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Viscosity of the magnetized strongly coupled one-component plasma
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The viscosity tensor of the magnetized one-component plasma, consisting of five independent shear viscosity
coefficients, a bulk viscosity coefficient, and a cross coefficient, is computed using equilibrium molecular
dynamics simulations and the Green-Kubo relations. A broad range of Coulomb coupling and magnetization
strength conditions are studied. Magnetization is found to strongly influence the shear viscosity coefficients
when the gyrofrequency exceeds the Coulomb collision frequency. Three regimes are identified as the Coulomb
coupling strength and magnetization strength are varied. The Green-Kubo relations are used to separate kinetic
and potential energy contributions to each viscosity coefficient, showing how each contribution depends upon
the magnetization strength. The shear viscosity coefficient associated with the component of the pressure tensor
parallel to the magnetic field, and the two coefficients associated with the component perpendicular to the
magnetic field, are all found to merge to a common value at strong Coulomb coupling.
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I. INTRODUCTION

Viscosity is a material property that determines how a
plasma responds to shear stress (shear viscosity) or com-
pression (bulk viscosity). It must be well characterized in
order to accurately model flow profiles and viscous heating
rates. It contributes to dimensionless parameters, such as the
Reynold’s number, the Prandtl number, and the magnetic
Prandtl number, that characterize a wide range of important
processes in plasmas, including turbulence [1], magnetic re-
connection [2,3], and dynamo amplification of magnetic fields
[4,5]. Current understanding of the microscopic origin of
shear viscosity is largely based upon the Braginskii trans-
port theory [6,7], which is a Chapman-Enskog solution of
the Boltzmann kinetic equation for a plasma [8]. This theory
applies to conditions in which each species of the plasma is
both weakly coupled (� � 1) and weakly magnetized (β �
1). Here, coupling strength is characterized by the Coulomb
coupling parameter

� ≡ e2/a

kBT
, (1)

where e is the electronic charge, a = (3/4πn)1/3 is the
average interparticle spacing, and T is the temperature. Mag-
netization strength is characterized by the magnetization
parameter

β ≡ ωc

ωp
, (2)
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where ωc = e|B|/m is the gyrofrequency and ωp =
√

e2n/εom
is the plasma frequency.

Although plasmas are commonly weakly coupled and
weakly magnetized, by these measures there are also many
examples in which the Coulomb coupling strength and the
magnetization strength can have moderate-to-large values
(� � 0.1 or β � 0.1). These include trapped non-neutral plas-
mas [9,10], ultracold neutral plasmas [11], as well as dense
plasmas created in inertial confinement fusion experiments
[12], high energy density plasma experiments [13], and those
found in nature, such as dense stars [14] and giant planets
[15]. There is little understanding of how the combined effects
of Coulomb coupling and magnetization strength influence
viscosity.

This paper presents first-principles computations of the
viscosity of the one-component plasma (OCP) at conditions
ranging from moderate to strong coupling (� = 1, 10, and
100) and weak to moderate magnetization (β = 0.01 − 2)
using molecular dynamics (MD) simulations. The magnetized
OCP is a model system in which only one species is dy-
namical, but which is assumed to evolve in the presence of
a noninteracting and nonpolarizable neutralizing background
[16]. It is convenient for studying the fundamental physics as-
sociated with coupling and magnetization strength because it
is completely characterized by the two dimensionless param-
eters of Eqs. (1) and (2). Previous work has explored diffusion
[17,18], thermal conduction [19], temperature anisotropy re-
laxation [18], and friction [20] of the magnetized OCP. The
viscosity of a related system, the two-dimensional (2D) mag-
netized Yukawa OCP, has also been studied [21]. While these
results are relevant to dusty plasma experiments [22], they do
not translate to inform the behavior of the viscosity tensor in
three-dimensional systems.
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FIG. 1. Predicted regimes in which transport coefficients are de-
termined by different microphysical processes in terms of Coulomb
coupling and magnetization strength. Circles indicate the conditions
of the MD simulations.

Although the OCP is a model system, certain properties
are also quantitatively applicable to real plasmas. Viscosity
is one of these properties. Because momentum transfer in
an electron-ion plasma is predominately determined by the
more massive ion species, the total plasma viscosity is usually
associated with the ion contribution alone. When electron
dynamics are negligible, the ion viscosity coefficients can be
obtained from the OCP [23].

The MD simulation results reveal a number of interesting
features. One is that scaling laws of the various shear viscos-
ity coefficients transition between regimes at boundaries in
coupling-magnetization parameter space that are defined by
comparing the gyroradius rc = √

kBT/m/ωc to the Coulomb
collision mean free path λcol (as defined in [18]), Debye
length λD =

√
εokBT/e2n, or the minimum interaction scale

length, which is characterized by the minimum of the thermal
distance of closest approach (i.e., Landau length) times

√
2,

rL = √
2e2/kBT , the average interparticle spacing, a, or the

Coulomb collision mean free path. These regime boundaries,
which were recently proposed in [18], are shown in Fig. 1.
MD simulation data are obtained at conditions that access
regions 1, 2, and 4 in this proposed parameter space, showing
that fundamental transitions in the scaling of shear viscosity
coefficients with β occur as these boundaries are crossed.

In a magnetized plasma, viscosity is described by a
fourth-rank tensor that nominally consists of 81 components.
However, symmetry associated with the magnetic field being
straight and uniform, as well as the Onsager reciprocal rela-
tions, reduces this to a tensor described by five independent
shear viscosity coefficients, one bulk viscosity coefficient,
and one coefficient associated with coupling between bulk
and shear viscosity [24,25]. In the weakly magnetized regime
(region 2), Braginskii theory predicts that the shear viscos-
ity coefficient (ηB

o ) associated with shear stress parallel to
the magnetic field 	‖ is independent of the magnetic field,
the two coefficients (ηB

1 and ηB
2 ) associated with shear stress

perpendicular to the magnetic field 	⊥ are proportional to
β−2, and the two coefficients (ηB

3 and ηB
4 ) associated with

shear stress in the transverse direction 	∧ are proportional to
β−1 [6,7,26]. It also predicts that the bulk viscosity coefficient
(μv) and the coefficient associated with coupling of shear and
bulk viscosity (ζ ) are both zero. Although the lowest coupling
strength simulated in our work was � = 1, which accessed
only a small region of the weakly magnetized regime, the
results obtained are consistent with these predictions for ηB

o ,
ηB

1 , and ηB
2 . The simulations are also consistent with ζ and μv

being zero, but they are unable to resolve ηB
3 and ηB

4 due to the
achievable level of numerical accuracy.

Qualitatively new behavior is observed in the transition
from either regions 1 or 2 to 4. At the lower coupling strength
values (� = 1 and 10), the ηB

o coefficient is observed to be-
come dependent on the magnetic field strength, scaling as
a positive power of β, while the ηB

1 and ηB
2 coefficients are

found to transition from scaling as a negative power of β to
become nearly independent of β, or possibly as a slightly
positive power of β in region 4. In the strongly coupled case,
� = 100, the ηB

o , ηB
1 , and ηB

2 coefficients are all observed to
merge to a common value. This common value is independent
of the magnetic field strength in region 1, and it scales as a
positive power of β in the transition to region 4. In all cases
considered, all of the remaining coefficients, ηB

3 , ηB
4 , ζ , and

μv , are consistent with zero to within the accuracy of the
simulations; although they likely have finite values, they are
smaller than the other viscosity coefficients and were unable
to be resolved.

These calculations are based upon the Green-Kubo rela-
tions, which, in addition to the total viscosity coefficients,
also provide information about their physical origin. In par-
ticular, the shear-stress autocorrelation function can be split
into a kinetic component that depends only on the particle
momenta, and a potential component that depends on the
particle positions. Cross-terms are also present, but they are
small. Previous MD simulations of the unmagnetized OCP
[27–30] have established that the kinetic component is domi-
nant when � � 17, that the potential component is dominant
when � � 17, and that the total shear viscosity coefficient has
a minimum value at this transition � ≈ 17. We find that in
the magnetized case, the ηB

o , ηB
1 , and ηB

2 all converge to the
result obtained in previous simulations in the unmagnetized
regime, as expected. Furthermore, it is shown that the tran-
sition from predominantly kinetic to predominately potential
contributions depends on β as well as �, and it differs for
each coefficient. Both the kinetic and potential contributions
are influenced by the magnetic field.

This paper is organized as follows: Section II provides an
overview of different schemes for describing shear viscosity
of a magnetized plasma. Section III A describes the simula-
tion technique, Sec. III B the Green-Kubo relations for the
viscosity coefficients, Sec. III C an analysis of the conditions
for convergence, and Sec. III D the results of the calculation.
A discussion of the results is provided in Sec. IV, and con-
cluding comments are given in Sec. V.

II. VISCOSITY OF A MAGNETIZED FLUID

In a magnetized fluid, the viscous stress tensor � and
the rate-of-strain tensor W are rank-2 tensors due to the
anisotropy introduced by the magnetic field. The shear
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viscosity tensor that provides a linear relation between these
quantities is a rank-4 tensor

	αβ = −Lαβγ δWγ δ, (3)

in which the Cartesian indices α, β, γ , δ run from 1 to 3,
and

W ≡ 1
2 [∇V + (∇V)T ]. (4)

A Cartesian rank-4 tensor has 81 components. However,
general symmetry arguments of nonequilibrium thermody-
namics, the Onsager reciprocal relations, and the assumption
of a straight uniform magnetic field can be used to show that
the shear viscosity tensor can be put into a more intuitive
and tractable form with just seven independent coefficients
[24,25]. Here, we summarize these symmetry arguments and
how the tensor in Eq. (3) can be related to the form of
the shear viscosity tensor that is commonly used in plasma
physics [26].

In Eq. (3), W can split into a sum of its trace and traceless
components:

W = 1
3 (∇ · V)I + S, (5)

where S is the rate-of-shear tensor. The same can also be done
for the viscous stress tensor, which can be split into the bulk
and shear viscous stress as

� = πT

3
I + �̊, (6)

respectively. Here, the trace of the viscous stress tensor is

πT =
∑

α

	αα. (7)

Since the stress tensor is symmetric, its components can be
written in terms of a rank-2 tensor with indices running from
1 to 6 using Voigt notation [31],

−πi =
6∑

k=1

Likwk, (8)

where πi are the elements of �, and the indices are short-
hand as follows: 1 = xx, 2 = yy, 3 = zz, 4 = yz, 5 = xz,
and 6 = xy. The elements of W are w1 = Wxx, w2 = Wyy,
w3 = Wzz, w4 = 2Wyz = 2Wzy, w5 = 2Wxz = 2Wzx, and w6 =
2Wxy = 2Wyx. The factor of 2 in the last three components
appears because they appear twice (e.g., xy and yx for w6). In
this notation, the 81-component Cartesian rank-4 tensor Lαβγ δ

can be reduced to a 36-component rank-2 tensor Lik :

w1 w2 w3 w4 w5 w6⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

−π1 L11 L12 L13 L14 L15 L16

−π2 L21 L22 L23 L24 L25 L26

−π3 L31 L32 L33 L34 L35 L36

−π4 L41 L42 L43 L44 L45 L46

−π5 L51 L52 L53 L54 L55 L56

−π6 L61 L62 L63 L64 L65 L66

. (9)

The formulation of a rank-4 tensor in this manner is known
as Voigt notation. Appendix summarizes the coordinate rota-
tion properties of Cartesian rank-4 tensors expressed in this
notation.

The form of Lik can be simplified further by assuming a
uniform magnetic field [24], chosen here to be parallel to the
z-axis. A rotation about the z-axis should leave the elements
of Lik invariant. After a 180◦ rotation about the z-axis, the
following elements pick up a negative sign and therefore must
be zero: L14, L15, L24, L25, L34, L35, L41, L42, L43, L46, L51, L52,
L53, L56, L64, and L65. The same conclusion can be drawn for
L63 and L36 after an infinitesimal rotation about z. After a 180◦
rotation about the x axis, the system obeys the parity relation
Lik (B) = (−1)nLik (−B), where n is the number of times x
appears in the indices ik. The same relation also holds for a
180◦ rotation about y. This leads to the conclusion that L11,
L22, L33, L12, L21, L13, L31, L32, L23, L44, L55, and L66 are even
functions of B and that L16, L26, L45, L54, L61, and L62 are odd
functions of B. Additional simplifications are made by noting
the similarity between the x and y coordinate axes: L11 = L22,
L44 = L55, L31 = L32, L13 = L23.

The microscopic reversibility of the system under a sign
change of time and the magnetic field direction also plays a
role in the form of the shear viscosity tensor. The Onsager re-
ciprocal relations relate components of the viscosity tensor on
the basis of symmetries resulting from this reversibility. For a
magnetized plasma where the particles interact via the Lorentz
force, the coefficients are related by Lik (B) = Lki(−B) [32].
Using the fact that L13 and L23 are even functions of B, this
leads to the relation L13 = L31 and L23 = L32. With these
simplifications, the shear viscosity tensor can be expressed
as

w1 w2 w3 w4 w5 w6⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

−π1 L11 L12 L13 0 0 L16

−π2 L12 L11 L13 0 0 −L16

−π3 L13 L13 L33 0 0 0
−π4 0 0 0 L44 L45 0
−π5 0 0 0 −L45 L44 0
−π6 −L16 L16 0 0 0 L66

. (10)

Equation (10) can be split into components associated with
the shear viscosity and the bulk viscosity by following the
method of Hooyman, DeGroot, and Mazur [24,25]. This is
done in two steps. The first is to separate the bulk viscosity
by splitting W and � into their traces and traceless parts
given by Eqs. (5) and (6). In terms of Voigt notation, S in
Eq. (5) has components si = wi − ∇ · V/3 for i = 1 − 3, and
the traceless components of Eq. (6) are π̊i = πi − πT/3, also
for i = 1 − 3. Next, by writing π̊1, π̊2, π̊3, π4, π5, π6, and
πT in terms of the corresponding Lik components of s1, s2,
s3, w4, w5, w6, and 1

3 (∇ · V) and making use of the relation
s1 + s2 + s3 ≡ 0 to write s3 = −s1 − s2, Eq. (10) can be writ-
ten as
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s1 s2 s3 w4 w5 w6
∇·V

3⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

−π̊1 2μ2 2(μ1 − μ2) 0 0 0 η1 −ζ

−π̊2 2(μ1 − μ2) 2μ2 0 0 0 −η1 −ζ

−π̊3 0 0 2μ1 0 0 0 2ζ

−π4 0 0 0 μ3 η2 0 0
−π5 0 0 0 −η2 μ3 0 0
−π6 −η1 η1 0 0 0 2μ2 − μ1 0
−πT −ζ −ζ 2ζ 0 0 0 9μv

(11)

where

μ1 = 1
6 (2L33 − 4L13 + L11 + L12), (12a)

μ2 = 1
6 (2L11 − L12 − 2L13 + L33), (12b)

μ3 = L44, (12c)

η1 = L16, (12d)

η2 = L45, (12e)

μv = 1
9 (2L11 + 2L12 + 4L13 + L33), (12f)

ζ = 1
3 (L13 + L33 − L11 − L12). (12g)

This form, commonly used in nonequilibrium thermody-
namics, expresses the viscosity tensor in terms of the five
shear viscosity coefficients μ1, μ2, μ3, η1, and η2, the bulk
viscosity coefficient μv , and a “cross coefficient” ζ .

In plasma physics, it is more common to write the
shear viscosity coefficients in the form expressed in
Braginskii’s review [6,7]. This makes use of the result of
the Chapman-Enskog solution of the plasma kinetic equation,
which predicts that the bulk viscosity and cross coefficients
are zero in a weakly coupled plasma (ζ = 0 and μv = 0). In
this limit, the last equation in (11) is πT = 0, which from the
definition in Eq. (6) implies that � = �̊. The result can be
expressed as only six equations describing the shear viscosity
components Eq. (11) as [33]

	xx = −ηB
0 (Sxx + Syy)

−ηB
1 (Sxx − Syy) − 2ηB

3 Sxy, (13a)

	yy = −ηB
0 (Sxx + Syy)

+ ηB
1 (Sxx − Syy) + 2ηB

3 Sxy, (13b)

	xy = −2ηB
1 Sxy + ηB

3 (Sxx − Syy), (13c)

	xz = −2ηB
2 Sxz − 2ηB

4 Syz, (13d)

	yz = −2ηB
2 Syz + 2ηB

4 Sxz, (13e)

	zz = −2ηB
0 Szz, (13f)

where

ηB
0 = μ1, (14a)

ηB
1 = 2μ2 − μ1, (14b)

ηB
2 = μ3, (14c)

ηB
3 = η1, (14d)

ηB
4 = −η2. (14e)

Note that this simplification is possible only if ζ = 0 and
μv = 0, which is not generally expected to be true in the
strongly coupled (� � 1) regime.

One benefit of this organization is that it expresses the
coefficients in terms of parallel, perpendicular, and cross com-
ponents of the pressure tensor [6]

	 = 	‖ + 	⊥ + 	∧. (15)

This can be seen by writing Eqs. (13a)–(13f) in terms of
products of S,

	‖ = −3ηB
0 (b · S · b)

(
bb − I

3

)
, (16a)

	⊥ = −ηB
1 W ′

(1) − ηB
2 W ′

(2), (16b)

	∧ = ηB
3

2
W ′′

(1) + ηB
4 W ′′

(2), (16c)

where b = B/|B| is the unit vector in the direction of the
magnetic field, and

W ′
(1) = 2(I − bb) · S · (I − bb)

−(I − bb)(I − bb) : S, (17a)

W ′
(2) = 2(I − bb) · S · bb + 2bb · S · (I − bb), (17b)

W ′′
(1) = 2b × S · (I − bb) − 2(I − bb) · S × b, (17c)

W ′′
(2) = 2b × S · bb − 2bb · S × b (17d)

are traceless tensors. When organized in this way, the relations
bb : 	 = 	‖, bb : 	⊥ = 0, bb : 	∧ = 0, and S : 	∧ = 0
show that Eq. (16a) involves velocity gradients parallel to b,
Eq. (16b) involves velocity gradients perpendicular to b, and
Eq. (16c) involves velocity gradients perpendicular to both b
and ∇ · V. Thus, the coefficient ηB

0 is related to the parallel
stress, ηB

1 and ηB
2 to the perpendicular stress, and ηB

3 and ηB
4 to

the cross stress.

III. MOLECULAR DYNAMICS SIMULATIONS

A. Simulation setup

Equilibrium MD simulations were carried out using the
code LAMMPS [34]. In each simulation, the positions and
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velocities of 5000 particles were evolved in time through
interaction via the Coulomb potential. The interaction was
calculated using the particle-particle particle-mesh (P3M)
method [35] with a short-range potential cutoff at r = 5a.
The particle-mesh calculation utilized a 75 × 75 × 75 k-
space mesh, with the mesh density chosen to ensure good
energy conservation. Initialization at a chosen value of �

and β involved fixing the number of particles, which scales
the size of the periodic domain, followed by a 4000 ω−1

p
equilibration phase where particles achieved the desired tem-
perature by using a Nosé-Hoover thermostat [36]. A time
step of min{0.01ω−1

p , 0.01ω−1
p /β} was selected to ensure

good energy conservation, resulting in a typical energy drift
of � 0.4% over the 2 × 105ω−1

p duration. The simulation
was evolved in the NV T ensemble during which data were
collected.

Select simulations with greater particle number (up to
20 000), system size in the z-direction, and varying k-space
mesh (503−753) were used to ensure that the results were
well-converged with respect to these parameters. Further con-
vergence tests of the results are described in Sec. III C.

B. Calculation of viscosity

The viscosity coefficients Lαβγ δ were calculated from cor-
relations of fluctuations in the components of the stress tensor
�(t ) by using the Green-Kubo relation [37]

Lαβγ δ = 1

V kBT

×
∫ ∞

0
dt〈[	αβ (t ) − PV δαβ][	γδ (0) − PV δγ δ]〉.

(18)

Here, 〈· · · 〉 denotes an equilibrium ensemble average, and
PV is the product of the pressure and system volume, which
was computed from the long-time average of the diagonal
elements of � [38].

The underlying physical process can be revealed by split-
ting the stress tensor into kinetic and potential components,

	αβ = 	kin
αβ + 	

pot
αβ , (19)

where

	kin
αβ ≡ 1

V

N∑
i=1

m(vi · α̂)(vi · β̂ ) (20)

and

	
pot
αβ ≡ 1

2V

N∑
i=1

N∑
j �=i

(ri j · α̂)(ri j · β̂ )φ′(ri j )

ri j
. (21)

Here, α̂ is the unit vector in the α direction (e.g., x̂), ri j is
the displacement vector from atom i to atom j, and φ′(ri j )
is the derivative of the interaction potential with respect to
ri j = |ri j |. The separation of the pressure tensor in this way
allows access to individual contributions associated with ki-
netic and potential components of transport coefficients. Such
decompositions have proven useful in previous Green-Kubo-
based calculations of shear viscosity and thermal conductivity
of the OCP [19,30].

One difficulty in calculating transport coefficients using the
Green-Kubo formalism is the approximation of the ensemble
average. Due to the finite nature of the simulation, the ensem-
ble average is replaced with a finite time average of fluxes
calculated over a finite spatial extent,

〈[	αβ (t ) − PV δαβ][	γδ (0) − PV δγ δ]〉 ≈ Cαβγ δ (t, τ )

≡ 1

τ

∫ τ

0
ds[	αβ (s) − PV δαβ][	γδ (s + t ) − PV δγ δ], (22)

where τ is the time series length and Cαβγ δ (t, τ ) is a cor-
relation function for a time series of duration τ . The exact
result is obtained in the limit where τ → ∞, and 	αβ (t ) is
calculated using an infinite system. For the purpose of calcu-
lating transport coefficients from simulation, it is sufficient to
choose a system size that is large enough to avoid finite size
effects and of long enough time duration τ for convergence
of the correlation function. This will be discussed further in
Sec. III C.

Since the magnetized OCP is characterized by two
parameters, it is convenient to report the viscosity in the di-
mensionless units L∗ = L/mna2ωp or η∗ = η/mna2ωp so the
values only depend on � and β implicitly. Similarly, the cor-
relation functions are presented as C∗

αβγ δ = Cαβγ δ/mna2ωp,
which has units of ωp so that their cumulative integral gives
the corresponding dimensionless viscosity coefficient.

C. Convergence of the correlation function

The use of a correlation function of finite maximal time
lag necessitates the truncation of the Green-Kubo integral at
some time t∗. The value of t∗ is chosen so that the cumu-
lative integral

∫ t∗

0 dt Cαβγ δ (t, τ ) converges to a steady value.
In practice, a large value of t∗ results in the integration of
fluctuations at large time lags, which are not physical but
statistical in nature, arising due to the finite nature of the
stress tensor time series. Therefore, t∗ is chosen to be the
time needed for the correlation to decay to a near-zero value;
in our simulations, t∗ � 200ω−1

p . See the correlation func-
tions shown in Fig. 2 for characteristic decay times of each
component.

For times t < t∗, the lack of a converged correlation func-
tion can also corrupt the value of the cumulative integral. The
convergence of the correlation function with τ can be split
into two different components that can be checked separately:
the convergence of the initial value with respect to the time
lag Cαβγ δ (t = 0, τ ), and the convergence of the subsequent
fluctuations at t∗ > t > 0. Convergence of each component
must be satisfied to provide accurate values of transport coef-
ficients.

The convergence of the t = 0 value of Cαβγ δ (0, τ ) with
α = γ , β = δ �= α can be verified by checking a series of
relations following from the sum rule [30]

〈	αβ (0)	αβ (0)〉 = N (kBT )2 + 2πNnkBT

15

×
∫ ∞

0
dr r3[g(r) − 1][4φ′(r) + rφ′′(r)]

(23)
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FIG. 2. Correlation functions calculated from MD simulations for � = 1, 10, and 100 with β = 0.1, 0.5, and 1.0. The correlation functions
shown are expected to be nonzero from the analysis of Sec. II.

which has the following kinetic and potential components:
〈
	kin

αβ (0)	kin
αβ (0)

〉 = N (kBT )2, (24a)

〈
	kin

αβ (0)	pot
αβ (0)

〉 = 0, (24b)

〈
	

pot
αβ (0)	pot

αβ (0)
〉 = 2πNnkBT

15

∫ ∞

0
dr r3[g(r) − 1]

×[4φ′(r) + rφ′′(r)]. (24c)

These relations come from equilibrium statistical mechan-
ics, and they are independent of the magnitude or direction of
B. They hold for the Cartesian components αβ = xy, xz, and
yz. Values for each of these components are shown in Table I
for � = 1, β = 1 and � = 10, β = 1. The calculated values
indicate agreement with the sum rules to the fourth decimal
place.

Zwanzig and Ailawadi [39] have provided an estimate of
the error subsequent to the initial time that is associated with
approximating an infinite time series by a finite one. They
estimate the second moment of the deviation from the exact
value of the correlation as

〈�(t1)�(t2)〉 ≈ 2τe

τ
[C(0,∞)]2, (25)

where

�(t ) ≡ C(t, τ ) − C(t,∞). (26)

Here, C(t,∞) is the exact correlation function for an infinite
time series, 〈· · · 〉 is the ensemble average, and τe is an es-
timate of the 1/e decay time of the correlation function. It
follows that the statistical fluctuation level in the correlation
function decreases as 1/τ . For the purposes of evaluating the
noise level in the correlation function, it is useful to consider
the variance of the fluctuations of components that are zero in
the thermodynamic limit because these values deviate from
zero significantly for time series of insufficient length and
thus they provide a good metric for the convergence of the
correlation function with τ [40,41]. For the present calcula-

TABLE I. Comparison of the exact values of the right side of
Eqs. (24a)–(24c) and those calculated from the corresponding corre-
lation functions for the indicated αβ components.

αβ Eq. (24a) Eq. (24b) Eq. (24c)
� = 1 β = 1 0.3333 0 0.0253

xy 0.3292 −1.40 × 10−4 0.0253
xz 0.3277 −2.45 × 10−4 0.0251
yz 0.3278 3.86 × 10−5 0.0251

� = 10 β = 1 0.0333 0 0.0354

xy 0.0329 5.36 × 10−5 0.0353
xz 0.0327 6.95 × 10−6 0.0351
yz 0.0327 −1.50 × 10−4 0.0354
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FIG. 3. A comparison of the magnitude of correlation functions
C14, C15, and C24, which are used as a measure of the error, with C11

and C33, which are expected to be nonzero in the thermodynamic
limit.

tion, several zero components of the correlation function are
known from the symmetry arguments presented in Sec. II.
Three of these components, C14, C15, and C24, are shown in
Fig. 3 alongside the nonzero components C11 and C33. The
comparison demonstrates that the fluctuation level of the zero
components is nearly two orders of magnitude lower than the
nonzero components over the range shown. The numerical
value of these coefficients is in the fourth decimal place, which
is consistent with the numerical resolution resulting from the
sum-rule test shown in Table I. As a result of this low level
of fluctuation, the transport coefficients were not sensitive to
∼20% variations in the chosen value of t∗.

D. Results

Simulations were carried out for the conditions shown in
Fig. 1, which includes � ranging from 1 to 100, and β from
0.01 to 2. Correlation functions for each component were
calculated using Eq. (22) with Eqs. (19)–(21) used to split ki-
netic, potential, and cross contributions; examples are shown
in Fig. 2. The values of the viscosity coefficients Li j were cal-
culated as described in Sec. III C and are reported in Table II.
From here, the coefficients can be put into either the form
of Hooyman, DeGroot, and Mazur using Eqs. (12a)–(12g)
or that of Braginskii using Eqs. (14a)–(14e). The coefficients
are presented in Fig. 4 for the former and Figs. 5 and 6 for
the latter of these forms. One should be cognizant that the
Braginskii form is valid only if ζ = 0 and μv = 0, but this
will be shown to be consistent with our simulation results to
within the attained numerical accuracy.

IV. DISCUSSION

The results demonstrate that qualitative changes in the
viscosity coefficients depend on both β and �. This sec-
tion discusses significant trends. Section IV A discusses how
the differences in each viscosity coefficient stem from the
anisotropies of the fluctuations, as described by the correlation
functions, that arise when the magnetic field is sufficiently

strong. Section IV B discusses how the numerical resolution
of the simulations was sufficient to resolve the shear viscosity
coefficients associated with parallel and perpendicular shear
stresses, but was unable to resolve the shear viscosity coeffi-
cients associated with the cross component of the shear stress.
Section IV C discusses the observed zero value of the bulk
and cross coefficients. Section IV D shows that changes in
scaling of the shear viscosity coefficients with β occur at the
regime transitions predicted in Fig. 1, and that results at � = 1
are consistent with the scaling predicted by the Braginskii
equations over the narrow range of the classical magnetized
regime that was accessed by the simulations. Section IV E
compares the kinetic and potential contributions to the vis-
cosity coefficients, showing that the transition between the
dominance of one component over the other depends on β

as well as �. Finally, Sec. IV F shows that at strong coupling
(� = 100) all three of the resolved shear viscosity coefficients
merge to a common value, regardless of the magnetization
strength.

A. Anisotropy of fluctuations

The correlation functions Cαβγ δ demonstrate the most basic
properties of the anisotropy of the fluid stress fluctuations
resulting from the application of an external magnetic field,
as shown in Fig. 2. In the unmagnetized limit, it is expected
that the fluctuations in stress are independent of the choice
of coordinate axis. For example, one expects that C11 = C33

since these correspond to the autocorrelation of stress fluc-
tuations of the xx or zz components. Likewise, it is also
expected that C12 = C13 due to symmetry between yy and zz
and C44 = C66 due to symmetry between yz and xy. These
relations are easily verified in the unmagnetized cases shown
in Figs. 2(a), 2(d) and 2(g), aside from slight deviations due to
the weak magnetic field at β = 0.1. These symmetry relations
are independent of the value of �.

Considering � = 1, the anisotropy becomes apparent as β

increases to 0.5. Figures 2(b) and 2(c) show that correlations
between tensor components with at least one coordinate (in-
dex) in the plane perpendicular to the magnetic field (x or
y directions) exhibit oscillations. These are associated with
gyromotion, and the oscillation frequency is characterized by
ωc. For example, as the magnetization doubles from β = 0.5
in Fig. 2(b) to β = 1.0 in Fig. 2(c), the period of the oscilla-
tion also doubles. It is also noteworthy that the gyromotion
causes these components to oscillate between positive and
negative correlations, whereas they are of a definite sign in an
unmagnetized weakly coupled plasma. Because the viscosity
coefficients are the time integrals of the correlation functions,
the result of the oscillations is a significant reduction of the
resulting coefficients, as shown in Table II.

Considering � = 10, the oscillations associated with gyro-
motion are strongly suppressed in comparison to � = 1. The
reason for this is that the gyromotion influences the kinetic
components of the stress significantly, but not the potential
components. The ratio of the kinetic component to the poten-
tial component is much smaller at � = 10 than at � = 1.

As � increases to 100, the kinetic component of the stress
becomes insignificant. The correlation for � = 100 exhibits
the same symmetry properties as the unmagnetized case,
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TABLE II. Computed values of the viscosity coefficients.

L∗
11 L∗

12 L∗
13 L∗

33 L∗
44 L∗

45 L∗
16 L∗

66

� = 1
β = 0.01 1.6479 −0.7877 −0.8472 1.7005 1.2446 −0.0244 0.0161 1.2543
β = 0.05 1.5543 −0.6605 −0.8827 1.6322 1.1843 0.0486 0.0215 1.1285
β = 0.1 1.1406 −0.3485 −0.7805 1.5965 0.9940 0.0096 0.0050 0.7750
β = 0.2 0.7672 0.0298 −0.7901 1.6005 0.7479 0.0015 −0.0072 0.3850
β = 0.3 0.6286 0.1946 −0.8134 1.5853 0.5354 0.0009 0.0060 0.2126
β = 0.4 0.5317 0.2383 −0.7642 1.5350 0.3991 −0.0006 0.0042 0.1452
β = 0.5 0.4816 0.2660 −0.7414 1.4999 0.2906 0.0023 0.0014 0.1103
β = 0.6 0.4787 0.2958 −0.7733 1.5498 0.2331 0.0000 −0.0010 0.0776
β = 0.7 0.4692 0.3100 −0.7731 1.5464 0.1768 0.0002 0.0002 0.0711
β = 0.8 0.4430 0.3133 −0.7521 1.5311 0.1612 0.0046 0.0013 0.0708
β = 0.9 0.4490 0.3230 −0.7659 1.5613 0.1382 0.0005 −0.0020 0.0665
β = 1.0 0.4635 0.3356 −0.7860 1.5725 0.1268 0.0005 0.0020 0.0652
β = 1.5 0.5856 0.4627 −1.0035 1.9996 0.0873 0.0003 −0.0008 0.0691
β = 2.0 0.7829 0.6273 −1.3129 2.5079 0.0665 −0.0004 −0.0031 0.0716
� = 10
β = 0.01 0.1338 −0.0667 −0.0611 0.1318 0.1013 0.0008 0.0006 0.0992
β = 0.05 0.1221 −0.0546 −0.0631 0.1321 0.0992 0.0014 0.0017 0.1000
β = 0.1 0.1194 −0.0484 −0.0662 0.1375 0.0922 0.0001 0.0018 0.0862
β = 0.2 0.1061 −0.0423 −0.0597 0.1224 0.0842 0.0015 0.0014 0.0726
β = 0.3 0.0942 −0.0362 −0.0560 0.1199 0.0787 0.0005 −0.0005 0.0702
β = 0.4 0.0912 −0.0343 −0.0551 0.1181 0.0751 0.0015 −0.0023 0.0616
β = 0.5 0.0894 −0.0341 −0.0539 0.1180 0.0759 0.0007 0.0011 0.0621
β = 0.6 0.0900 −0.0309 −0.0585 0.1277 0.0746 0.0000 0.0000 0.0619
β = 0.7 0.0932 −0.0317 −0.0601 0.1291 0.0750 0.0020 0.0009 0.0636
β = 0.8 0.0999 −0.0297 −0.0675 0.1402 0.0761 0.0022 −0.0016 0.0628
β = 0.9 0.1081 −0.0268 −0.0767 0.1495 0.0721 −0.0003 −0.0022 0.0651
β = 1.0 0.1161 −0.0148 −0.0905 0.1750 0.0761 0.0003 0.0014 0.0706
� = 100
β = 0.01 0.2479 −0.1236 −0.1231 0.2405 0.1834 0.0031 0.0044 0.1878
β = 0.05 0.2512 −0.1266 −0.1234 0.2549 0.1840 −0.0018 0.0024 0.1848
β = 0.1 0.2500 −0.1248 −0.1240 0.2537 0.1910 −0.0008 −0.0004 0.1883
β = 0.2 0.2614 −0.1347 −0.1260 0.2556 0.1903 0.0025 0.0020 0.1933
β = 0.3 0.2715 −0.1313 −0.1385 0.2831 0.2045 −0.0012 −0.0046 0.2033
β = 0.4 0.2973 −0.1387 −0.1551 0.3001 0.2289 −0.0033 −0.0111 0.2104
β = 0.5 0.3134 −0.1434 −0.1680 0.3328 0.2464 −0.0015 0.0037 0.2355
β = 0.6 0.3545 −0.1654 −0.1812 0.3632 0.2669 −0.0005 0.0046 0.2553
β = 0.7 0.3873 −0.1857 −0.1939 0.3890 0.2781 0.0053 −0.0083 0.2807
β = 0.8 0.4071 −0.1866 −0.2119 0.4426 0.3156 −0.0031 0.0016 0.3153
β = 0.9 0.4583 −0.2030 −0.2402 0.4583 0.3189 0.0071 0.0073 0.3287
β = 1.0 0.4714 −0.2102 −0.2465 0.4976 0.3631 −0.0034 −0.0100 0.3341
β = 1.5 0.6103 −0.2667 −0.3143 0.6149 0.4419 0.0041 0.0011 0.4462
β = 2.0 0.6759 −0.3223 −0.3406 0.6769 0.4951 0.0051 0.0019 0.4924

with the exception of a very slight oscillation at β = 1 [cf.
Fig. 4(f), which shows a small nonzero contribution to the
kinetic portion of the transport coefficient at β = 1]. However,
the overall magnitude of the correlation function tail increases
with β. This suggests that the magnetization acts to increase
the transport rates, but does not increase the anisotropy of the
fluctuations of fluid stress.

B. Unresolved coefficients

Figure 4 shows the viscosity coefficients expressed in the
form of Eqs. (12a)–(12g). Panels (j)–(l) show that both of the
shear viscosity coefficients associated with the cross compo-

nent of the shear stress (η1 and η2) are consistent with zero.
Although each of these is expected to be smaller than the shear
viscosity coefficients shown in panels (a)–(c), none of these
coefficients are expected to be identically zero. The result is
likely due to the achievable numerical resolution of the MD
simulations, as discussed in Sec. III C.

For example, Braginskii transport predicts that the shear
viscosity coefficients associated with the cross component of
the shear stress are negligible in the unmagnetized regime,
scaling as ωc/νcol for ωc/νcol � 1, where νcol is the Coulomb
collision frequency, and they also decrease with magnetic field
strength in the classically magnetized regime as (ωc/νcoll )−1

for ωc/νcol � 1. These coefficients peak at ωc/νcoll ≈ 1, but
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FIG. 4. Viscosity coefficients expressed in the form of
Eqs. (12a)–(12g), along with the kinetic and potential components.
Panels (a)–(i) show μ1, μ2, and μ3, and panels (j)–(r) show η1, η2,
μv , and ζ . The solid line in panels (a)–(c) indicates the value of the
unmagnetized shear viscosity coefficient.

even then they are expected to take values that are smaller than
the other shear viscosity coefficients. Although these coeffi-
cients are not expected to be zero, they are not resolved by the
MD computations. In addition to the coefficients themselves,
Fig. 2 shows that the correlation functions from which these
coefficients are computed (C16 and C45) are nearly zero at all
times.
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FIG. 5. Dependence of the five shear viscosity coefficients on the
magnetization parameter for three values of the Coulomb coupling
strength: (a) � = 1, (b) � = 10, and (c) � = 100. The vertical lines
denote the boundaries in Fig. 1, and horizonal lines denote the β = 0
results from [30].

C. Bulk viscosity and cross coefficient

In Chapman-Enskog theory, bulk viscosity arises when
internal degrees of freedom are accessible, such as in poly-
atomic gasses. In such cases, bulk viscosity arises from a
pressure overshoot (compared to equilibrium) in response
to compression, resulting from the timescale needed for the
translational kinetic energy to come to equilibrium with the
internal degrees of freedom [42]. In monatomic gases, or
the OCP considered here, such internal degrees of freedom
are absent, hence the bulk viscosity and cross coefficient are
expected to be zero in the weakly coupled limit in which the
Chapman-Enskog solution applies.

In contrast, there is no such expectation in dense gasses,
liquids, or strongly coupled plasmas. For instance, in Enskog
kinetic theory for dense hard sphere gases, a nonzero bulk vis-
cosity is present without internal degrees of freedom [42,43].

A nonzero bulk viscosity would raise the possibility of
a nonzero cross coefficient as well. Nevertheless, early MD
simulations of the unmagnetized OCP by Vieillefosse and
Hansen [44] showed that the bulk viscosity coefficient is neg-
ligible compared to shear viscosity for � values ranging from
1 to 160. The simulations presented here show that the bulk
viscosity and bulk-shear cross coefficient are consistent with
zero for the range of magnetic field and coupling strengths
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FIG. 6. Shear viscosity coefficients η∗B
o , η∗B

1 , and η∗B
2 computed

from MD simulations for � = 1 (top) and � = 100 (bottom) as the
magnetization parameter β varies through the unmagnetized regime
(1), the classically magnetized regime (2), and the extremely magne-
tized regime (4).

considered. It was unknown how magnetization should influ-
ence this result.

The results presented here provide some additional infor-
mation compared to Ref. [44]. Namely, they show that the
bulk viscosity (μv) and cross coefficient (ζ ) are near-zero due
to a precise cancellation of nonzero terms. Figure 7 shows
how the sum of nonzero correlation functions, corresponding
to Eqs. (12f) and (12g), sum to a correlation function that is
nearly zero, the cumulative integral of which is also near-zero.
The zero value of these coefficients justifies the use of the Bra-
ginskii organizational form of the shear viscosity coefficients.

FIG. 7. The individual and sum of the correlation functions
whose cumulative integral corresponds to the bulk viscosity in
Eq. (12f) and cross viscosity in Eq. (12g).

D. Regime transitions

Fundamental transitions in the scaling of transport coeffi-
cients with β have been predicted to occur at the boundaries
indicated in Fig. 1 [18], which are defined by comparing the
gyroradius with other relevant physical scales in the system,
as described in the Introduction. They have been previously
tested by comparing with MD simulations of diffusion and
temperature anisotropy relaxation rates [18]. Figures 5 and 6
show that these boundaries also predict where the transitions
in the shear viscosity coefficients occur.

Focusing on the logarithmic scale in Fig. 6, which shows
the three coefficients ηB

o , ηB
1 , and ηB

2 in the Braginskii form
from Eqs. (14a)–(14e), all three coefficients merge to the same
value, independent of β in the unmagnetized regime (region
1). In this limit, the shear viscosity tensor can be reduced to a
single scalar coefficient, as expected from the symmetry of an
unmagnetized plasma. The coefficients obtained in this limit
agree well with the previous results from [30].

Considering � = 1, as β increases into the classically
magnetized regime (region 2), the coefficient associated with
parallel stress ηB

o remains unchanged, while the two coeffi-
cients associated with perpendicular stress ηB

1 and ηB
2 both

decrease sharply with increasing β. Recall that this reduction
is associated with oscillations in the corresponding correla-
tions functions, as shown in Fig. 2. This is the classically
magnetized regime (region 2), in which the Braginskii scaling
arguments are expected to hold: ηB

0 ∝ β0, ηB
1 ∝ β−2, ηB

2 ∝
β−2. The data shown in Fig. 6 appear to be consistent with
these predictions. The scaling of ηB

1 and ηB
2 is somewhat more

gradual than that of β−2, but the range of β values correspond-
ing to region 2 is narrow (less than one decade) at � = 1.
The more gradual scaling that is observed is likely due to a
transition to region 4, where a flattening of the scaling with β

is observed. A more rigorous test of the Braginskii formulas
would require simulations at a much lower � value, but these
are much more computationally expensive.

As the β value increases into region 4 for � = 1, the ηB
o

coefficient becomes dependent on β, increasing as a posi-
tive power. The coefficient ηB

1 flattens dramatically, becoming
nearly independent of β, or perhaps scaling with a slightly
positive exponent of β. The third shear viscosity coefficient
ηB

2 scales somewhat more gradually with β than in region
2, but more steeply than does the ηB

1 coefficient. There is
currently no satisfactory kinetic theory to describe region 4,
so these MD results provide a unique first-principles com-
putation that future theoretical developments can use as a
benchmark.

At � = 100, only two regions (1 and 4) are predicted. The
data shown in Fig. 6 are consistent with this, showing that
all shear viscosity coefficients are independent of β in region
1, and transition to a positive scaling with β (approximately
as β1/2) in region 4. A similar result has been noted for the
parallel component of thermal conductivity in the strongly
magnetized Yukawa-screened OCP [19]. This effect was at-
tributed to the existence of more frequent collisions in the
presence of a strong magnetic field. When a strong field is
present, particles move along their field line and collide with
larger collision angles due to this magnetization. A similar
process may increase the field-parallel viscosity.
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E. Potential and kinetic contributions

An advantage of computing transport coefficients using the
Green-Kubo relations is that they reveal the relative contribu-
tions from particle momenta (kinetic contributions) and direct
interactions (potential contributions). Figure 4 shows a break-
down of each component for the viscosity coefficients. As
has been observed for the unmagnetized case [30], at � = 1
the shear viscosity is entirely due to the kinetic component.
Since the particle momenta are significantly influenced by
magnetization, causing oscillations in associated components
of the correlation functions as shown in Fig. 2, magnetization
significantly reduces the kinetic components of μ2 and μ3.
Because it is based on a Boltzmann kinetic equation, the
Braginskii theory only accounts for the kinetic components
of transport coefficients, which is an accurate approximation
at weak coupling.

Figures 4(e) and 4(h) show that at � = 1, both kinetic and
potential components contribute to the total viscosity. The
same observation has been made in the unmagnetized case
[30], where it was shown that the transition point between the
dominance of kinetic and potential components occurs at the
minimum of the viscosity coefficient at � ≈ 17. Here, it is ob-
served that both β and � influence the viscosity coefficients,
and that they influence each in a quantitatively different way.
Magnetization causes nonmonotonic changes to the kinetic
components of μ1, μ2, and μ3. It is also interesting to notice
that the potential components of μ1, μ2, and μ3 are nearly
equal, regardless of the � or β values.

Finally, at the strongest coupling condition of � = 100,
the shear viscosity is entirely determined by the potential
contributions, the kinetic contributions being negligible. The
potential contribution of each coefficient is observed to in-
crease as a positive power of β (approximately β1/2 over this
range).

F. Merging of coefficients at strong coupling

The most striking feature of the shear viscosity coeffi-
cients at � = 100 is that they merge to a common value
μ1 = μ2 = μ3; see Figs. 4(c) and 6(b). As Fig. 6 shows, the
potential components of μ1, μ2, and μ3 are the same at all
values of � and β simulated. When � is sufficiently large,
the potential components are much larger than the kinetic
components and thus they determine the total shear viscosity.
Thus, it is reasonable to expect that the merging of coefficients
(μ1 = μ2 = μ3) is associated with the predominance of the
potential contributions, which is a strong-coupling effect.

The equality of the shear viscosity coefficients stems from
the near equality of the relevant components of the correlation
functions shown in Figs. 2(g)–2(i), C12 ≈ C13 and C11 ≈ C33,
as discussed in Sec. IV A. With these relations, Eqs. (12a)
and (12b) result in μ1 = μ2. Since the correlation functions
exhibit the same symmetries expected of stress fluctuations in
an isotropic system, it is expected that μ1 = μ3 as well.

V. CONCLUSION

This paper presented calculations of the coefficients of the
viscosity tensor in a magnetized strongly coupled plasmas us-

ing equilibrium molecular dynamics simulations. The results
were analyzed in three different magnetization regimes set
by length scales in the plasma: (i) the unmagnetized regime
where λcol < rc, (ii) the classically magnetized regime where
rc < λcol and rc is still greater than λD and rL, and (iii) the
extremely magnetized regime where rc is the smallest length
scale in the plasma. Qualitative differences in the shear vis-
cosity coefficients were observed in each of these regimes, in
agreement with Ref. [18].

In the unmagnetized regime, the shear viscosity tensor
reduces to a single scalar coefficient, consistent with ex-
pectations due to symmetries in this limit. In the classical
magnetized regime, the shear viscosity coefficient associated
with the stress in the field parallel direction is unmodified,
while those coefficients associated with the perpendicular
stress decrease with increasing beta in a manner consistent
with the predictions of Braginskii transport. In the extremely
magnetized regime, the viscosity coefficients are observed to
increase, rather than decrease, with beta. At large values of
� the transport coefficients associated with parallel and per-
pendicular stress are observed to merge to a single coefficient.
In this case, inspection of the correlation functions indicates
that the plasma does not exhibit anisotropic fluctuations in the
fluid stress.

The data provided here may be useful as a benchmark for
the evaluation of strongly coupled plasma theories in each of
these three magnetization regimes. While the data are con-
straining for Braginskii theory, the narrowness of region 2
and the influence of the transition between regimes at � = 1
prevent exact confirmation of Braginskii theory from the MD
data. Future simulations at weaker coupling may better probe
this regime.
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APPENDIX: COORDINATE ROTATIONS
OF SYMMETRIC RANK-4 TENSORS

While the transformation rules of symmetric rank 4 tensors
using Voigt notation are well known in some areas, such as the
design of piezoelectric materials [45], they are uncommon in
plasma physics. This Appendix presents a quick review aimed
toward the problem presented in this paper. A more complete
discussion can be found in Chap. 6 of Ref. [45].

First consider the transformation of a rank 2 Cartesian
tensor under a general coordinate rotation

A′ = RAR−1, (A1)

where

A =
⎛
⎝Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

⎞
⎠ (A2)
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and

R =
⎛
⎝l1 m1 n1

l2 m2 n2

l3 m3 n3

⎞
⎠ =

⎛
⎝ cos ψ cos θ cos φ − sin ψ sin φ cos ψ cos θ sin φ + sin ψ cos φ − cos ψ sin θ

− sin ψ cos θ cos φ − cos ψ sin φ − sin ψ cos θ sin φ + cos ψ cos φ sin ψ sin θ

sin θ cos φ sin θ sin φ cos θ

⎞
⎠ (A3)

is the rotation matrix where li, ni, and mi are the direction cosines and φ, θ , and ψ are the Euler angles. The convention used here
is that φ is the counterclockwise angle around ẑ resulting in the transformation {x̂, ŷ, ẑ} → {x̂′, ŷ′, ẑ′}, θ is the rotation angle about
the ŷ′ axis resulting in {x̂′, ŷ′, ẑ′} → {x̂′′, ŷ′′, ẑ′′}, and ψ is the rotation about the ẑ′′ axis resulting in {x̂′′, ŷ′′, ẑ′′} → {x̂′′′, ŷ′′′, ẑ′′′}.
If A is symmetric, the transformation in Eq. (A1) can be reexpressed as the transformation of a vector with indices running from
1 to 6:

A′ = αA, (A4)

where A is now expressed as (Axx, Ayy, Azz, Ayz, Axz, Axy)T and

α =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

l2
1 m2

1 n2
1 2m1n1 2n1l1 2l1m1

l2
2 m2

2 n2
2 2m2n2 2n2l2 2l2m2

l2
3 m2

3 n2
3 2m3n3 2n3l3 2l3m3

l2l3 m2m3 n2n3 m2n3 + n2m3 n2l3 + l2n3 l2m3 + m2l3
l1l3 m1m3 n1n3 m1n3 + n1m3 n1l3 + l1n3 l1m3 + m1l3
l1l2 m1m2 n1n2 m1n2 + n1m2 n1l2 + l1n2 l1m2 + m1l2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A symmetric rank-4 tensor L, with indices such as those in Eq. (3), that relates two rank-2 tensors A and B through the relation
A = LB, can be determined in a similar way since A and B transform through the properties outlined above. This leads to the
relation αA = LαB. It follows that A = α−1LαB. Hence, under a coordinate rotation, L transforms as

L′ = α−1Lα, (A5)

where

α−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l2
1 l2

2 l2
3 2l2l3 2l1l3 2l1l2

m2
1 m2

2 m2
3 2m2m3 2m1m3 2m1m2

n2
1 n2

2 n2
3 2n2n3 2n1n3 2n1n2

m1n1 m2n2 m3n3 m2n3 + n2m3 m1n3 + n1m3 m1n2 + n1m2

n1l1 n2l2 n3l3 n2l3 + l2n3 n1l3 + l1n3 n1l2 + l1n2

l1m1 l2m2 l3m3 l2m3 + m2l3 l1m3 + m1l3 l1m2 + m1l2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A6)

Using as an example the 180◦ rotation about the z-axis from Sec. II, the nonzero elements in R are l1 = −1, m2 = −1, and
n3 = 1. For this case,

α−1 = α =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

. (A7)

Application of this operator to Eq. (9) in Sec. II leads to many of the conclusions about which elements of the viscosity matrix
Li j are zero as a result of the system being invariant when rotating about the magnetic field direction.
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