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Langevin dynamical simulations are performed to study the depinning dynamics of two-dimensional dusty
plasmas on a one-dimensional periodic substrate. From the diagnostics of the sixfold coordinated particles P6

and the collective drift velocity Vx , three different states appear, which are the pinning, disordered plastic flow,
and moving ordered states. It is found that the depth of the substrate is able to modulate the properties of the
depinning phase transition, based on the results of P6 and Vx , as well as the observation of hysteresis of Vx while
increasing and decreasing the driving force monotonically. When the depth of the substrate is shallow, there are
two continuous phase transitions. When the potential well depth slightly increases, the phase transition from
the pinned to the disordered plastic flow states is continuous; however, the phase transition from the disordered
plastic flow to the moving ordered states is discontinuous. When the substrate is even deeper, the phase transition
from the pinned to the disordered plastic flow states changes to discontinuous. When the depth of the substrate
further increases, as the driving force increases, the pinned state changes to the moving ordered state directly, so
that the disordered plastic flow state disappears completely.
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I. INTRODUCTION

Many driven systems can be characterized by a collection
of interacting point particles that passes through disordered or
ordered substrates under a uniform force [1,2]. Examples of
these systems include vortex lattices in superconductors with
periodic arrays of pinning sites [3], arrays of nanostructured
pinning sites [4], colloidal monolayers driven across ordered
surfaces [5], Wigner crystals [6], and pattern-forming sys-
tems [7,8]. It was discovered that these systems could exhibit
critical depinning transitions [2] when an applied uniform
force is combined with a substrate. When the external driv-
ing force, Fd , is too small to overcome the confinement by
the substrate, the system is trapped in one of many possible
metastable configurations. As the external driving force, Fd ,
gradually increases, the initial configuration becomes unstable
and moves, and may be stopped frequently by the elastic
forces. As Fd increases further, the system can “avalanche”
and move at higher speeds [2]. The transitions between these
different states can be characterized by the critical depinning
thresholds [1,2].

Dusty plasma, a collection of highly charged micron-sized
dust particles in a partially ionized gas [9–17], can also be
coupled to a substrate, as studied in Refs. [18–20]. Under typ-
ical laboratory conditions, these dust particles are charged to a
high negative charge of ∼ − 104e, and they can self-organize
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into a single layer plane, i.e., forming a two-dimensional dusty
plasma (2DDP) [21,22]. In experiments, these highly charged
dust particles are strongly coupled, exhibiting collective solid-
like [23–25] or liquidlike behaviors [26–28]. Substrates have
been experimentally realized in 2DDPs using a striped elec-
trode, as demonstrated in Refs. [29,30]. Recently, the coupling
of 2DDP with a one-dimensional periodic substrate (1DPS)
has been studied using simulations, which focused on the
phonon spectra [18], the structural transitions [19], and also
the diffusion [19,20]. If a uniform force is applied on all parti-
cles of 2DDP with 1DPS, for example using the laser radiation
force in experiments [31], then the depinning dynamics can
be investigated. The depinning dynamics of one row of dust
particles in each potential well of 1DPS was investigated in
Ref. [32] using simulations, and it is found that, for a certain
range of the substrate depth, three different states appear as
the external force increases gradually from zero, which are
the pinned, disordered plastic flow, and moving ordered states.
However, for different configurations of 2DDP under 1DPS,
such as for two rows of dust particles in each potential well of
1DPS, the depinning dynamics would be more complicated,
as studied here.

A subsequent question is whether the depinning process of
2DDP on 1DPS exhibits continuous or discontinuous phase
transitions. When the system interacts with the substrate, the
different depinning dynamical phases can be identified by the
structural symmetry, while the breaking of these symmetries
can characterize these phase transitions [1]. The phase transi-
tions might be second order or continuous in nature, or they
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might be first order and be accompanied by hysteresis [33,34].
It is also possible for various mixed first-order and second-
order transitions or simple crossover behaviors to exist [1]. For
the depinning dynamics of 2DDP under 1DPS, as the depth of
the substrate increases, the phase transition mechanism might
change from one form to another, as we study here.

The rest of this paper is organized as follows. In Sec. II, we
briefly introduce our Langevin dynamical simulation method
to mimic 2DDP under 1DPS while subjected to a driving
force Fd . In Sec. III, we present the structural and dynamical
measures of our system, including the collective drift velocity
Vx along the direction of the driving force, the measurement
of particle structural stability P6, the hysteresis of Vx, and the
kinetic temperature. Finally, in Sec. IV, we present a brief
summary.

II. SIMULATION METHODS

Without substrates, traditionally, 2DDP can be character-
ized by two dimensionless parameters [35,36], the coupling
parameter � = Q2/(4πε0akBT ) and the screening parameter
κ ≡ a/λD. Here a = (πn)−

1
2 is the Wigner-Seitz radius [37]

with areal number density n, T is the particle kinetic tem-
perature, Q is the charge of each dust particle, and λD is the
screening length.

We use Langevin dynamical simulations to investigate the
depinning dynamics of 2DDP on a 1DPS, using the equation
of motion [18,19,32,38],

mr̈i = −∇�φi j − νmṙi + ξi(t ) + Fs + Fd , (1)

for the dust particle i. Here, the first term on the
right-hand side of Eq. (1), −∇�φi j , is the binary
Yukawa interaction [39] between dust particles, φi j =
Q2exp(−ri j/λD)/4πε0ri j , where ri j is the distance between
dust particles i and j. The terms of −νmṙi and ξi(t ) are
the frictional drag and the Langevin random kicks [40,41],

respectively. We assume that the 1DPS has the form of

U (x) = U0 cos(2πx/w), (2)

so that the force from the 1DPS is Fs = − ∂U (x)
∂x x̂ =

(2πU0/w) sin(2πx/w)x̂, which is in the x direction. Here
U0 and w are the depth and width of the potential well, in
units of E0 = Q2/4πε0a and b, respectively, where b is the
lattice constant, and for our studied 2D triangular lattice b =
1.9046a. The last term on the right-hand side of Eq. (1), Fd , is
the external driving force, in units of F0 = Q2/4πε0a2. Note
that we use the inverse nominal 2D dusty plasma frequency,
ω−1

pd = (Q2/2πε0ma3)−1/2, to normalize the timescale and use
either the Wigner-Seitz radius a or the lattice constant b to
normalize the length scale [35,37].

We simulate N = 1024 particles constrained within a
61.1a × 52.9a 2D plane with periodic boundary conditions.
Since the size in the x direction is 61.1a = 32.07b, to satisfy
the periodic boundary conditions, we specify the width of
the potential well as w/b = 2.004, which corresponds to 16
full potential wells. For the depth of the potential well, we
consider four different values, U0/E0 = 0, 0.01, 0.05, 0.10,
and 0.25. To reduce the temperature effect on the depinning
dynamics, we fix the conditions of the simulated 2DDP at � =
1000 and κ = 2, corresponding to the typical solid or crystal
state in the absence of substrates or external forces [42]. The
gas damping rate is chosen to be comparable to the typical
experimental value of ν/ωpd = 0.027. For each simulation
run, we integrate � 107 steps of Eq. (1) with a time step of
0.0028ω−1

pd (or 0.0007ω−1
pd only for U0/E0 = 0.25) to obtain

the positions and velocities of all particles. We also performed
a few test runs with 4096 particles to verify that all results
reported here are not affected by the total particle number.
Other simulation details are the same as in Ref. [32].

III. RESULTS

In the depinning procedure of 2DDP on 1DPS, when the
driving force increases gradually, three typical dynamical
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FIG. 1. Snapshots of particle positions (dots) for a 2D Yukawa crystal with � = 1000 and κ = 2 under the 1DPS (curve) of U (x) =
U0 cos(2πx/w) (U0/E0 = 0.10 and period w = 2.004b) while experiencing different external driving forces. When Fd/F0 = 0 in (a), the system
is in the pinned state, so that the particles are neatly arranged in two rows within one potential well of the substrate. When Fd/F0 = 0.04 in
(b), the system is in the disordered plastic flow state. When Fd/F0 = 0.08 in (c), the system is in the moving ordered state, so that the particles
are distributed in an ordered triangular lattice, independent of the locations of the potential wells.
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states appear, which are the pinned state, the disordered plastic
state and the moving ordered state, respectively, as shown in
Fig. 1. When the driving force is very small, all of the particles
are pinned around their equilibrium locations due to the 1DPS,
so that the particles are neatly arranged in two rows within
one potential well of the substrate. When the driving force
is larger, some particles can escape from the 1DPS and the
cages formed by their neighbors, forming a disordered plastic
state. When the driving force on each particle is high enough
to overcome the 1DPS, all particles move with a constant rate
of increase in the velocity along the direction of the driving
force, and these particles are distributed in an ordered triangu-
lar lattice, independent of the potential wells. Note that these
three states are similar to the states observed for supercon-
ducting vortices [43], a defective flux-line lattice [44], vortex
lattices [45], Skyrmions [46], and the depinning of 2DDP with
only one row of particles within one potential well [32].

A. Continuous and discontinuous phase transitions

We calculate the static structural measure of the sixfold
coordinated particles P6 as the driving force Fd increases for
five different values of U0/E0, as shown in Fig. 2. Here P6

is defined as P6 = 〈∑Nd
i=1 δ(6 − zi )〉/Nd [34], where zi is the

coordination number of particle i obtained from the Voronoi
construction. For a perfect triangular lattice, P6 = 1.0, while,
for a more disordered system, the value of P6 is reduced.

We find that in our simulated system, the depinning dy-
namic state depends on not only the magnitude of the driving
force but also the depth of the substrate, as shown in Fig. 2.
When U0/E0 = 0.05 and 0.10, from Fig. 2, as the driving
force increases from zero, the value of P6 varies over three
distinctive ranges, which correspond to the pinned, disordered
plastic flow, and moving ordered states in Fig. 1. When the
driving force is very small, for the two depths of the sub-
strate U0/E0 = 0.05 and 0.10, P6 ≈ 0.65, corresponding to the
pinned state. Here, within each potential well, the particles
are pinned around the bottom to form two rows, as shown in
Fig. 1(a). As the driving force increases gradually, the value
of P6 decreases substantially to a lower value of around 0.35,
which is a typical value for a disordered plastic flow state.
Thus, the lower value of P6 of around 0.35 for U0/E0 = 0.05
and 0.10 in the middle range of the driving force in Fig. 2
correspond to the disordered plastic flow state in Fig. 1(b).
When the driving force increases enough to completely over-
come the constraint from the 1DPS, P6 suddenly increases to
a higher value of around 0.9, corresponding to the moving
ordered state in Fig. 1(c).

When the substrate depth is fairly deep, for example,
U0/E0 = 0.25, as shown in Fig. 2, we find that the second
disordered plastic flow state disappears completely. As the
driving force Fd gradually increases from 0, the value of P6

stays around the initial low value of about 0.45 until Fd/F0 >

0.10 and then suddenly jumps directly to around 0.9. We do
not find a decrease in the P6 from our data analysis, suggesting
that the second disordered plastic flow state is not present.
Note that the initial value of P6 is lower than what is found
for shallower substrate depths because the 1DPS can more
strongly distort the arrangement of the particles.

driving force F /Fd

selcitrap detanidrooc dlofx is fo noitcarf
P 6

0

U /E =0.250 0

U /E =0.100 0

U /E =0.050 0
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U /E =00 0

FIG. 2. The fraction of sixfold coordinated particles [34] P6

as the external driving force Fd increases from zero for different
substrate depths of U0/E0 = 0, 0.01, 0.05, 0.10, and 0.25. When
U0/E0 = 0.01, 0.05, and 0.10, as Fd increases from 0, three different
states can be clearly observed, which are the initial high value of P6

(well above 0.6), then a low value of around 0.45 or even lower, and,
finally, the high value again (above 0.8). For U0/E0 = 0.05 and 0.10,
these three values of P6 correspond to the pinned, disordered plastic
flow, and moving ordered states observed in Fig. 1. However, when
U0/E0 = 0.25, as Fd increases from 0, the value of P6 jumps from
the initial value of 0.45 directly to around 0.9. This structure measure
also reflects the property of the phase transition. For U0/E0 = 0.01,
as Fd increases from 0, P6 drops continuously to about 0.45 and then
continuously returns to its initial high value, suggesting that the two
phase transitions are both continuous. Similarly, for U0/E0 = 0.05,
as Fd increases from 0, P6 drops continuously to about 0.35 and
returns suddenly to a high value of >0.8, suggesting that the first
phase transition is continuous, while the second is discontinuous. For
U0/E0 = 0.10 and 0.25, all of the phase transitions are discontinuous.

When the substrate depth is very shallow, for example,
U0/E0 = 0.01, as shown in Fig. 2, the process is slightly
different. In the initial state, we find a fairly high P6 ≈ 0.85.
This is completely different from what we observe in the
pinned state for other substrates because the shallow potential
well can only exert a weak constraint on the particles. When
the external force increases, the stability of the system is
destroyed and P6 decreases to a low value of around 0.45,
corresponding to the disordered plastic flow state. As the
external force further increases, P6 increases back to about
0.85, which suggests that the particles have rearranged into
an ordered triangular lattice, independent of the potential well
locations. Note that in the initial and final moving ordered
states, the value of P6 is nearly unchanged and is given by
P6 ≈ 0.85.

From Fig. 2, the continuous or discontinuous property of
the phase transition is visible from the variation of the value of
P6. For U0/E0 = 0.01, as Fd increases from 0, P6 diminishes
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FIG. 3. The collective drift velocity Vx = N−1
d 〈∑Nd

i=1 vi · x̂〉, as
the external driving force Fd increases from zero for different sub-
strates of U0/E0 = 0, 0.01, 0.05, 0.10, and 0.25. The units of Vx are
V0 = (Q2/4πε0ma)1/2. For the shallowest substrate U0/E0 = 0.01,
we find that the collective drift velocity increases continuously and
almost overlaps with the zero-substrate curve, showing only a small
deviation when Fd/F0 ≈ 0.18. For the substrate with U0/E0 = 0.05,
when the external driving force increases gradually, Vx increases con-
tinuously from the initial pinned state to the second disordered plastic
flow state and then increases discontinuously or suddenly to the
final moving ordered state. For the substrate with U0/E0 = 0.10, Vx

increases discontinuously from the initial pinned state to the second
disordered plastic flow state and then increases discontinuously to the
final moving ordered state. For the substrate with U0/E0 = 0.25, Vx

increases discontinuously from the initial pinned state directly to the
final moving ordered state, without passing through the disordered
plastic flow state.

continuously to about 0.45 and then continuously returns to
its initial high value, suggesting that these two phase transi-
tions are both continuous. Similarly, for U0/E0 = 0.05, as Fd

increases from 0, P6 drops continuously to about 0.35 and then
suddenly returns to a high value of > 0.8, suggesting that the
first phase transition is continuous while the second transition
is discontinuous. For U0/E0 = 0.10 and 0.25, all of the phase
transitions shown in Fig. 2 are discontinuous.

Our results on the collective drift velocity Vx for various
substrates as a function of the external driving force are
presented in Fig. 3. Here we calculate the collective drift
velocity using Vx = N−1

d 〈∑Nd
i=1 vi · x̂〉. The unit of Vx is V0 =

(Q2/4πε0ma)1/2. For the typical values of U0/E0 = 0.05 and
0.10, when the external force is small, the collective drift ve-
locity is almost zero, corresponding to the pinned state. As the
external force gradually increases, the collective drift velocity
increases relatively steeply, corresponding to the disordered
plastic flow state. Finally, when the external force is very
large, the collective drift velocity increases linearly with Fd ,
corresponding to the moving ordered state [32]. Note that,

as found in Ref. [32], for the final moving ordered state, the
collective drift velocity Vx also increases linearly with the
external driving force Fd at a fixed slope of νm, independent
of the 1DPS.

Our previous conclusion about the continuous or discon-
tinuous property of the phase transition observed from the
static structural measure of P6 above is further verified by the
collective drift velocity Vx results in Fig. 3. There are three
types of dynamical states in Fig. 3. Two of them can be easily
identified as the initial pinned state where the collective drift
velocity is zero and the final moving ordered state where the
collective drift velocity increases linearly with Fd . Other data
points between these two lines belong to the plastic flow state.

For the substrate with U0/E0 = 0.05, as the driving force
increases gradually, the increase of Vx from the initial pinned
state to the second disordered plastic flow state is continuous,
while the later increase of Vx from the disordered plastic flow
phase to the final moving ordered state is discontinuous or
abrupt. For the substrate with U0/E0 = 0.10, the two-step
increases of Vx from the initial pinned state to the disordered
plastic flow state, and then to the final moving ordered state,
are both discontinuous as a function of increasing driving
force. For the deep substrate of U0/E0 = 0.25, Vx remains
zero until the driving force increases to more than 0.1, and
then Vx suddenly jumps directly from 0 to the final linear
range with increasing Fd , i.e., directly from the initial pinned
to the final moving ordered state, without passing through
the disordered plastic flow state. Note that in addition to the
static structural measures and the collective drift velocity, we
provide the trajectories of our simulated 2DDP under this
1DPS, as presented in the supplemental material [47].

For the shallow substrate of U0/E0 = 0.01, we find that the
collective drift velocity always increases continuously and al-
most overlaps with that of the zero-substrate case, with only a
small deviation when Fd/F0 ≈ 0.18, as magnified in the inset
of Fig. 3. This feature suggests that for this sample the depin-
ning process involves collective motion of all of the particles,
which is quite different from the typical plastic depinning
process from the initial pinned state for the other cases studied
here. Based on the combination of the linear increase of Vx

with Fd in the initial state in Fig. 3 with the corresponding P6

result in Fig. 2 for U0/E0 = 0.01, we determine that all of the
particles begin to move in the direction of the driving force as
a rigid object, as the final moving ordered state. This initial
state is transient, however, since its structure and collective
drift velocity are partially modified when Fd/F0 ≈ 0.18.

Clearly, the continuous or discontinuous property of Vx at
each transition observed from Fig. 3 is consistent with that
presented in P6 in Fig. 2. Our conclusion is based on both the
static structural and dynamical measures from our simulations
of 2DDP on the 1DPS.

B. Hysteresis of the collective drift velocity

For a physical procedure, the hysteresis generally results
from the lagging of the system response to an external
modification. Typically, a process with hysteresis shows
an overshoot during its evolution [48]. As described in
Refs. [1,2,49], when an overshoot is present, the critical depin-
ning threshold is reduced, so that an originally nonhysteretic
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FIG. 4. The hysteresis of the collective drift velocity Vx as the
external driving force Fd increases and decreases monotonically
for different substrate depths of U0/E0 = 0.01, 0.05, 0.10, and
0.25. When Fd increases and decreases monotonically, our focus is
whether this discontinuous phase transition will exhibit hysteresis.
When U0/E0 = 0.01 in (a), there is no hysteresis around either of
the two continuous phase transitions. When U0/E0 = 0.05 in (b),
the hysteresis around Fd/F0 = 0.03 is associated with the discon-
tinuous phase transition. However, when Fd/F0 ≈ 0.005, there is no
hysteresis, suggesting that the phase transition from the pinned to the
disordered plastic flow state is continuous. When U0/E0 = 0.10 in
(c), significant hysteresis appears near the two discontinuous phase
transitions. When U0/E0 = 0.25 in (d), we find a single large hys-
teresis loop, suggesting that there is only one discontinuous phase
transition from the pinned to the moving ordered state.

depinning transition becomes increasingly hysteretic. Here we
investigate whether the hysteresis feature exists in the depin-
ning of 2DDP with 1DPS.

From Refs. [2,3,33], the hysteresis feature is directly re-
lated to the property of the depinning phase transition. For
the first-order, or discontinuous, phase transition, when the
static structural or dynamical measures both show abrupt
jumps, hysteresis would in principle be expected to appear,
whereas for a second-order, or continuous, phase transition,
there should not be any hysteresis. We next present the overall
drift velocity Vx, as the driving force Fd increases and de-
creases monotonically in our simulations.

Our results on the hysteresis of the collective drift velocity
as the driving force increases and decreases monotonically
from our simulations are presented in Fig. 4. Here Fd

↑ rep-
resents the increase of Fd/F0 from 0 to 0.125, while Fd

↓
represents the decrease of Fd/F0 from 0.125 back to 0. When
Fd increases and decreases monotonically, our focus is on
whether the phase transition would exhibit hysteresis. For
U0/E0 = 0.01 in Fig. 4(a), as Fd either increases or decreases
monotonically, Vx always follows the same trace without any

hysteresis. For U0/E0 = 0.05 in Fig. 4(b), there is a single
hysteresis loop when Fd/F0 is around 0.03, corresponding
to the transition between the disordered plastic flow and the
moving ordered state. For U0/E0 = 0.10 in Fig. 4(c), there
are two obvious hysteresis loops. A smaller loop is centered at
Fd/F0 ≈ 0.02, while the larger loop is near Fd/F0 ≈ 0.04. For
U0/E0 = 0.25 in Fig. 4(d), there is a single huge hysteresis
loop when 0.4 � Fd � 0.10, corresponding to the transition
between the pinned state and the moving ordered state.

As our chief conclusion in this paper, we discover both
first-order and second-order depinning phase transitions in
the 2DDP under 1DPS from our simulations. The first-
order depinning transition exhibits a discontinuity in the
structural or dynamical measures when the external driv-
ing force increases, and hysteresis appears when the driving
force decreases or increases monotonically. However, for the
second-order depinning transition, the structural or dynamical
measures are always continuous, and there is no hysteresis.

Clearly, both the hysteresis in Fig. 4 and the discontinuities
in P6 and Vx in Figs. 2 and 3 indicate that the transition from
the plastic flow to the moving ordered state for the substrate
with U0/E0 = 0.05, the two transitions for the substrate with
U0/E0 = 0.10, and the single transition for the substrate with
U0/E0 = 0.25 are first order. The lack of hysteresis in Fig. 4
and the continuity of P6 and Vx in Figs. 2 and 3 indicate that
the two transitions for the substrate with U0/E0 = 0.01 and
the transition from the pinned state to the plastic flow state for
the substrate with U0/E0 = 0.05 might be second order.

C. The property of kinetic temperature

To explore the underlying dynamical characteristics of
the depinning phase transition of 2DDP under 1DPS, we
also calculate the kinetic temperature in Fig. 5 using kBT =
m〈∑N

i=1 (vi − v)2〉/2. Here we use only the fluctuation of the
velocity, while the collective drift motion during the depinning
process is removed. We express the kinetic temperature in
units of T0 = Q2/4πε0a.

The kinetic temperature at the depinning of our simulated
2DDP also reflects the continuity and discontinuity of the
phase transitions. For the substrate with U0/E0 = 0.01, as the
driving force increases from zero, the kinetic temperature in-
creases gradually to its maximum value when Fd/F0 ≈ 0.018,
then decreases gradually, as shown in Fig. 5(a). This gradual
variation of the kinetic temperature probably suggests that
the two transitions from the pinned to the disordered plastic
flow phase, and then to the final moving ordered phase, are
both continuous. For U0/E0 = 0.05 in Fig. 5(b), as the driving
force increases from zero, the kinetic temperature increases
gradually to its maximum value when Fd/F0 ≈ 0.033 and
then decreases abruptly, suggesting that the transition from the
pinned state to the plastic flow phase is continuous, while the
transition from the plastic flow to the moving ordered phase is
first order. For U0/E0 = 0.10 in Fig. 5(c), as the driving force
increases to Fd/F0 ≈ 0.021, the kinetic temperature jumps
suddenly to a higher nonzero value, increases smoothly to its
maximum when Fd/F0 ≈ 0.049, and then decreases abruptly
to a value of nearly zero. This variation of the kinetic temper-
ature suggests that the two transitions from the pinned to the
plastic flow state and then to the final moving ordered state

063203-5



L. GU et al. PHYSICAL REVIEW E 102, 063203 (2020)

0.00 0.02 0.04 0.06 0.08

0.00
0.02
0.04
0.06
0.08

0.00
0.05
0.10
0.15
0.20

0.0 0.2 0.4 0.6 0.8 1.0
0.001
0.002
0.003
0.004
0.005

(a)

(b)

(c)

(d)

U /E = 0.050 0

U /E = 0.100 0

U /E = 0.250 0

B

B x B y

U /E = 0.010 0

0.002
0.004
0.006
0.008
0.010

0.000 0.005 0.010 0.015 0.020 0.025 0.0350.030

driving force F /Fd 0
K T K T

erutarep
met cit enik

T/
T 

K
0

FIG. 5. The kinetic temperature kBTx and kBTy as a function of
increasing driving force Fd for different substrate depths of U0/E0 =
0.01, 0.05, 0.10, and 0.25. The kinetic temperature is calculated using
kBT = m〈∑N

i=1 (vi − v)2〉/2, so that the collective drift motion is
removed. The kinetic temperature is in the units of T0 = Q2/4πε0a.
For the substrate with U0/E0 = 0.01, the kinetic temperature change
at the two depinning transitions is continuous. For U0/E0 = 0.05
in (b), we find that the kinetic temperature of the first depinning
transition from the pinned to the disordered plastic flow state in-
creases continuously, while at the second depinning transition from
the disordered plastic flow phase to the moving ordered state, both
kBTx and kBTy drop abruptly. For U0/E0 = 0.10 in (c), there are two
abrupt jumps of kinetic temperature at the two depinning transitions.
For U0/E0 = 0.25 in (d), the variation of kBTx and kBTy are no longer
synchronized, unlike what is found in (a), (b), and (c). We find that,
when Fd/F0 ≈ 0.1 and the initial pinned state transitions directly
to the moving orderly state, the value of kBTx increases steeply to
its maximum and then decays gradually as Fd increases further;
however, the value of kBTy does not change substantially.

are both first order. Note that, for Figs. 5(a)–5(c), the kinetic
temperatures of kBTx and kBTy, due to the motion in both x
and y directions, is clearly synchronized. Compared with the
high magnitude of the collective drift velocity in only the x
direction as shown in Fig. 3, the small anisotropic effects on
kBTx and kBTy in Figs. 5(a)–5(c) are nearly negligible.

The kinetic temperature we obtain for the substrate with
U0/E0 = 0.25 exhibits strong anisotropic effects, as shown in
Fig. 5(d). Clearly, the variations in kBTx and kBTy are no longer

synchronized, unlike what was shown in Figs. 5(a)–5(c).
When the driving force increases from zero to Fd/F0 ≈ 0.104,
kBTx immediately jumps to its maximum value of kBTx/T0 ≈
0.0055, while kBTy remains almost unchanged. The phase
transition at this point is consistent with the first-order transi-
tion from this property of the kinetic temperature in Fig. 5, as
well as the hysteresis there in Fig. 4. Then, as the driving force
increases further, kBTx decays gradually and monotonically to
its minimum value.

IV. SUMMARY

We investigate the depinning dynamics of 2DDP under
1DPS using Langevin dynamical simulations. Note that the
depinning dynamics have been investigated in many over-
damped systems, however, far less is known about what
happens when the mass or inertial effects play an impor-
tant role, whereas dusty plasma is an ideal system to study
such effects. In our study here, various diagnostics are cal-
culated, such as the static structural measures of the sixfold
coordinated particles P6, the collective drift velocity Vx, the
kinetic temperature, and the hysteresis of Vx while the driving
force increases and decreases monotonically. Similarly to the
depinning dynamics in other physical systems, we find that
there are typically three different states, which are the pinned,
disordered plastic flow, and moving ordered states.

From our simulation results, we find that the depth of the
substrate can change the properties of the depinning phase
transitions. When the depth of the substrate is shallow, there
are two continuous phase transitions. When the depth of the
potential well is slightly higher, the phase transition from the
pinned to the disordered plastic flow state is continuous; how-
ever, the phase transition from the disordered plastic flow state
to the moving ordered state becomes discontinuous. When
the substrate is even deeper, the phase transition from the
pinned to the disordered plastic flow state also changes to
discontinuous. When the substrate is further deepened, as the
driving force increases, the pinned state jumps directly to the
moving ordered state, and the disordered plastic flow state
completely disappears.
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