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One of the most successful ways to model the multitude of electron and photon processes in plasmas is the
approach used in collisional radiative (CR) codes. The accuracy of CR codes depends largely on the accuracy
of the rates of each process. These rates are generally well approximated in hot, classical plasmas. However, in
degenerate plasmas quantum effects can influence these rates and must be accounted for. Previous approaches
have developed corrections to the classical rates using the free-electron-gas (FEG) approximation. Here, we
use electronic structures beyond the FEG approximation and show how the collisional rates are affected by
degeneracy in aluminum and iron plasmas. We find that the FEG is a good approximation for aluminum, whereas
more complex electronic structures that include d orbitals, such as iron, deviate from the FEG approximation.
This results in different degeneracy corrections to the collisional rates relative to those for the FEG. Although
the general trend of the corrections to degenerate plasmas is captured by assuming an FEG, we show that more
complex electronic structures can result in deviations, even outside the degenerate regime. This study further
advances the treatment of free-electron quantum effects in collisional radiative models.
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I. INTRODUCTION

The discovery that interacting fermions cannot occupy the
same quantum state, degeneracy, has been a central tenet of
modern physics. This law, the Pauli exclusion principle, forms
the basis of our understanding of a wide range of physical
systems, from the microscopic properties of modern elec-
tronics to the macroscopic behavior of neutron stars [1]. In
plasmas, where high temperatures tend to pervade, the free
electrons are not affected by this constraint, and classical
approaches suffice. Yet there exists a range of plasmas in
which quantum effects in the free-electron distribution cannot
be ignored, referred to as degenerate plasmas. For exam-
ple, these plasmas occur in solids heated to any temperature
below a few times their Fermi energy, highly compressed
matter found in brown dwarfs, and laser-driven nuclear
implosions [2].

Most plasmas consist of atoms and ions with different
charge states and electron configurations. In thermal equilib-
rium, the ratio of these charge states can be approximated by
the Saha-Boltzmann relation [3]. However, this description
does not capture the dynamics that dictate nonequilibrium
and time-dependent effects that give rise to the plasma emis-
sion spectrum. This requires a method that accounts for the
plethora of atomic processes in a time-dependent manner. To
this end, rate equations coupled with detailed energy levels
can be used to calculate all atomic processes in a so-called
collisional radiative (CR) code. CR codes have been ex-
tremely successful at treating a wide range of plasmas, from
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laser fusion to astrophysical objects [4]. Time-dependent CR
codes use tabulated or measured electron energy levels, cross
sections, and oscillator strengths from which the rates of tran-
sitions are calculated at a given temperature and density [5].
The tabulated data used in CR codes comes from experimental
data where available, and calculated parameters from ab initio
atomic codes such as FAC [6] and HULLAC [7]. A detailed
emission spectrum can be calculated with CR codes using the
rates of all the radiating processes. These codes are efficient
and can be coupled to hydrodnamic codes to model the emis-
sion spectra from highly dynamic and nonequilibrium systems
such as laser-driven fusion [8]. One drawback of CR codes is
that microscopic plasma effects (how neighboring electrons
and atoms affect the atomic processes) and their impact on
the rates are not included directly. Previous studies have iden-
tified several mechanisms that can influence the collisional
rates, including increased collisional ionization [9–12] and a
reduction of three-body recombination rates due to the plasma
medium (surrounding potential energy) [13,14]. Other studies
have shown that certain microscopic effects can be included in
a parameterized manner in CR codes for ionization potential
depression [15,16] and spectral line broadening [17].

Recently, it was shown that the rates of collisional pro-
cesses are reduced by an order of magnitude in degenerate
plasmas [4,18–20]. This reduction is attributed to one of the
fundamental laws of quantum mechanics, the Pauli exclusion
principle [1]. This law shapes the degenerate free-electron
distribution and can act to block certain electron transitions
to already filled states (Pauli blocking). The quantum statis-
tics of free electrons, as introduced by Fermi and Dirac in
1926 [21,22], led to the development of the free-electron-gas
(FEG) model [23]. The FEG model can predict the degenerate
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electron energy distribution and Pauli blocking at a given
electron density and temperature. Despite its usefulness, its
applicability is limited due to the assumption of indepen-
dent electrons that do not interact with the ions or other
electrons. Therefore any electronic structure due to ion po-
tentials, crystal structure, or electron-electron interactions is
lost. For example, this may be a reasonable approximation
of the s and p conduction bands in metals. However, this
assumption is not valid for electronic structures that include
d-orbital electrons. A robust and tractable approach to correct-
ing classical rates for degeneracy effects has been previously
demonstrated [4,18,19,24]. Yet to date, these corrections have
used the FEG approximation for free electrons [4,18,19]. This
is a good approximation for simple metals with s and p free-
electron orbitals such as aluminum, however, the electronic
structure varies significantly from an FEG for transition-metal
elements such as iron, which include strongly localized d
orbitals. Calculating the electronic structure of an arbitrary
arrangement of elements in space has been made possible with
density functional theory (DFT). Although DFT can include
degeneracy, bound electrons, and free electrons, modeling the
plasma dynamics that give rise to an emission spectrum is
currently not possible with DFT. This is largely because DFT
does not include the exact electron-electron interaction that
gives rise to collisional ionization or recombination, or the
radiative processes responsible for the plasma emission spec-
trum. All electron-electron interactions not treated in the DFT
framework must be approximated in the so-called exchange-
correlation (XC) functional. The time-dependent DFT can
include external electromagnetic fields, but standard treat-
ments are adiabatic and cannot treat energy exchange between
the field and the plasma. A time-dependent DFT approach
that includes highly accurate nonadiabatic XC functionals
and an external field could, in principle, give accurate time-
dependent information on the electron motion in time and
space. However, radiation from plasma self-emission would
still not be modeled explicitly and would have to be inferred
by tracking the electrons in space and time. Furthermore,
the computational cost of running such a calculation is not
currently practical.

It has been shown that the inclusion of FEG statistics can
change significantly the rates of collisional processes. How-
ever, the question of how more complex electronic structures,
such as iron, affect the rates in degenerate plasmas has not yet
been addressed.

Here, we determine the degeneracy correction factors
for collisional ionization and three-body recombination and
investigate the sensitivity of the correction factors to the free-
electron energy distribution and ionization cross section. Two
elements are chosen for their contrasting electronic structures:
aluminum, as it displays an electronic structure that is well ap-
proximated by an FEG with minor deviations; and iron, as its
electronic structure deviates strongly from that of an FEG. The
density of states (DOS) defines the number of available states
in a given range of electron energies. We calculate the DOS
of aluminum and iron using ground-state DFT calculations.
These electronic structures are used in place of the FEG DOS
to calculate the correction factors of the collisional rates of
ionization and three-body-recombination following previous
formulations [4,18–20,24].

We find that although the normally applied FEG correction
factors are a good first approximation for simple electronic
structures, differences occur for more complex elements, es-
pecially under conditions close to the transition between the
degenerate and the classical regimes. As the correct cross
section under degenerate conditions and its dependence on
temperature and density are largely unknown, we investigate
the sensitivity of the degeneracy corrections on the form of the
cross section. In particular, we show that the weighting of the
cross section on the electron energy increases the magnitude
of the correction factor. The article is outlined as follows:
in Sec. II, we map out the degenerate regime and detail the
methods used to calculate the correction factors; in Sec. III,
we describe the DFT calculations used to obtain the DOS of
aluminum and iron; in Sec. IV, we use the DOS from the DFT
calculations to calculate the correction factors for aluminum
and iron and compare them with those calculated using the
FEG DOS; and in Sec. V we conclude.

II. COLLISIONAL RATES AND DEGENERACY

In this section we detail the calculation of the correction
factor. All atomic processes involving the free-electron dis-
tribution will be affected by degeneracy, however, here we
focus on the two processes which dominate the charge-state
distribution in dense plasmas where degeneracy is most rel-
evant, that is, collisional ionization and the inverse process,
three-body recombination. The rates of these processes are
determined by the distribution of the free electrons, f (E ), and
the cross section of the process in question, σ (E ). Following
closely the formalism of Tallents [18], we express the differ-
ence in rates as the ratio of the degenerate and classical rates.

The first effect of degeneracy we consider is the shape
of the electron energy distribution function. The distribution
of classical particles in energy, E , in thermal equilibrium is
described by Maxwell-Boltzmann (MB) statistics. In SI units
of number density per unit energy (m−3 J−1) the MB electron
energy distribution function is given as

f (E )MB = 2ne√
π

1

(kBTe)3/2

√
E

[
1

exp
(

E
kBTe

)
]
. (1)

Fermi-Dirac statistics give the occupation probability of a
state including the degeneracy of available states for particles
of half-integer spin, such as electrons [term in square brackets
in Eq. (2)]. The DOS of an FEG is given by the term outside
the square brackets in Eq. (2). The distribution of energy of
particles in an FEG is the DOS multiplied by the Fermi-Dirac
probability distribution and is given by

f (E )FEG = 4π

(
2me

h2

)3/2√
E

[
1

1 + exp
(E−μ

kBTe

)
]
, (2)

where ne is the electron number density, me is the electron
mass, h is Planck’s constant, kB is Boltzmann’s constant, μ is
the chemical potential, and Te is the electron temperature.

The chemical potential, μ, in Eq. (2) must be such that the
electron density is conserved. To determine the correct μ for
a given temperature and density, we iterate values of μ until
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FIG. 1. (a) Comparison of electron energy distributions in the
strongly degenerate regime (� = 12) for FEG [solid green line;
Eq. (2)] and MB [dashed black line; Eq. (1)] statistics. (b) Compar-
ison of electron energy distributions in the classical regime (� =
−1) for FEG [solid green line; Eq. (2)] and MB [dashed black
line; Eq. (1)] statistics. The electron density used was ne = 1.8 ×
1023 cm−3, to match that of solid aluminum.

we reach the required density, satisfying the relation∫
f (E )FEGdE = ne. (3)

To quantify the level of degeneracy, we use the parameter

� = μ

kBTe
, (4)

where increasingly positive values of � correspond to in-
creasing degeneracy, and increasingly negative values of �

correspond to increasingly classical plasmas.
Figure 1 shows a comparison of the electron distributions

for Eqs. (1) and (2) at two temperatures representative of the
degenerate and classical conditions. In the degenerate regime
(Te = 1 eV) shown in Fig. 1(a) a striking difference between
the two electron energy distribution functions is evident. The
FEG distribution restricts the occupation at lower energy lev-
els due to degeneracy, whereas the MB distribution does not
restrict electron occupation at lower electron energy levels.
At higher temperatures (Te = 20 eV) the difference between
the FEG and the MB distributions is negligible [Fig. 1(b)].
This shows that considerable differences between f (E )MB and
f (E )FEG can occur at lower temperatures.

In Fig. 2 we show the level of degeneracy, �, using the
FEG approximation and plot it as a function of the elec-
tron temperature and density, which are accessible through

FIG. 2. The degeneracy parameter, �, for a range of electron
temperatures, Te, and electron densities, ne, for an FEG. Possible
conditions of a short pulse laser and XFEL heated solids and shocked
solids are shown with arrows. The dashed line separates the classical
and degenerate regimes. The electron distribution corresponding to
point A and point B is shown in Figs. 1(a) and 1(b), respectively.

laser experiments. The dashed curve corresponds to � = 0,
separating the degenerate and classical plasmas, respectively.
Points A and B correspond to electron distributions under the
same conditions as in Figs. 1(a) and 1(b), respectively.

Femtosecond XFEL heating has become a novel method
of isochorically heating solids to plasma conditions [25,26] or
highly nonequilibrium states [20,27]. Ramp compression has
recently been shown to increase the density to several times
that of a solid at room temperature [28], creating previously
unexplored phases of degenerate matter in the laboratory. In
Fig. 2, it is clear that short-pulse laser heating and compres-
sion experiments both traverse the degenerate regime to some
degree.

Figure 3 compares how degeneracy varies with the tem-
perature and density of iron (the calculation of the DOS of
Fe is presented in Sec. III). In Fig. 3, there is a more abrupt
transition to the classical regime as the temperature increases,
due to differences in the DOS of iron compared to the FEG.

Figures 2 and 3 suggest that, under typical accessible
laboratory conditions, degeneracy effects are important at
temperatures below ∼20 eV. Iron and aluminum in their
solid state have their first ionization energies at around 72
and 52 eV, respectively. The temperatures required to reach
the first ionisation state above their solid state values is
approximately Te = 15 eV for iron and Te = 25 eV for alu-
minum. This could suggest that significant levels of ionization
generally only occur for temperatures that are in the clas-
sical regime. However, the path of converting a solid into
a plasma state always traverses the degenerate regime. For
example, nonequilibrium heating induced by optical lasers
or XFELs typically creates a nonthermal electron distribu-
tion with hot-electron energies well above the collisional
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FIG. 3. The degeneracy parameter, �, for a range of electron
temperatures, Te, and electron densities, ne. Possible conditions of
a short pulse laser and XFEL heated solids and shocked solids are
shown with arrows. The electron distribution corresponding to point
A and point B is shown in Figs. 8(a) and 8(b), respectively.

ionization threshold. In such scenarios, the early stages of
heating are characterized by hot electrons relaxing in a
strongly degenerate plasma, making degeneracy effects im-
portant in nonthermal scenarios. Furthermore, the shape of the
electron distribution can retain quantum features (such as lo-
calized d orbitals) even under conditions considered classical,
� < 0 (discussed further here and in Sec. III).

To investigate how degeneracy affects collisional pro-
cesses, we consider collisional ionization by an incoming
electron of energy E , of a bound electron that requires an
energy Ei, to be ejected. The incoming electron, E , is scattered
to energy E ′ and the ionized electron is scattered to energy E ′′,
yielding the energy balance

E = E ′ + E ′′ + Ei. (5)

The classical collisional ionization rate per second for a
total ionization cross section σ (E )CI, ionization energy EI ,
electron distribution f (E )MB, and velocity v(E ) is given as

RCI
C =

∫
σ CI(E )v(E ) f (E )MBdE . (6)

The classical rate of recombination per second for a three-
body recombination cross section is generally given as

R3BR
C =

∫∫∫
v(E ′)v(E ′′) f (E ′)MB f (E ′′)MBσ

× (E , E ′)3BRdEdE ′dE ′′, (7)

where the differential three-body recombination cross section,
σ (E , E ′)3BR, depends on the energies E and E ′ and is in units
of m4 s.

To calculate the collisional rate for a degenerate plasma,
we include the two principal quantum effects by using a

degenerate electron distribution and the effect of Pauli block-
ing. The degenerate electron distribution is included by
inserting a degenerate form of f (E ) and using the appropri-
ate chemical potential, μ. Aside from the FEG distribution
having a different shape than the MB distribution, another
phenomenon, Pauli blocking, must also be included in the
collisional rate equations. Pauli blocking has its origin in the
same quantum effect that determines the shape of the distri-
bution, the Pauli exclusion principle. This can block electrons
transitioning to already occupied states. To a first approxima-
tion, the effect of Pauli blocking can be calculated once the
Fermi-Dirac distribution is known. The probability, P(E ), of
a vacant final state at energy E can be written as

P(E ) = 1 − 1

1 + exp
(E−μ

kBTe

) , (8)

so that when a state at E is completely vacant, P(E ) ≈ 1, and
when a state at E is fully occupied, P(E ) ≈ 0. Equation (8)
is used to calculate the blocking factors for both the FEG and
the DFT rate calculations. This assumes that the probability of
electron transition is proportional to the degree of occupation
alone. A more accurate approach would be to include the
matrix elements for every possible transition into the block-
ing factor, however, this is likely to be a small refinement
compared to the overall degeneracy correction factor and its
dependence on f (E ) or the cross section.

To include degeneracy effects in the collisional ionization
process, we must include a degenerate electron distribution
function and Pauli blocking for the two outgoing electrons,
E ′ and E ′′. We include a degenerate distribution by insert-
ing Eq. (2) into Eq. (6) and include the blocking factors
from Eq. (8) for all possible outgoing electron configurations
in Eq. (6). For collisional ionization, the degenerate collisional
rate is

RCI
Q =

∫ ∞

Ei

v(E ) f (E )FEGσ (E )CI

×
[∫ E−Ei

0 P(E ′)P(E ′′)dE ′∫ E−Ei

0 dE ′

]
dE . (9)

In Eq. (9), the limits of integration over E begin at the
minimum possible ionization energy Ei and continue to any
available energy above this threshold. Since E ′′ = E − E ′ −
Ei, for any given incoming energy E , there exists a defi-
nite combination of outgoing electron energies E ′ and E ′′
that obey this relation, defining the integration to a one-
dimensional range of E ′ and E ′′ pairs. The integration spans
all possible values of E ′, from 0 to the maximum energy of E ′,
which is E − Ei (this occurs when E ′′ = 0). The introduction
of a further integral over the ejected energy E ′ in Eq. (9)
requires the inclusion of a normalization factor in the denom-
inator,

∫ E−Ei

0 dE ′, when using the total cross section, σ (E )CI.
If the differential cross section is used, this normalization is
not required and the differential cross section, σ (E , E ′)CI, can
be inserted into the integral over E ′ in Eq. (9).
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By similar arguments, the three-body recombination rate
for a degenerate plasma is given as

R3BR
Q =

∫ ∞

Ei

(∫ E−Ei

0 σ (E )3BR∫ E−Ei

0 dE ′ v(E ′)v(E ′′) f

×(E ′)FEG f (E ′′)FEGdE ′
)

P(E )dE . (10)

The recombining electron lies somewhere in the distribution
f (E ′) and transitions to a vacant level at energy Ei. The energy
liberated from this E ′ → Ei transition is given up to an-
other electron, E ′′, in the free-electron distribution that makes
the transition E ′′ → E , and this electron is subject to Pauli
blocking.

We can now express the difference of the collisional pro-
cesses of Fermi-Dirac and Maxwell-Boltzmann statistics as a
simple ratio given by

CFCI = RCI
Q

RCI
C

and CF3BR = R3BR
Q

R3BR
C

. (11)

The rate of collisional ionization is related to its inverse pro-
cess, three-body recombination, through the law of detailed
balance for degenerate plasmas,

R3BR
Q

RCI
Q

= gi

g f
exp

(μ + Ei

kBTe

)
, (12)

where gi and g f are the statistical weights of the initial and
final states, respectively.

We now consider various forms of the collisional ionization
cross section, σ (E ). Some of the most widely used collisional
ionization cross sections are an empirical fit to data from low-
density plasma experiments. These cross sections are usually
given in terms of the total cross section, σ (E )CI, which is only
dependent on the incoming electron energy, E [29]. The form
of the total cross section given by Lotz [29,30] is considered
a good approximation for classical plasmas.

We note that the error in the magnitude of the cross section
does not impact this study because this error is canceled in
the ratio. However, the overall shape of the cross section is
important, as the rate is sensitive to where in the electron
distribution, f (E ), the cross section is weighted. Thus, we
perform this study for two plausible cross-section shapes,
an analytic cross section and a Lotz cross section, to see
how the shape affects the correction factor. This sensitivity
study is essential because we currently do not know ex-
actly how the cross-section shapes are altered under extreme
conditions. The cross sections used here do not incorporate
any dependence on temperature or density. A more com-
plete model of the cross section would take into account
the colliding electron wave functions and their dependence
on the plasma environment. The influence of plasma density
effects on the collisional ionization cross section has been
investigated elsewhere, and it has been shown that the plasma
potential can modify the shape of the collisional ionization
cross section [11,31]. The inclusion of a cross section that is
fully self-consistent with the plasma environment is outside
the scope of this study. However, to illustrate the role of the
cross-section shape in the degeneracy correction factor, we

FIG. 4. The collisional ionization cross section, σ CI(E ), as a
function of the incoming electron energy, E , for the Lotz cross
section [from Eq. (14)] and analytical cross section [from Eq. (13)].

use two significantly contrasting cross-section shapes in the
calculation of the rates.

We have tested cross sections that have a dependence on
the outgoing electron energies for a limited range of condi-
tions and found that the shape and resulting rates are very
similar to those when the cross section of Lotz is used.
However, we have found large differences when deviations
from the shape of the Lotz cross section are more striking.
To highlight the role of the shape of the cross section, we
use two cross sections that have markedly different shapes:
a relatively simple cross section, which we term the analytical
cross section, given by

σ (E )ana = A
4πa2

0Eion

E
, (13)

and the cross section of Lotz [29,30], given by

σ (E )Lotz = ai
ln(E/Ei )

EEi
{1 − bi exp[−ci(E/Ei − 1)]}. (14)

In Eq. (13), A = 0.05 is an arbitrary scaling constant used
to make the cross section on the same scale as the Lotz. In
Eq. (14), ai, bi, and ci are empirical scaling constants and
dependent on the species and ionization level. We use ai =
4πa0R2

y , where a0 is the Bohr radius and Ry the Rydberg en-
ergy. The variable qi is the number of electrons in the ionized
shell. We take the case of aluminum as an example and use the
values of ai, bi, and ci from [29] to show the form of the cross
section in Fig. 4. Interestingly, fluorescence experiments in
the degenerate regime have suggested that correction factors
using the analytical cross section in Eq. (13) give a better fit
to the data [20], whereas the cross section of Lotz in Eq. (14)
is more representative of the generally accepted cross-section
shape, albeit in the classical regime. As the exact form of
the cross section under degenerate conditions remains largely
unknown, we include both the analytical and the Lotz cross
sections to compare the impact of their contrasting shapes on
the correction factors.
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FIG. 5. The three-body recombination cross section, σ 3BR(E ′),
as a function of the recombining electron energy, E ′, for the Lotz
and analytical cross sections. The three-body recombination cross
sections are calculated from the collisional ionization cross sections
given by Eqs. (13) and (14) and using the relation in Eq. (15).
An electron energy of E ′′ = 1 eV and electron density of n′′

e =
1023 cm−3 was used to calculate σ 3BR(E ′). The slope of the ana-
lytical cross section is steeper than that of the Lotz cross section
and favors recombination with lower-energy electrons, giving greater
differences in the three-body recombination rates for the MB and
FEG distributions. For purposes of comparison the analytical cross
section has been divided by 50.

Experiments or calculations of the three-body recombi-
nation cross section are greatly lacking in the literature.
However, we can relate the collisional ionization cross section
to the three-body recombination cross section through the
Fowler relation [32],

σ (E , E ′)3BR = gi

g f

16πme

h3

E

E ′E ′′ σ (E ′, E )CI. (15)

From Eq. (15), it is clear that the differential cross section,
σ (E ′, E )CI, is required to calculate σ (E , E ′)3BR. We assume
no dependence of the cross section on the outgoing electron
energies. The total cross section is calculated from the differ-
ential cross section by∫

σ (E , E ′)dE ′ = σ (E ). (16)

In Fig. 5 we show the three-body recombination cross
section as a function of the recombining electron E ′ for a
given flux of electrons (E ′′ = 1 eV and n′′

e = 1023 cm−3). We
note that the difference between the Lotz and the analytical
cross sections in Fig. 5 is the preferential weighting of lower
electron energies for the analytical cross section. Collisional
ionisation is driven by electrons above Ei in f (E ), whereas
three-body recombination is most sensitive to the lowest-lying
electrons in the f (E ).

In this section we have shown how the degenerate rates
are calculated for FEG and MB distributions. In Sec. III we

outline the calculation of the DOS for real elements outside
the FEG approximation.

III. DENSITY FUNCTIONAL THEORY CALCULATION
OF THE FREE-ELECTRON ENERGY

DISTRIBUTION FUNCTION

In this section we present calculations of the DOS of alu-
minum and iron using density functional theory. In DFT, a
numerical scheme is used to converge to the electron den-
sity that minimizes the total energy. This electron density
is then represented by a set of independent one-electron
(Kohn-Sham) wave functions. These wave functions have a
characteristic energy and crystal momentum. The density of
states is calculated by summing all the available momentum
states (in the first Brillouin zone) within a given energy range.
The number of available states can then be represented as
a function of the energy. Once the DOS is obtained from
the DFT calculation, it can be populated using Fermi-Dirac
statistics at a given temperature and density [Eq. (2)]. The
chemical potential is generally unknown for arbitrary temper-
atures and densities and, therefore, must be found iteratively
using Eq. (3) (conservation of mass) as a constraint.

The applicability of DFT to higher electron temperatures
was first shown by Mermin [33]. In principle, the elec-
tronic structure of the noninteracting electron system can be
exact using the Mermin-Kohn-Sham equations if the appro-
priate temperature-dependent XC functional is known. The
standard ground-state approximation of the XC functional
has been shown to be a reasonable starting point for warm
dense matter studies [34], yet clear deficiencies have also
been demonstrated [35]. For a more detailed discussion on
finite-temperature DFT see [36]. Here, we use the standard
ground-state approximation to the XC functional in the Mer-
min framework of finite-temperature DFT.

Although an exact band-structure match for any given ma-
terial cannot be expected from a standard DFT calculation,
the overall shape of the free-electron DOS is captured with
sufficient accuracy for this study. At solid densities and low
temperatures, the DOS is not expected to differ significantly
from that of a solid, whereas at higher temperatures the shape
of the DOS will change due to ionization and electron delo-
calization. A rigorous treatment would require the DOS to be
calculated at every combination of temperature and density.
However, we have tested the DOS at temperatures of around
Te ≈ 20 eV for solid aluminum and iron, and the overall shape
remains the same as that of a cold solid. The plasma density
also shapes the DOS. We have calculated the DOS at densities
of up to twice that of a solid, and apart from the expected
smearing to higher energy levels, the overall shape remains
the same.

We use the Vienna Ab initio Simulation Package (VASP)
to perform the DFT and corresponding DOS calculations for
aluminum and iron at solid densities of 2.7 and 7.7 g cm−3,
respectively [37–41]. VASP uses a plane-wave basis set with
pseudopotentials to calculate the Kohn-Sham orbitals. The
calculations were carried out with the pseudopotentials sup-
plied with VASP, using the projector augmented wave (PAW)
method [41,42]. The generalized gradient approximation
(GGA) of Perdew, Burke, and Ernzerhof was used as the
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FIG. 6. The DOS of cold solid aluminum calculated using DFT
(noisy solid red line) compared to that of an FEG (solid green line)
(a). The DOS of cold solid-density iron calculated using DFT (noisy
solid blue line) compared to that of an FEG (solid green line) (b).
The electron density of aluminum is taken as 1.8 × 1023 cm−3, and
the electron density of iron is taken as 6.7 × 1023 cm−3.

approximation to the XC energy for aluminum [43]. The GGA
approximation of Ceperley and Adler was used for iron [44].
An 8 × 8 × 8 k-point mesh was generated using the method of
Monkhorst and Pack [45]. Four atoms were arrayed in a face-
centered cubic unit cell for aluminum and a body-centered
cubic for iron. We ignore spin polarization in the calculation
of the electronic structure, as temperatures of interest for
plasmas far exceed the Curie temperature at which ferromag-
netic effects are negligible. Two subshells of bound electrons
have been used in the calculation of the DOS. For iron this
corresponds to the 3s and 3p levels, and for aluminum this
corresponds to the 2s and 2p subshells. Although these bound
electrons are included in the electronic structure calculation,
we only use the free-electron structure for f (E ) in our rate
calculations.

In Figs. 6(a) and 6(b) we present the DOS calculations for
aluminum and iron, respectively. The DOS of aluminum and
iron are compared to the DOS of the FEG in both cases. The
DOS is calculated as an integration over the allowed energy
values that are sampled within the k-point grid. A smoothing
of 0.1 eV is applied to the integration. The noisy appearance of
the DOS is due to the finite k-point sampling. Further increas-
ing the k-point grid increases the DOS accuracy and smooths
the curve. For aluminum, the DOS is well approximated by
the FEG up to about 40 eV, where a partial bandgap appears
[Fig. 6(a)]. The Fermi energy for solid-density aluminum is

FIG. 7. The f (E ) of cold solid-density aluminum for an FEG
(solid green curve), calculated by DFT (noisy solid red curve) and
according to MB statistics (dashed black line). The f (E ) is shown
(a) in the strongly degenerate regime (� = 12, Te = 1 eV) and (b) in
the classical regime (� = −1, Te = 20 eV).

about 11.2 eV; as such, the partial bandgap of aluminum at
40 eV will only be significantly occupied at higher tempera-
tures (Te > 30 eV). For iron, the d orbitals result in peaks in
the DOS that significantly surpass the number of states avail-
able in the FEG model [Fig. 6(b)]. The Fermi energy of iron is
taken as 8.4 eV. The free-electron densities used for aluminum
and iron were 1.8 and 6.7 × 1023 cm−3, respectively. At low
electron energies, between 0 and 3 eV, and energies higher
than ∼20 eV, the iron DOS is well approximated by the
FEG. However, between 3 and 10 eV the strongly localized
d orbitals contribute to a much higher DOS than the FEG.

The DOS determines the availability of electron states;
these states are occupied according to Fermi-Dirac statistics,
which is a function of the temperature and density. To com-
pare the resulting treatments of the f (E ), we present the
f (E ) for the MB, FEG, and DFT approaches for aluminum
in Fig. 7 and for iron in Fig. 8 for two contrasting temper-
ature regimes, Te = 1 eV and Te = 20 eV. For aluminum at
Te = 1 eV [Fig. 7(a)], the difference between the FEG and
the MB is stark, as shown in Fig. 1. This is one of the two
principal reasons to which we attribute the difference in the
rates of collisional processes in the classical and degenerate
regimes, the other being Pauli blocking. The f (E )DFT varies
insignificantly from the f (E )FEG under these conditions. At
Te = 20 eV [Fig. 7(b)] the three treatments of the FEG agree
very well, aside from a small deviation around 40 eV for
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FIG. 8. The f (E ) of cold, solid-density iron for an FEG (solid
green curve), calculated by DFT (noisy solid blue curve) and accord-
ing to MB statistics (dashed black line). The f (E ) is shown (a) in
the strongly degenerate regime (Te = 1 eV) and (b) at a temperature
generally considered to be in the classical regime (Te = 20 eV) (b).
An electron density of 6.7 × 1023 cm−3 was used.

f (E )DFT, which is not of great consequence when calculating
the rates (as the rate is averaged over the distribution).

For iron, which has d orbitals in the electronic structure,
the difference between the various approaches to f (E ) is more
evident (shown in Fig. 8). At Te = 1 eV [Fig. 8(a)], we observe
the expected difference between the f (E )MB and the f (E )FEG,
albeit with an electron density higher than that of aluminum
and hence a higher Fermi level. For f (E )DFT, however, the
presence of localized d orbitals makes peaks in the DOS
at lower energies, highlighting a sharp contrast between the
f (E )DFT and the f (E )FEG approaches. At higher temperatures
[Te = 20 eV in Fig. 8(b)], we observe the convergence of the
f (E )MB and f (E )FEG to similar shapes as expected, however,
the f (E )DFT for iron at this temperature still shows large dif-
ferences due to the d-orbital peaks that accumulate electrons
at lower energies.

We examine how the f (E ) affects the correction factors in
Sec. IV.

IV. CORRECTION FACTORS FOR IRON AND ALUMINUM

In this section we present calculations of the correction
factor, CF, for iron and aluminum and compare them to the
predictions of those when an FEG is assumed. To calculate the
degenerate rates for iron and aluminum, we use the element
specific DOS presented in Sec. III, the Fermi-Dirac probabil-

FIG. 9. Correction factors, CF, versus degeneracy, �, for an
aluminum DOS calculated by DFT (symbols) and an FEG (lines).
Values of CF are shown for three-body recombination (filled sym-
bols) and collisional ionization (open symbols) for the analytical and
Lotz cross sections.

ity distribution function to define f (E ), and the corresponding
blocking factors using Eq. (8).

First, we compare the calculations of the CF for an alu-
minum DOS and the FEG approximation in Fig. 9. The
degenerate and classical regimes can be separated by negative
and positive values of �, respectively. In Fig. 9 the CF values
are shown, calculated using the FEG approximation (shown
as lines) and the aluminum f (E ) (shown as symbols). The
overall trend is a decrease in the collisional ionization and
recombination rate as a function of the increasing degeneracy.
Larger corrections are evident for collisional ionization, which
is attributed to Pauli blocking of the two outgoing electrons
emitted during collisional ionization. As the temperature de-
creases, the ionizing electrons are just above the ionization
energy, resulting in ejected electrons that are more prone to
Pauli blocking. On the contrary, the effect of Pauli blocking
on the three-body recombination rate is minimal for the ion-
ization energies in this study. For example, solid aluminum
has an ionization energy of 72 eV, and during three-body
recombination the ejected electron will have an energy of at
least 72 eV and states at this energy will not be occupied
or subject to Pauli blocking. Figure 9 suggests that the CF
values calculated using f (E )DFT and f (E )FEG are very sim-
ilar. Only small differences, which are orders of magnitude
smaller than the total correction factor, occur for the analytical
cross-section values. Comparing the electron distributions of
the FEG and aluminum, despite small differences at around
40 eV, they are very similar and the impact on the CF values
are minimal. This shows that the FEG approximation is valid
for calculating degeneracy correction factors of elements with
simple free-electron structures, such as aluminum.

In Fig. 10, we compare the CF values calculated with the
FEG approximation to those calculated using the iron DOS.
In the degenerate regime (� > 5), the values of CF calculated
using the FEG and the iron DOS from DFT are somewhat
comparable, yet differences are evident. The CF values of
three-body recombination are about three times lower than the
FEG approximation for both cross sections. For collisional
ionization, the iron CF values are about 5 times lower than
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FIG. 10. Correction factors, CF, versus degeneracy, �, for an
iron DOS calculated by DFT (symbols) and an FEG (lines). CF
values are shown for three-body recombination (filled symbols) and
collisional ionization (open symbols) for two different cross sections.

the FEG approximations. To understand this, we recall that
for the same ne and Te, the chemical potential, μ, is uniquely
defined by the DOS and is element dependent (see Figs. 2
and 3). Therefore, two different elements with the same � will
have different temperatures. For example a solid iron plasma
with a degeneracy of � = 8.4 has a temperature of Te = 1 eV,
whereas an FEG plasma with the same electron density and
a degeneracy of � = 8.4 has a temperature of Te ≈ 3.3 eV.
The lower CF values in the region where � > 5 for iron
are therefore due to the lower temperatures for the same �

compared to the FEG. The lower temperatures correspond
to lower degenerate collisional rates for iron and, therefore,
smaller CF values relative to the FEG.

In the lower and intermediate degeneracy regime, from
� = −3 to � = 2, we note a deviation from the general FEG
trend in Fig. 10. In this region, from � = −3 to � = 2,
the three-body recombination correction factors are higher
than those predicted by the FEG approximation for both the
Lotz and the analytical cross sections. Convergence to the
classical rate (CF ≈ 1) occurs at high temperatures with the
FEG, but divergence from this trend is evident for three-body
recombination in Fig. 10 for iron and has not been previ-
ously reported. To gain insight into this behavior we examine
the f (E ) for iron in the degenerate regime [Fig. 8(a)] and
the classical regime [Fig. 8(b)]. In the degenerate regime
[Fig. 8(a)], f (E )MB allows many more electrons at lower
energies than the f (E )FEG or f (E )DFT distributions; hence
the reduction of three-body recombination in the degenerate
regime. In the classical regime shown in Fig. 8(b) the large
number of states available in the d orbitals in the f (E )DFT

results in an accumulation of electrons at lower energies.
This accumulation does not occur in f (E )FEG. The favoring
of lower electron energies in the three-body recombination
process (see Fig. 5) increases the rate of three-body recombi-
nation to above the classical one, leading to values of CF � 1.
The persisting differences between the classical and the de-
generate electron energy distributions in iron even at higher
temperatures explain the absence of conversion to unity of the
CF for three-body recombination in the classical regime. For
collisional ionization, however, the cross-section sensitivity to

the electron energy is less pronounced (see Fig. 4) and the
convergence of the classical and degenerate rates is observed
at higher temperatures, CF ≈ 1.

V. CONCLUSIONS

Free-electron degeneracy is prevalent in a multitude of
terrestrial and astrophysical plasmas. It shapes the elec-
tron energy distribution and can block energy transitions
due to quantum effects. These effects can inhibit colli-
sional processes such as impact ionization and three-body
recombination. We have followed the approach of previous
studies [4,18,19] and calculated correction factors to classi-
cal collisional rates in order to account for degeneracy in a
tractable manner. We find a reduction in the collisional rates
with increasing degeneracy, which is far more drastic for
collisional ionization due to Pauli blocking of the outgoing
electrons. Three-body recombination, however, is not sensi-
tive to Pauli blocking for ionization energies greater than a
few times the Fermi level. Unlike other studies that assume an
FEG, we have used more realistic electronic structures from
DFT to calculate the correction factors. Comparing the correc-
tion factors of the FEG and aluminum, only minor differences
are noted. This is unsurprising, as the FEG is representative
of typical s-p metals, such as aluminum. This is evident in
Fig. 7, where we compare the electron distributions of DFT,
MB, and FEG at two temperatures. Therefore, for similar
electronic structures the FEG is an appropriate approximation
for the degeneracy correction factors of the collisional rates.
However, for elements that exhibit a strong deviation from
the FEG approximation, such as iron, the corrections can
deviate significantly from those calculated using the FEG.
These differences occur for two reasons: first, the differences
in μ for iron and the FEG under the same conditions, causing
an overall shift in the degeneracy parameter, �; and second,
the difference in electron distributions, f (E ), between iron
and the FEG results at different collisional rates for both
distributions.

In particular, in the transition between the classical and
the degenerate regimes, � ≈ −2.5 to 1, the three-body re-
combination is above that predicted classically due to the
accumulation of electrons at lower energies for iron, favoring
three-body recombination. This demonstrates the persistence
of quantum effects even in regimes considered to be nonde-
generate, highlighting the need for careful consideration of
quantum corrections even under conditions normally consid-
ered classical. The implication of this is, for example, that an
iron plasma at solid density and Te = 20 eV would have a
three-body recombination rate about three times higher than,
and a collisional ionization rate about one-half, the rate pre-
dicted by classical theory, resulting in a plasma that is far
less collisionally ionized than predicted classically. Experi-
mental data exist for degeneracy effects in aluminum [20],
whereas experimental evidence of this effect for more com-
plex elements such as iron is absent. In the degenerate regime,
the standard correction factors calculated using the FEG
model already present a significant improvement in accuracy
compared to classical predications. The role of the plasma
density in shaping the collisional cross sections can be ac-
counted for in certain respects, for example, lowering the
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ionization energy through ionization potential depression.
However, changes in the shape of the cross section in high-
energy-density plasmas are more difficult to account for.
Including degeneracy effects in the free-electron distribution
constitutes a significant improvement in the calculation of the
collisional rates, yet subtle density effects in the cross-section
shapes are not accounted for. Using the DOS from DFT for the
free-electron distribution over a wider range of temperatures
and densities requires an individual calculation for each set of
conditions, including bound states. Encouragingly, in modern
DFT codes a DOS calculation that captures the important fea-
tures of the DOS is not computationally prohibitive. Further
experiments will determine the accuracy of predictions for
other elements and guide CR codes to be more accurate in
a wider range of plasma conditions.
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