It is interesting to note that the composition of oper-
ations, that is, the transformations between grids and the
averaging steps, is quite similar to the splitting methods
used in structure-preserving geometric algorithms [42–45]. In
structure-preserving algorithms, higher-order algorithms of a
system can be composed of solutions of subsystems, each of
which may not be an algorithm for the full system. Similarly,
the composition of the microscopic operations proposed here
respects properties over a coarser structure that are not re-
spected by the microscopic operations individually.
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V. CHARACTERISTIC SCALES

As the previous sections demonstrated, entropy production
is strongly dependent on the granularity of the distribution
function. Subdividing a discretization of the distribution func-
tion into successively finer pieces makes the optimal sequence
of diffusive operations produce vanishingly little entropy. This
leads to a question: what does it mean for a discretization to
be fine enough? In other words, is there some characteristic
scale with which to compare the scale of a grid?

Of course, if the objective is to use the finer grid to re-
produce Gardner restacking on the coarser grid, there are
conditions that must be met in order for the coarse dis-
cretization to be a reasonable approximation of the continuous
distribution function in the first place. In particular, if L is
a characteristic length of the coarser discretization, f should
not vary too much over that length scale. If f is smooth, that
condition could be written as L|∇ f | � f .

If f is constant over each discrete region, then it follows
from Sec, III that the only further requirement is that N 	 1;
the net efficiency of the transfer between the regions scales
like 1/

√
πN . However, one might imagine that the scaling

could be different if ∇ f 
= 0.
Consider a generalization of the initial conditions from

Sec. III in which f has some gradient over the region B. Sup-
pose it is still flat over A, so that after A and B are subdivided,

a(0)
i = 0, (20)

b(0)
i = 1 + L f ′

0

N f0

(
i − N − 1

2

)
, (21)

where f ′
0 is constant and L is the characteristic size of the re-

gion B. This choice of b(0)
i retains the property that

∑
i b(0)

i =
N .

The calculation proceeds identically with the new initial
conditions through Eq. (10). b(s+1)

i is a linear function of
each of the b(0)

j , so the corrections due to the gradient can
be calculated independently. In particular, the correction to
Eq. (14) is

1

N

N−1∑
i=0

i∑
j=0

2−i+ j−N �(i − j + N )

�(i − j + 1)�(N )

(
b(0)

j − 1
)

=
[

− 1

2
+ (N + 1)�(2N )

22N�(N )�(N + 1)

]
L f ′

0

N f0
. (22)

Including the correction,

lim
N→∞

1

N

N−1∑
i=0

b(N )
i

=
√

1

πN

[
1 + 1

2

L f ′
0

f0

]
+ O(N−1). (23)

So long as L was chosen to be small enough for the coarser
discrete system to be a reasonable approximation of the con-
tinuous system—more precisely, so long as L � f0/ f ′

0—the
scaling of the convergence for this sequence of diffusive ex-
changes is the same to within a small correction.

FIG. 3. Top panel: Classic bump-on-tail distribution. Middle
panel: Minimum energy state under diffusion exhibiting quasilin-
ear plateau. Bottom panel: Minimum energy state under Gardner
restacking.

VI. BUMP-ON-TAIL DISTRIBUTION

Consider the classic bump-on-tail instability, which fea-
tures an initial distribution with nonzero free energy (top
panel of Fig. 3). Bump-on-tail distributions are unstable to
interactions with waves. This instability, and its saturation, are
major results in the theory of quasilinear diffusion [46].

Consider first the nature of the minimum energy state un-
der Gardner restacking. Interestingly, Gardner restacking does
not, in general, map smooth distributions to smooth distri-
butions. For smooth initial distributions, restacking preserves
uniform continuity [20], but it generates discontinuities in
the derivatives that correspond to local extrema of the initial
distribution (bottom panel of Fig. 3). This makes intuitive
sense. For instance, if one divides an initial one-dimensional
distribution f (x) into monotonic segments, a given segment
will have no influence on the restacked distribution above its
maximum or below its minimum but can abruptly become
important at these values. This can generate discontinuities
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in the derivatives of the restacked f , but not discontinuities in
the restacked f itself.

Compare now the minimum energy state under Gardner
restacking with the minimum energy state under diffusion.
The classic minimum energy state for the bump-on-tail
distribution (middle panel of Fig. 3) assumes only local dif-
fusion, leading to a constant density region that allows the
velocity-space bump to fill in the contiguous, lower-energy,
velocity-space valley. The restacking operations clearly re-
lease considerably more energy than do the local diffusive
operations.

However, in principle, should it be possible to arrange
waves so as to perfectly control the diffusion paths in phase
space, then the diffusion need not be local. For example, one
could imagine an arbitrarily thin diffusion path in phase space
that connects two disjoint regions, so that particles can be dif-
fused between two disjoint regions without affecting the phase
space between them. In that case, in the continuous limit, the
bump-on-tail distribution can instead be transformed to the
restacked distribution (bottom panel of Fig. 3). Of course,
in practice, actually transforming a bump-on-tail distribution
into the restacked distribution using waves would require an
extraordinary degree of control over the waves in the system.

In principle, the minimum energy state allowing arbitrary
diffusion can be found by discretizing the phase space and
searching all possible diffusive operations. However, finding
the optimal diffusion paths, and the sequence in which they
would be used, would be a prohibitively expensive search (NP
hard), with a search space for N discrete elements that has
an O(NN2

) upper bound [5]. On the other hand, the discrete
restacking problem is a sorting procedure that can be com-
pleted in O(N log N ) operations, and thus can approximate the
continuous problem in a tractable way.

VII. DISCUSSION

The key result here is the demonstration that, in the contin-
uous limit, the free energy accessible by diffusive exchanges
between phase space volumes is exactly the Gardner free
energy. Moreover, a prescription of diffusive operations is
constructed for unlocking this energy. In so doing, we reach
the curious result that macroscopic phase-space conservation
can be achieved by ostensibly entropy-producing microscopic
operations.

Whether or not the constructed sequence is the most ef-
ficient sequence of steps, the fact that it leads to a release of
energy that converges to the Gardner restacking limit provides
an upper bound to the number of steps to extract the Gardner
free energy. Specifically, it is shown (in Sec. III) that when
each discrete region is divided into N smaller regions, the
fractional difference between the diffusive free energy and the
Gardner free energy vanishes at least as quickly as O(N−1/2).
It remains unresolved whether the optimal sequence of diffu-
sive exchanges might scale more quickly.

The ability of diffusive exchanges operating on a finer scale
to extract the Gardner free energy on a coarser scale may be
thought of as the converse to the recognition that ostensibly
entropy-preserving, fine-grain, reversible operations can ap-
pear to be diffusive when viewed on a coarse scale. Instead, as
shown here, a reversible exchange between two phase space
volumes can be constructed out of many finer-grained diffu-
sive exchanges.

This converse now provides insight into how operational
constraints can be circumvented by finer granulation of
the phase space to release energy approaching the Gardner
restacking limit. Similar behavior can result from increasing
the volume of the accessible phase space, as can happen when
additional conservation laws are relaxed [7].

The fact that macroscopic phase-space conservation can
be achieved by entropy-producing microscopic operations has
consequences beyond the release of free energy. Any objective
function, not necessarily the free energy, can be optimized
in a similar way through diffusive operations if those op-
erations take place on a fine enough scale. In other words,
whatever can be accomplished by restacking can also be ac-
complished, in principle, by diffusion. For example, just as
Gardner restacking optimized energy extraction by assigning
the highest density phase space volumes to the lowest en-
ergies, so too could the fusion reactivity be maximized, in
principle, by assigning the highest density phase space vol-
umes to the energies closest to where the fusion cross section
is maximal. A second, perhaps more practical example is the
optimal rearrangement of the six-dimensional electron phase
space so as to support the most electric current while incurring
the least power dissipation. This would be a generalization
of driving currents by diffusion of particles by specific RF
waves [47], but with the diffusive operations covering the full
distribution function.

Finally, it is noteworthy that there are deep analogies
between recent advances in structure-preserving algorithms
[42–45] and in the use here of entropy-producing microscopic
operations to produce entropy-preserving macroscopic be-
havior. Some structure-preserving algorithms, which feature
conservation properties that are important for the reliability of
long-time solutions, employ splitting algorithms, which have
similarities to the procedure described here. It can be hoped,
therefore, that the solution offered here of the continuous-
limit, diffusive-exchange problem might also provide useful
insights into these important new computational methods,
which have recently been applied across a variety of areas of
physics.
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