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Experimental observation of resonance manifold shrinking under zonal flow shear
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In two-dimensional turbulent systems the redistribution of energy can be described by quadratic nonlinear
three-wave interactions, which are limited by resonance conditions. The set of coupling modes can be understood
as resonant manifold. It has been predicted by theory that, in the presence of a shear flow, the resonant manifold
in wave-number space shrinks in time favoring large-scale structures. The phenomenon of manifold shrinking
in the presence of shear flows is studied the first time experimentally in drift wave turbulence at the stellarator
TJ-K by bicoherence analysis. By estimating effective mode numbers characterizing the width of the manifold,
it is demonstrated that increasing shear leads to a shrinking of the resonance manifold.
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I. INTRODUCTION

In wave turbulence the nonlinear interaction can be approx-
imately described by resonant N-wave interactions, where
the resonance is restricted by the dispersion relation of the
wave [1]. Sheared flows can impact the resonance of the
wave coupling process. In turbulent two-dimensional (2D)
systems, such as, e.g., magnetohydrodynamics (MHD) tur-
bulence in the plane transverse to the external magnetic field
[2,3] and Rossby waves in the atmosphere [4,5], mesoscopic
shear flows are generated by a self-enhancing mechanism akin
to an inverse cascade process. A prominent example is the
zonal flow (ZF), which reacts back on the turbulence and
suppresses its own driver, leading to predator-prey-like limit
cycle oscillations [6,7]. These large-scale flows can regulate
turbulent transport perpendicular to their flow direction [8,9].
For magnetized fusion plasmas it is believed that ZFs could
play an important role in the formation of the transport barrier,
which manifests itself in a strong stationary shear flow in the
edge of the confined region, during the transition from low
to high confinement regime [10–14]. Therefore, the effect of
shear flows on the turbulence and their nonlinear wave inter-
action becomes the focus of attention. In this work, the effect
of self-generated sheared flows (ZFs) on the resonant three-
wave interaction of drift waves is studied experimentally. For
this investigation, the temporal evolution of the resonance
coupling manifold is resolved in wave-number space enabled
by measurements with a probe array in the low-temperature
plasmas of stellarator experiment TJ-K [15]. We find that the
resonance manifold shrinks with increasing shear and extends
back when the shear vanishes. The experimental results agree
well with model calculations relying on experimental shear
data.
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II. MANIFOLD-SHRINKING MODEL

Drift-wave turbulence can be described by the Hasegawa-
Wakatani equations [16] or, in the adiabatic limit, by the
Hasegawa-Mima equation [17]. A Fourier transformation
leads to the wave-coupling equation

∂t φ̂k3 + iω(k3)φ̂k3 = 1

2

∑

k1+k2=k3

�k1,k2 φ̂k1 φ̂k2 , (1)

with the nonlinear coupling term on the right-hand side
originating from the convective derivative. Here, φ̂ki is the
dimensionless potential in Fourier space and ω(k3) is the drift
wave dispersion relation. The potential is related to the flow
by the E × B drift v = −∇φ × B/B2. The coupling coeffi-
cient �k1,k2 = k1 × k2 · z(k2

2 − k2
1 )/(1 + k2

3 ) determines the
strength and direction of the individual couplings. The con-
straint, under which coupling takes place, is

k1 + k2 = k3, (2)

the resonance condition for three-wave interaction. It ex-
pands to the resonance condition in frequency space,
ω(k1) + ω(k2) − ω(k3) = �ω ≈ 0, via the dispersion rela-
tion ω(ki ) = ki,y/(1 + k2

i ), and limits the set of possible
couplings in k space [18]. Thus, for a specific mode only a
distinct coupling space is permitted: the resonant manifold.
The theoretical effect of flow shear on the manifold is exam-
ined by Gürcan [19]. The implementation of a constant shear
v′ in the x direction, i.e., flow in the y direction, leads to a
time-dependent kx component,

k′
i,x = ki,x − v′τki,y with τ = t + t0. (3)

The initial time t0 can be chosen freely. Equation (3) en-
ters the dispersion relation such that the coupling space is
reduced with increasing time. Therefore, small-scale turbulent
structures are forced to couple to the large flow structures,
especially the ZF [19]. It is argued that this is the mechanism
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FIG. 1. Illustration of the effect of shear flow on the extent of
the resonance manifold. (left) The manifold (black band), k1 =
(0.6, 0.4) coupling with k3, shrinks with time τ in sections I and
III. (right) A temporal varying shear v′ (black solid line) leads to a
dip in the extent of the manifold with respect to k3,y.

behind large-scale structure formation in quasi 2D turbulent
systems [20], such as atmospheric turbulence or plasma tur-
bulence in toroidal fusion devices. ZFs (ky = 0) hold a special
position because they satisfy the resonance condition (2) in a
trivial way. These mesoscopic turbulent flows are, therefore,
always part of the resonance manifold as persisting com-
ponent coupling with the drift waves. As being shear flows
themselves, this leads to a self-amplification of the ZF and a
suppression of the primary instability. Physically, the mecha-
nism is similar to the straining-out process of eddies, which
explains the turbulence suppression by tilting and incorpora-
tion, rather than a breakup, of the vortices [14,21]. Also, when
the background shear is controlled externally, e.g., by plasma
biasing, ZF drive is enhanced because the time-averaged res-
onant manifold is effectively weakened.

To account for dynamic variations in the flow shear, for
comparison with the experiment, the coupling manifold is
recalculated for a flow shear modeled as v′(τ ) ∝ exp(−τ 2).
The effect on the resonance manifold is illustrated in Fig. 1.
For the specific mode k1 = (0.6, 0.4) the manifold is shown
on the left side as a black band for the three time points τ = 0,
0.3, and 0.6. With increasing time, the manifold shrinks in its
extent (marked as Secs. I and III). Because of the stationary
solutions of the ZF (k2,y = 0, k3,y = 0), the manifold does not
shrink further into Sec. II. From Fig. 1 (right), it can be seen
that, for finite lifetimes of the shear, the shrinking effect is
also temporally limited, which allows for analyses of manifold
shrinking in correlation with zonal potential events. Since flow
shear takes effect over time, a time lag between maximum
shear as precursor and maximum shrinking may be expected
from Fig. 1, too.

III. THE STELLARATOR TJ-K

For a direct experimental test of the manifold shrink-
ing effect the turbulent fluctuations have to be resolved in
k space. At the stellarator experiment TJ-K fluctuations in

FIG. 2. Schematic cross section of TJ-K visualizing the exper-
imental setup. For better comparison, measurement positions are
shown in the same plane. The probe array (blue cross) is positioned in
the edge of the confined region. With a movable probe system radial
profiles are obtained from the plasma center across the separatrix.

the floating potential can be accessed in wave-number and
frequency space, simultaneously, by means of multiprobe con-
figurations. The low-temperature plasmas allow the use of
Langmuir probes throughout the plasma, making it possible
to acquire long time traces (220 samples) with up to 1 MHz
sampling frequency. Given that temperature fluctuations are
small in TJ-K [22], fluctuations in the floating potential can be
associated with plasma potential fluctuations, i.e., φ̃fl ≈ φ̃pl.
For the current analysis, a poloidal probe array was used
consisting of 128 Langmuir probes positioned in the edge
of the confined region. The probe positions are visualized in
Fig. 2 as crosses. With a spatial uncertainty of 2 mm, the
averaged poloidal probe spacing of �y ≈ 1.55 cm is well
below the typical structure size of 3 to 5 cm [23–25]. For
normalization, the wave numbers are multiplied by the drift
scale, ρs = √

miTe/eB, where the electron temperature Te is
obtained by a radially movable swept Langmuir probe (see
Fig. 2). At a 2.45 Hz microwave frequency, corresponding to
a magnetic field of B = 72 mT on axis, the hydrogen plasma is
heated with 2.4 kW. This results in a maximum electron tem-
perature of around Te ≈ 7 eV and a line-averaged density of
n̄e = 1.67 × 1017 m−3, with the latter determined from a mi-
crowave interferometer. It has been shown that the normalized
quantities of TJ-K plasmas are similar to those in fusion edge
plasmas [26] and turbulence is drift-wave dominated [27,28].
Two strong identifiers of drift-wave turbulence, among others,
could be experimentally verified for TJ-K plasmas: A finite
structure size l‖ parallel to magnetic-field lines with l‖ � l⊥
[28] and l⊥ typical perpendicular length scales of turbulent
structures as well as a zero phase delay between density and
potential fluctuations in a broad range of spatial scales [27].
The cross-phase results from the adiabatic parallel response
of electrons to the density perturbation. Self-generated flows
have been detected as zonally averaged time-varying potential
perturbations [29]. Scans in the poloidal cross section and
probe array measurements reveal their spatial structure and
turbulent Reynolds stress drive [30]. In particular, their radial
localization gives rise to sheared zonal flows. This makes the
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FIG. 3. Scheme of the bicoherence spectrum in k space, where
the projection of the resonance manifold on ky can be identified (see
text for further information). For a specific wave number k1 = const.,
the manifold (dashed line) is suspected to shrink in section I (positive
wave numbers) and section III (negative wave numbers).

experiment ideal for comparison with the theory presented
above.

IV. MANIFOLD UNDER ZF SHEAR AT TJ-K

An experimental proof of the change in coupling manifold
turns out to be quite challenging since the dispersion relation
is subject to statistical scatter. Therefore, the coupling space
itself is analyzed by a bicoherence spectrum in wave-number
and frequency space. This method intrinsically represents
three-wave interactions which follow the resonance condition
[Eq. (2)] in accordance with the dispersion relation. Due to
the low spatial resolution in the radial direction, only the size
of the manifold in ky is regarded and we refer to ki,y as ki

from here on. The (auto) bicoherence applied on the potential
fluctuations is

b2(k1, k2, ω1, ω2, τ )

= |〈φ̂ j (k1, ω1, τ )φ̂ j (k2, ω2, τ )φ̂∗
j (k3, ω3, τ )〉|2

〈|φ̂ j (k1, ω1, τ )φ̂ j (k2, ω2, τ )|2〉〈|φ̂ j (k3, ω3, τ )|2〉 . (4)

Given that the study of the coupling space requires a time-
dependent bicoherence, the coefficients φ̂ j are calculated with
a wavelet transformation [31], analogous to Refs. [32]. The
asterisk denotes the complex conjugate and 〈·〉 the ensem-
ble average. The triple product of the wavelet coefficients
[numerator in Eq. (4)] is a measure of the phase coupling
between the three components (k1, ω1), (k2, ω2), and (k3, ω3).
For statistically independent modes, the sum of the individual
phases average out and the bicoherence vanishes. With the
normalization to the cross and auto power spectrum [denomi-
nator in Eq. (4)], the bicoherence is limited to the range [0,1],
resulting from the Cauchy-Schwarz inequality. The resultant
bicoherence spectrum spans in a four-dimensional coupling
space (k1, k2, ω1, ω2). Since we are interested in the extent

FIG. 4. Measurement of the effective extent of the resonant
manifold during ZF occurrence. (top) Conditionally averaged ZF po-
tential with uncertainty (light gray), which evolution can be regarded
equivalent to the radial shear. (below) Time evolution of the effective
wave number keff in section I (middle) and section III (bottom) shown
as filled dots and uncertainty. Both time traces exhibit a drop of
the effective wave number when the shear increases. The results are
compared with numerical calculations (black solid lines).

of the manifold in k space, the spectrum is averaged over all
frequencies where the bicoherence is above the significance
level, i.e., greater than 1/

√
N [33,34], leading to the reduced

bicoherence spectrum b2(k1, k2, τ ). In Fig. 3, a common rep-
resentation of such a spectrum for a single time point is
shown schematically. For discrete time traces the domain of
definition is restricted to the outlined part. The wave numbers
k1, k2, and k3 = k1 + k2 are limited to wave numbers below
the Nyquist wave number ±kNy. The diagonal and counter
diagonal are distinguished with the requirement k1 − k2 = 0
and k1 + k2 = 0, respectively. Because of symmetry to these
axes, i.e., b2(k1, k2) = b2(k2, k1) = b2(−k1,−k2) [35], only
one quarter of the plane contains independent information
(shaded area in Fig. 3). For an arbitrarily chosen mode k1,
all corresponding interactions are located on the vertical line
k1 = const. (dashed line). This is the coupling manifold for
the respective mode k1 in a projection onto the ky axis (cf.
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Fig. 1). The points k2 = 0 and k3 = 0 (white dots) mark the in-
teraction with the ZF. Hence, the sections described before can
be identified in the bicoherence spectrum. The segment k2 > 0
refers to section I, 0 � k2 � −k1 to section II, and k2 < −k1

to section III. Only sections I (positive wave numbers) and
III (negative wave numbers) are of interest for the analysis of
the shrinking effect, because only here can a statement about
the behavior of the manifold be made. For each section an
effective wave number keff is calculated as a measure for the
width of the coupling space,

keff =
∑

k2

w(k2)k2 with w = b(k2)∑
k2

b(k2)
. (5)

The weighting factor w accounts for the individual coupling
strength each mode exhibits. High and low absolute values of
keff indicate a broad and narrow coupling space, respectively.

To study the temporal evolution of the flow shear a con-
ditional averaging technique is used to create the ensemble
average in the calculation of the bicoherence [Eq. (5)]. The
ZF, regarded as poloidal shear flow, is linked to a coherent
potential fluctuation on the complete flux surface (kθ = 0),
which the experiment directly gives access to. Hence the
zonal potential is used as trigger signal with the condition
+2σ , triggering on the signal maximum as previously done
in studies on related particle [29] and momentum [30] trans-
port. With subwindows of 256 μs, the ensemble average is
build from more than 1000 realizations to reflect the averaged
dynamics around the ZF event. The temporal evolution of
the zonal potential 〈φ〉FS is shown on the top of Fig. 4. For
the quantification of the size of the coupling manifold, the
effective wave number is calculated for each time point τ ,
according to Eq. (5). The evolution of keff (τ ) for k1ρs = 0.48,
as an example, is shown in Fig. 4 in the two lower plots
for both of the meaningful sections. When the ZF advances,
and thus the shear increases, the effective wave number in
section I decreases. Vice versa, the effective wave number
in section III increases, so the manifold shrinks. The mini-
mum extent is reached when the zonal potential is maximal
(τ ≈ 128 μs). A possible shift between both is small and
hard to identify. This is due to the fact that the overall time
duration of the ZF is short and the connected shear is relatively
weak, with the same fluctuation amplitude as the ambient
turbulence. At falling ZF amplitude the manifold increases
again to the original size. The solid lines in the plots repre-
sent the shrinking that would be expected from the manifold
shrinking model [Eq. (3)], using the time-dependent experi-
mental shear as estimated from the zonal potential in Fig. 4

(top). The initial wave number for the calculation is estimated
to kρs ≈ (0.40, 0.48). Both time traces taken together reveal
the drop in the size of the manifold, following the dynamics of
the ZF. The temporal behavior of the experimentally found ef-
fective wave numbers agree qualitatively well with the model
calculations.

V. SUMMARY AND CONCLUSION

To summarize, a reduction of the coupling manifold by
shear flows has been experimentally observed. In wave tur-
bulence, wave coupling takes place among modes of a
resonant manifold in consequence of the waves’ dispersion re-
lation. According to Gürcan [19], this manifold in drift-wave
turbulence is predicted to shrink under flow shear. A com-
bined conditional wavelet-based bispectral analysis method
in wave number and frequency space, applied to multiprobe
measurements of the plasma potential in the stellarator exper-
iment TJ-K, has been used to demonstrate that the resonant
manifold indeed shrinks in correlation with occurring ZF
activity. Physically, this corresponds to the straining-out pro-
cess of eddies, in which the dynamics evolves in favor of
large-scale structures. As a persisting contribution within the
shrinking manifold, ZFs gain relative importance in the turbu-
lence’s three-wave interactions, which may be reflected in an
enhanced efficiency in turbulence-flow energy transfer. More-
over, the mechanism is not limited to time-varying flow shear
but also applies to background shear flows as well, which
demonstrates the important role equilibrium shear flows may
play in the coupling process between small-scale turbulence
and large-scale structures—in particular, in the turbulence
suppression and transport barrier formation scenario in mag-
netically confined fusion plasmas. In future steps, quantitative
aspects of turbulence reduction as reflected in turbulent ampli-
tudes or growth rates should be addressed in comparison with
changes in the nonlinear coupling behavior.
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