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Far-field flow and drift due to particles and organisms in density-stratified fluids
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In the limit of small inertia, stratification, and advection of density, Ardekani and Stocker [Phys. Rev. Lett.
105, 084502 (2010)] derived the flow due to a point-force and force-dipole placed in a linearly density-stratified
fluid. In this limit, these flows also represent the far-field flow due to a towed particle and a neutrally buoyant
swimming organism in a stratified fluid. Here, we derive these two far-field flows in the limit of small inertia,
stratification but at large advection of density. In both these limits, the flow in a stratified fluid decays rapidly and
has closed streamlines but certain symmetries present at small advection are lost at large advection. To illustrate
the application of these flows, we use them to calculate the drift induced by a towed drop and a swimming
organism, as a means to quantify the mixing caused by them. The drift induced in a stratified fluid is less than that
in the homogeneous fluid. A towed drop induces a large drift relative to its own volume at small advection while
it induces at least an order of magnitude smaller drift at large advection. On the other hand, a swimming organism
induces a large partial drift as compared with its own volume irrespective of the magnitude of advection, unless
the stresslet exerted by the swimmer is small. These results are useful in understanding the stratification effects
on the drift-based contributions to mixing.
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I. INTRODUCTION

Density stratification, in its natural setting, occurs in the
oceans, lakes, or ponds due to the variation of the temperature
or the salt concentration with height. The stratification alters
the settling rates of organic matter in the ocean which affects
the carbon flux as well as the nutrient transport from the sur-
face to the bottom of the ocean [1–6]. Sharp density changes
inhibit the motion of several swimming organisms [7–10]
and are also responsible for the formation of the frequently
observed algal blooms [11]. Due to the inherent nature of the
stratification to suppress the vertical motion, it is expected
that the stratification reduces the mixing caused by the set-
tling particles and swimming organisms [12–14]; however, a
consistent analysis of this argument is still lacking.

A decade ago, Ardekani and Stocker [15] reported the flow
due to a point force and a force-dipole in a density-stratified
fluid in the limit of small inertia, stratification and advective
transport rate of density. These point force singularity solu-
tions paved the way towards calculating the mixing caused
by a settling particle or a swimming organism in a stratified
fluid. For instance, Wagner et al. [16] quantified the mixing
through the mixing efficiency—the ratio of the rate of creation
of gravitational potential energy to the rate of work done on
the fluid—and found that the mixing efficiency of a settling
particle and a neutrally buoyant swimming organism scales
as a/l and (a/l )3, respectively, where a is the characteristic
size of the particle (or the organism), l = (νκ/N2)1/4 is the
intrinsic length scale for stratified flows, ν is the kinematic
viscosity, κ is the diffusivity, and N is the buoyancy fre-
quency (or Brunt-Vaisala frequency). For weak stratifications,
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a/l � 1, this means that the settling particle and the swim-
ming organism are only 10% and 0.1% efficient in mixing
their surroundings and this leads to the conclusion that the
swimming microorganisms are incapable of mixing their sur-
roundings or the ocean. Just like in the homogeneous fluids,
the flow due to a point-force and a force-dipole in stratified
fluids still represent the flow far away from a settling particle
and a neutrally buoyant swimming organism. The knowledge
of this far-field flow enables us to find the induced drift,
i.e., the volume of the displaced fluid [17]. The calculation
of drift allows us to better understand the mixing caused by
the settling particles or the swimming organisms [18,19]. We
found that a rising drop or a settling particle in a stratified
fluid induces a large but finite drift volume unlike an infinite
drift volume induced in a homogeneous fluid [17]. This means
that the settling organic matter in the stratified ocean can
significantly mix its surroundings but not as much as that in
homogeneous fluids.

The analysis in the density-stratified fluids is far from
complete. Most works mentioned in the previous paragraph
are valid in the limit of low Péclet number (Pe), where the
Péclet number is the ratio of the advection to the diffusion
of the density. We expect a similar analytical solution for the
flow and density fields at the other extreme values of Péclet
number, namely high Pe, to be helpful in better understanding
the transport of particles and organisms in stratified fluids.
A similar flow far from a settling sphere was derived earlier
in the Fourier space [20], but this flow was directly used to
determine the drag enhancement on the sphere without any
attention to the details of the flow field. To illustrate one of
the applications of this flow field, we use it to find the drift
induced by a towed drop or particle in a stratified fluid at high
Pe. As for the neutrally buoyant swimming organism, we use
the flow far from the organism both at low Pe (Stratlet-dipole
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[15]) and at high Pe (derived here) to find the drift induced
by the organism at the respective Pe. Hence, we close the gap
in the literature where the focus was on finding the flow far
from a settling sphere and a swimming organism at low Pe,
and the drift induced by a rising drop or particle at low Pe by
generalizing the former calculations to high Pe, and also by
finding the drift induced by a rising drop or particle as well as
a swimming organism at both low and high Pe.

Few numerical or theoretical studies were performed in the
past to determine the swimming speed of a spherical squirmer
or Taylor’s swimming sheet in a stratified fluid at finite inertia
and stratification strength and the mixing caused by a single
or a dilute suspension of model swimmers [9,10,21,22].

List and later Ardekani and Stocker reported the exis-
tence of a length scale l = (νκ/N2)1/4 in stratified fluids, and
the particles or organisms larger than this length scale are
significantly affected by the stratification [15,23]. As their cal-
culation is only valid at low Pe, we expect to have a different
length scale at high Pe. This length scale L = (νuc/N2)1/3 was
first noted by Janowitz in the context of horizontally towed
two-dimensional (2D) particles in stratified fluids [24] and
was recently used by Zhang et al. while discussing the mech-
anism behind the drag enhancement in stratified fluids [25].
As the density transport is dominated by advection at high
Pe, it is of no surprise that this length scale depends on the
characteristic velocity uc, which is either the settling velocity
of a particle or the self-propulsion velocity of an organism. For
weak stratification, as is of interest to us, these stratification
length scales are similar to the Oseen length scale lo = ν/uc

that exists in the context of small inertia in homogeneous
fluids. In the inertial case, inertia is negligible in the near-
field and hence the flow due to particle and neutrally buoyant
organism decays as 1

r and 1
r2 at r � a, respectively, where

r is the distance measured from the center of the particle or
the organism. On the other hand, in the far field, at r ≈ lo,
the inertial forces become as important as the viscous forces
and the flow decays differently from that in the Stokes flow
limit. Similarly for weak stratifications, the buoyancy forces
are negligible in the near field while they become as important
as the viscous forces in the far field. Our focus is to analyze
the flow in this far field. As expected, the size of the particle
or the organism is unimportant in the far field, so the relevant
length scale is the stratification length.

We organize this paper as follows: We derive the far-field
flow due to a towed particle and a swimming organism in a
stratified fluid at both low and high Pe and analyze the flow
at high Pe in Sec. II. Using these flow fields, we then derive
and analyze the drift induced by a towed drop and a swimming
organism in a stratified fluid at both low and high Pe in Sec. III
and provide a few concluding remarks in Sec. IV. We always
assume that the swimming organism is neutrally buoyant.

II. FLOW FAR AWAY FROM A PARTICLE OR AN
ORGANISM IN A DENSITY-STRATIFIED FLUID

Consider a particle or a drop towed with velocity u = u3e3

or a neutrally buoyant swimming organism with the self-
propulsion velocity of u = u3e3 in a linearly density-stratified
fluid. The ambient density of the stratified fluid decreases
linearly with an increase in height as ρ0 = ρ∞ − γ x3. Here,

ρ∞ is the reference density, γ > 0 is the ambient density
gradient, x = x je j is the position vector in the laboratory
frame of reference, e j are the unit vectors along the coordinate
axes in the Cartesian coordinate system, and e3 points verti-
cally upwards. Neutrally buoyant means the hydrostatic force
acting on the particle or organism balances the weight. The
hydrostatic force or buoyancy can be found by considering a
stationary particle in a stratified fluid and it turns out to be
the weight of the ambient fluid displaced. Hence, a particle or
organism is neutrally buoyant in a linearly stratified fluid if its
density is equal to the ambient fluid density evaluated at its
center.

In a comoving frame, the flow is governed by the continuity
and the Navier-Stokes equations, which under the Boussinesq
approximation [26,27] are given as

∇ · w = 0, (1)

ρ∞

(
∂w
∂t

+ w · ∇w
)

= −∇p + ρ∞ν∇2w − ρge3 − ρ∞
du
dt

.

(2)

Usually, the stratification in the temperature or the salt con-
centration leads to the density stratification and, for small
changes in the former, the change in the density is linearly
related to the change in the temperature or the salt concentra-
tion and we can directly write an advection-diffusion equation
for density instead of such an equation for temperature or salt
concentration:

∂ρ

∂t
+ w · ∇ρ = κ∇2ρ. (3)

Far away from the particle or the organism, the fluid velocity
approaches the negative of the towed or the self-propulsion
velocity while the density approaches the ambient density:

as r → ∞, w → −u, ρ → ρ0 = ρ∞ − γ x3. (4)

Here, r = r je j is a position vector in the comoving frame with
the origin located at the center of the particle or the organism
and r = |r|. The position vectors in the laboratory and the
comoving frame are related by x = r + xs, where xs locates
the center of the particle or the organism. On the surface of the
particle or the organism, we apply a no-flux boundary condi-
tion for the density which holds if the surface is impermeable
to the concentration or insulating to the temperature field:

On the surface: n · ∇ρ = 0. (5)

On the surface, we also have the usual kinematic and the no-
slip boundary conditions for the flow field.

Now, we express all the variables in terms of the distur-
bance variables denoted by primes as follows:

w = w′ − u, ρ = ρ ′ + ρ0, p = p′ + p0, (6)

where p0 satisfies the equation −∇p0 − ρ0ge3 = 0. Assuming
the quasisteady conditions to hold, the governing equations
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written in terms of the disturbance variables are given by

∇ · w′ = 0, (7)

ρ∞(w′ · ∇w′ − u · ∇w′) = −∇p′ + ρ∞ν∇2w′ − ρ ′ge3, (8)

w′ · ∇ρ ′ − u · ∇ρ ′ − w′ · e3 = κ∇2ρ ′. (9)

By definition, all the disturbance variables decay to zero far
away from the particle or the organism

w′ = 0, ρ ′ = 0 as r → ∞. (10)

We use the characteristic velocity scale uc, which is either
u3 or 6πu3, the characteristic length scale a quantifying the
size of the particle or the organism, the viscous pressure scale
pc = ρ∞νuc

a , and the density scale ρc = γ a to nondimension-
alize the velocity, length, pressure, and density, respectively.
If uc is u3 (resp. 6πu3), then the dimensionless u3 is 1 (resp.
1/6π ). The dimensionless governing equations are then given
as follows:

∇ · w′ = 0, (11)

Re(w′ · ∇w′ − u · ∇w′) = −∇p′ + ∇2w′ − Riρ ′e3, (12)

Pe(w′ · ∇ρ ′ − u · ∇ρ ′ − w′ · e3) = ∇2ρ ′. (13)

Here, Re, Pe, Ri are, respectively, the Reynolds, the Péclet,
and the viscous Richardson numbers, which are the ratio of
the inertia to the viscous forces, the advective to the diffusive
transport rate of density, and the buoyancy to the viscous
forces [28]. Their precise expressions are given by

Re = auc

ν
, Pe = auc

κ
, Ri = γ ga3

ρ∞νuc
. (14)

For small Re, Ri, the disturbance flow far away from
a particle or an organism decays at least as fast as 1/r.
More precisely, for 1 � r < min{ l

a , L
a , lo

a }, w′ ∼ 1
r ,

1
r2 for the

towed particle and the neutrally buoyant swimming organism,
respectively. The towed velocity of the particle u is constant.
The self-propulsion velocity of an organism, although is
affected by stratification, can be taken as a constant, equal to
this velocity in a homogeneous fluid as far as the calculation
of the leading-order disturbance variables far away from the
organism are concerned. So, in the far field r � 1, w′ � u
and hence w′ · ∇w′ � u · ∇w′ and w′ · ∇ρ ′ � u · ∇ρ ′. As a
towed particle exerts a force Fe3 on the fluid while a neutrally
buoyant organism exerts a symmetric force-dipole or stresslet
−be3e3 on the fluid, they appear as a point force and a
symmetric force-dipole, respectively, in the far field. Again,
the stratification affects the force and the stresslet exerted
but these can be taken as their values in the homogeneous
fluid for the purpose of finding the leading-order disturbance
variables. In homogeneous fluids, F should be linearly related
to u3, i.e., F = Ku3. This description of the particle holds
only if it is nonskew and is settling along one of its principal
axes for translation [29]. Otherwise, a simple unidirectional
settling can lead to a force in all three directions. Examples of
nonskew shapes are sphere, spheroid, ellipsoid, disk, weakly
deformed sphere, etc. For a sphere, K = 6π and, for a drop,
K = 2πR, R = (3λ + 2)/(λ + 1), where λ is the viscosity
ratio of the inner fluid to the outer fluid. Also, the stresslet

strength b > 0 for pusher-type organisms that push the fluid
behind them to propel while b < 0 for puller-type organisms
which pull the fluid in front of them to swim. Examples of
pusher- and puller-type organisms are Escherichia coli and
Chlamydomonas, respectively. Hence, in the far field, we
neglect the terms w′ · ∇w′, w′ · ∇ρ ′ in Eqs. (12) and (13),
and replace the boundary conditions on the surface of the
particle and the organism, respectively with the source terms
Fe3δ(r) and −be3e3 · ∇δ(r) in the Navier-Stokes equations.
The no-flux boundary condition for the density on the particle
or organism’s surface prohibits the occurrence of such source
terms in the advection-diffusion equation. Hence, in the
far-field, the equations governing the disturbance variables
are given as

∇ · w′ = 0, (15)

−Reu · ∇w′ = −∇p′ + ∇2w′ − Riρ ′e3

+
{

Fe3δ(r)
−be3e3 · ∇δ(r)

}
, (16)

−Pe(u · ∇ρ ′ + w′ · e3) = ∇2ρ ′. (17)

Note that F and b, respectively, are nondimensionalized by
ρ∞νauc and ρ∞νa2uc. These equations are coupled yet linear.
Hence, we have

Far-field flow due to an organism

= − b

F
(e3 · ∇) (Far-field flow due to a towed particle),

(18)

a relationship that holds for homogeneous fluids [30], now
is also true for stratified fluids. Given this relationship, we
only focus on deriving the flow due to a towed particle and
we neglect inertia for simplicity. Using a different formalism,
these equations governing the far-field disturbance variables
were already derived earlier for a towed spherical particle
[20,31–33] but here we generalize such a derivation to
neutrally buoyant swimming organisms.

At low Pe, far from the particle, the characteristic length
scale should be the relevant stratification length scale l in-
stead of the particle size a. Hence, we nondimensionalize the
length by l or, equivalently, rescale the dimensionless length
as r̄ = εr, where ε = a/l = (RiPe)1/4. This limit of small Ri,
Pe means that ε is small. Far away from the particle, at r ∼
l
a = 1

ε
� 1, the velocity and the pressure disturbance decay

as w′ ∼ 1
r ∼ ε, p′ ∼ 1

r2 ∼ ε2, so we rescale these variables as
w′ = εw̄′, p′ = ε2 p̄′ so that the rescaled variables are O(1).
Also, far away from the particle, at r ∼ 1

ε
, the viscous terms

∇2w′ are O(ε3). To make it explicit that the buoyancy terms
Riρ ′ are of the same order of magnitude as the viscous terms
and also to have an O(1) density field, we rescale the density
as ρ ′ = Pe

ε
ρ̄ ′. Hence, the equations governing the rescaled

variables at low Pe, Pe � ε, are given by

∇̄ · w̄′ = 0, (19)

0 = −∇̄ p̄′ + ∇̄2w̄′ − ρ̄ ′e3 + Fe3δ(r̄), (20)

−w̄′ · e3 = ∇̄2ρ̄ ′. (21)
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These equations governing the far-field disturbance caused by
a towed particle are the same as those governing the distur-
bance due to a point-force placed in a stratified fluid at low Re,
Pe which were derived by Ardekani and Stocker [15]. Because
these equations are linear, we solve them in Fourier space,
where the definition of the Fourier and the inverse Fourier
transforms are given as

ˆ̄w
′
(k) =

∫
w̄′(r̄)e−ik·r̄d r̄, w̄′(r̄) = 1

8π3

∫
ˆ̄w

′
(k)eik·r̄dk.

(22)
Here, ˆ̄w

′
(k) is the Fourier transform of w̄′, i = √−1, and k =

k je j . The far-field disturbance flow caused by a towed particle
in the Fourier space is given by [17,20,31,32]

ˆ̄w
′
(k) = Fk2

k6 + k2 − k2
3

[−k1k3e1 − k2k3e2 + (
k2 − k2

3

)
e3

]
,

(23)
where k = √

k · k.
For a swimming organism, the far-field flow decays as

w′ ∼ 1
r2 ∼ ε2 at r ∼ 1

ε
, so we should rescale the flow as

w′ = ε2w̄′. Because of Eq. (18), the far-field flow due to an
organism in Fourier space is simply − b

F ik3 times the far-field
flow due to a towed particle in the Fourier space. Hence, we
have the following expression for the flow far away from an
organism in the Fourier space

ˆ̄w
′
(k) = ibk3k2

k6 + k2 − k2
3

[
k1k3e1 + k2k3e2 − (

k2 − k2
3

)
e3

]
.

(24)
At high Pe, the characteristic length scale in the far-field

should be the appropriate stratification length scale L. Hence,
we use L to nondimensionalize length or rescale the dimen-
sionless length as r̄ = Ri1/3r, where Ri1/3 can be interpreted
as the ratio a/L. In the far-field of the particle, at r ∼ L

a =
1

Ri1/3 � 1, the flow and the pressure disturbance decay as w′ ∼
1
r ∼ Ri1/3, p′ ∼ 1

r2 ∼ Ri2/3, hence we rescale these variables
as w′ = Ri1/3w̄′, p′ = Ri2/3 p̄′ so as to have O(1) rescaled
variables. Also, in the far-field of the particle, at r ∼ 1

Ri1/3 ,
the viscous terms ∇2w′ are O(Ri). These viscous terms are in
balance with the buoyancy terms Riρ ′ provided that the den-
sity disturbance ρ ′ is O(1). Since ρ ′ is O(1), it does not need
to be rescaled. Hence, the equations governing the rescaled
variables at high Pe, Pe � Ri1/3, are given by

∇̄ · w̄′ = 0, (25)

0 = −∇̄ p̄′ + ∇̄2w̄′ − ρ ′e3 + Fe3δ(r̄), (26)

−u · ∇̄ρ ′ − w̄′ · e3 = 0. (27)

We solve these equations in Fourier space to find the following
expression for the Fourier transform of the disturbance flow
[17,20,31,32]:

ˆ̄w
′ = Fu3k3

k4u3k3 + i(k2 − k2
3 )

[−k1k3e1 − k2k3e2 + (
k2 − k2

3

)
e3

]
.

(28)
As the flow far from an organism r ∼ 1

Ri1/3 decays as
w′ ∼ 1

r2 ∼ Ri2/3, we rescale this flow as w′ = Ri2/3w̄′. Sim-
ilar to low-Pe analysis, in the Fourier space, the far-field flow
due to an organism is given by − b

F ik3 times the far-field flow

due to a towed particle, and hence we have the following
expression for the former flow field:

ˆ̄w
′ = ibu3k2

3

k4u3k3 + i
(
k2 − k2

3

) [
k1k3e1 + k2k3e2 − (

k2 − k2
3

)
e3

]
.

(29)
As the far-field flow at low Pe was already analyzed by

Ardekani and Stocker [15], we focus our attention on analyz-
ing the far-field flow at high Pe. We plot this far-field flow
due to a towed spherical particle and a pusher-type organism
in Figs. 1 and 2, respectively, where the former and the latter
flows are found by performing an inverse Fourier transform
of Eqs. (28) and (29) using the ifft function in MATLAB [34].
In these figures, we also compare the spatial decay of the
vertical velocity at high Pe with that at low Pe as well as that in
homogeneous fluids. We choose uc = 6πu3 to have unit point
force in Fig. 1 while we choose uc = u3, b = 1 in Fig. 2.

It is clear that the flow at high Pe is fore-aft asymmetric.
The presence of the u · ∇̄ρ ′ term in the advection-diffusion
equation that transports the density in only one direction (ver-
tically upwards in our case) leads to such fore-aft asymmetry.
This advective term u · ∇̄ρ ′ is absent at low Pe, due to which
the far-field flow due to a towed particle and organism is,
respectively, fore-aft symmetric and fore-aft mirror symmetric
similar to the counterparts in the homogeneous fluid. Fore-aft
asymmetry resulting from the presence of an advective term
of the form u · ∇̄ρ ′ can also be observed in a simpler situation
of the forced convective heat transfer from a sphere placed in
a uniform streaming flow at low Re, high Pe (see Chapter 9
in Ref. [26]). This fore-aft asymmetry at high Pe means that
the spatial decay in the upstream (r̄3 > 0) is different from the
decay in the downstream (r̄3 < 0). Compare the red solid line
with the red dash-dotted line in Figs. 1(b) and 2(b).

In stratified fluids, the buoyancy of the entrained fluid as
well as the tendency of the perturbed isopycnals to return to
their neutrally buoyant position together contribute to sup-
pressing the vertical motion. This nature of stratification has
two consequences on the flow induced by a towed particle or
a swimming organism. First, the flow in the stratified fluid at
both low and high Pe decays faster than that in the homoge-
neous fluid [see Figs. 1(b) and 2(b)]. Second, the streamlines
in the stratified fluid are closed, unlike the open streamlines
in a homogeneous fluid. These consequences of stratification
on the flow field can also be understood by imagining the
stratification to act as horizontal virtual walls since walls also
suppress the vertical motion. Then it is of no surprise that the
far-field flow due to a towed particle in a stratified fluid is
qualitatively similar to the flow due to a point-force located
in between two horizontal walls in a homogeneous fluid. The
fore-aft symmetry (resp. asymmetry) of the flow at low Pe
(resp. high Pe) means that the equivalent situation in a homo-
geneous fluid consists of a point-force located symmetrically
(resp. asymmetrically) between two walls. Compare Fig. 1(c)
with the flow in Fig. 1(a) in the region −0.5 < r̄3 < 1.

At high Pe, the flow due to a towed particle in the upstream
decays slower than the flow in the downstream, but this flow
in both the upstream and the downstream decays faster than
the flow at low Pe [see Fig. 1(b)]. Because the flow due to
an organism is proportional to the vertical derivative of the
flow due to a towed particle [see Eq. (18)], the slow decay
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10-1 100 101
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100

10(b)
(a)

1

FIG. 1. Flow due to a towed sphere in the far field or that due to a point-force. The sphere is towed and the point-force is oriented in the
vertically upward direction. (a) Filled contours of ln |w̄′

3| along with the streamlines in a stratified fluid at high Pe. (b) The spatial variation
of the vertical velocity along horizontal (blue) and vertical (red) directions. The data in the homogeneous fluids are shown by dotted lines
whereas those in stratified fluids at low Pe are shown by symbols and those at high Pe are shown by dashed, solid, and dash-dotted lines. At
high Pe, dash-dotted and solid lines show the vertical variation along the upstream and the downstream directions, respectively. The data at low
Pe is taken from Fig. 2(a) of Ref. [15]. (c) Streamlines associated with the flow caused by a point-force located asymmetrically between two
horizontal walls in a homogeneous fluid. One wall is at r3 = −1 while the other is at r3 = 8. This flow is found by adding the image flow due
to the walls [35,36] to the Stokeslet flow. Such a simple calculation yields inaccurate flow far from the point-force, which justifies the nonzero
velocities seen near the bottom wall.

of the flow due to a towed particle in the upstream explains
the similar slow decay of the flow due to an organism in the
upstream compared with the flow decay in the downstream at
high Pe [see Fig. 2(b)]. Unlike the flow due to a towed particle,
the flow due to an organism in the upstream at high Pe decays
slower than that at low Pe whereas, in the downstream, the
flow at high Pe decays faster than that at low Pe [see Fig. 2(b)].

III. DRIFT

An initially marked (as in with a dye) plane of fluid de-
forms due to the motion of the particle or the organism normal
to this marked fluid plane. The volume enclosed between the

initial and final profiles of marked fluid is termed the partial
drift volume Dp [37,38]. When the extent of the marked fluid
as well as the distance traveled by the particle or the organism
relative to the marked fluid are infinite, the enclosed volume
is referred to as the drift volume. See Fig. 3 for a schematic
of the partial drift volume. In the context of towed particles or
drops, we analyze both the partial drift and the drift volume.
But since most of the organisms travel in a straight line only
for finite time periods before reorienting due to thermal or
biological noise, we only focus on discussing partial drift
induced by the organisms.

In line with the previous works [17,30,38], we choose
uc = u3 and assume the particle is towed or the organism is
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10-2
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(b)

0

(a)

FIG. 2. Far-field flow due to a vertically oriented (u3 > 0) pusher swimmer (b = 1). (a) Filled contours of ln |w̄′
3| along with the streamlines

in a stratified fluid at high Pe. (b) The vertical variation of the vertical velocity. The line style and color follow the same notation as that given
in Fig. 1(b). The data at low Pe are taken from Fig. 2(a) of Ref. [15].

oriented in the vertically upward direction, i.e., u3 > 0. Also,
we consider the initially marked plane of fluid to be disk
shaped with finite radius and zero thickness. We choose the
center of the marked fluid disk as the origin of the coordinate
axes in the laboratory frame. Recall that the origin in the
comoving frame is at the center of the particle or the organism.
We denote the axial and radial coordinates associated with the

FIG. 3. Schematic showing the definition of the partial drift vol-
ume Dp. In the comoving frame, the drop or organism is stationary
and the marked fluid is initially at a distance xd upstream of the
drop or swimmer. At time t , the marked fluid deforms as it passes
the drop or swimmer. The volume enclosed between the deformed
(blue curve) and the undeformed (green line) marked fluids at time t
determines the partial drift at that time (light blue region).

cylindrical coordinate system in the laboratory frame by x3, X
while those in the comoving frame by r3, R. At time t = 0,
the particle or the organism has not yet crossed the marked
fluid and the separation between them is denoted by xd , i.e.,
xs · e3|t=0 = −xd . Hence xs · e3 = −xd + t , which means that
r3 = x3 − xs · e3 = x3 + xd − t and also R = X . The flow in
the laboratory frame is the same as the disturbance flow in the
comoving frame. We denote the stream function associated
with the flow in the laboratory and comoving frame by ψ ′,
ψ , respectively. As the flow in these two frames differ by
a unit uniform streaming velocity, the corresponding stream
functions should differ by X 2/2, i.e., ψ ′ = ψ + X 2

2 . In the
comoving frame, far away from the particle or the organism,
the flow approaches the negative of the towed or the self-
propulsion velocity, hence ψ → −X 2

2 and one such streamline

ψ = − h2

2 intersects the edge of the marked fluid and also
defines the extent of the marked fluid. In the laboratory frame,
we denote this intersection point and the stream function at
this point by (x3, X ) = (0, X∗(t )), ψ ′

∗(t ), respectively.
In the laboratory frame, we apply conservation of mass to

the control volume OABCD, use the Boussinesq approxima-
tion, and express the velocity in terms of the stream function
to derive the following expression for the partial drift:

Dp = 2π

∫ t

0
ψ ′

∗(t ′)dt ′ − [Vb(t ) − Vb(0)]. (30)

See Ref. [17] for more details of this derivation. Here Vb(t )
denotes the volume of the particle or the organism that crossed
the marked fluid x3 = 0 by time t . Because of the Boussi-
nesq approximation, this expression for the partial drift in the
stratified fluids is the same as that in the homogeneous fluids
[30,38].

We do the calculation for the large marked fluid radius
as compared with the size of the drop or the organism, i.e.,
h � 1. In this limit, to find the leading-order drift, we use
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the following three arguments to simplify the above equation
for Dp. First, since the extent of the marked fluid is large, the
streamlines at the edge of the marked fluid should approach
the free stream position and hence we neglect the deflection
of streamlines at the edge of the marked fluid relative to the
free stream position. This means that X∗ = h and ψ ′

∗(t ) =
ψ ′(x3 = 0, X = h, t ) = ψ ′(r3 = xd − t, R = h, t ). Defining
τ = t−xd

h and τ0 = − xd
h , we get

Dp = 2πh
∫ τ

τ0

ψ ′
∗(τ ′)dτ ′ − [Vb(τ ) − Vb(τ0)]. (31)

Second, since we are interested in scenarios where the drift
is large compared with the volume of the particle or the
organism, we neglect the term in the brackets because it is
of the order of the particle volume i.e., O(1), and hence
much smaller than the drift. This argument can be verified
a posteriori. Third, a large extent of the marked fluid means
that the stream function at the edge of the marked fluid ψ ′

∗
depends only on the flow field far away from the particle or
the organism that is governed by Eqs. (15)–(17). If the partial
drift or the drift, Dp(τ0 → −∞, τ → ∞), turns out to be zero
from this leading-order calculation, we need to consider the
effect of these neglected contributions to find the higher-order
drift, but such a calculation is beyond the scope of the present
paper.

A. Drift due to a towed drop

The rescalings at low- or high-Pe mentioned in the pre-
vious section mean that the far-field stream function should
be rescaled as ψ ′ = ψ̄ ′/ξ , where ξ = ε, Ri1/3 at low and
high Pe, respectively. In the Fourier space, since the far-field
flow is readily known, Eqs. (23) and (28), we can find the
far-field stream function ˆ̄ψ ′ from this velocity field using (see
the Appendix)

ˆ̄ψ ′ = − 1

k3

(
∂ ˆ̄w′

1

∂k1
+ ∂ ˆ̄w′

2

∂k2

)
. (32)

Expressing ψ ′ in Eq. (31) in terms of ˆ̄ψ ′ through the inverse
Fourier transform and simplifying the resulting integral yields
the following expression for Dp:

Dp = − ih2

2πξ 2
h

∫ ∞

−∞
dk3

∫ ∞

0
dkr

ˆ̄ψ ′(kr, k3)krJ0(ξhkr )

× (e−iξhk3τ0 − e−iξhk3τ )

k3
. (33)

See Ref. [17] for details of this simplification. Here, kr =
(k2

1 + k2
2 )1/2, J0 is the Bessel function of the first kind and

zeroth order while ξh = ξh = h
l ,

h
L , respectively, at low and

high Pe. So ξh is the ratio of the marked fluid radius to the
stratification length scale and a high value of ξh means that
a major portion of the marked fluid and hence the drift are
significantly affected by the stratification. We denote ξh at
low and high Pe by εh = εh = h/l and Ri1/3

h = Ri1/3h = h/L,
respectively.

At both low and high Pe, we can find Dp by using this

equation and the following expressions for ˆ̄ψ ′:

ˆ̄ψ ′

F
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
(
k8

3 + 2k6
3k2

r − 2k2
3k6

r − k8
r + k4

r

)
(
k6

3 + 3k4
3k2

r + 3k2
3k4

r + k6
r + k2

r

)2 at low Pe

2u2
3k2

3

(
k4

3 − k4
r

)
(
k5

3u3 + 2u3k3
3k2

r + u3k3k4
r + ik2

r

)2 at high Pe,

(34)
where F = 2πRu3 for a drop and u3 = 1. At low Pe, we
already did this calculation and reported the drift induced by
a towed drop in our recent paper [17]. Using τ0 = −10, we
plot the variation of Dp with τ , εh, or Ri1/3

h at low and high Pe
in Fig. 4. From this figure, we see that the drift in stratified
fluids is less than that in homogeneous fluids. In stratified
fluids, with an increase in the stratification as exemplified
by an increase in εh or Ri1/3

h for fixed h, the partial drift
decreases. These two observations are a manifestation of the
stratification’s effect in suppressing the vertical flow. This is
because this effect of stratification leads to closed streamlines
and also causes the flow to decay rapidly with position, both
of which reduce the drift.

At low Pe, the fore-aft flow symmetry means that
the upstream drift is equal to the downstream drift, i.e.,
−Dp(τ = −τc, τ0 = 0, h) = Dp(τ = τc, τ0 = 0, h) for any
τc > 0. Here, the upstream (downstream) drift is the drift
induced before (after) the drop has crossed the marked fluid.
A lack of such symmetry at high Pe means that the upstream
drift is definitely not equal to the downstream drift. But a
slower decay of velocity field in the upstream than that in the
downstream [see Fig. 1(b)] and a sizable reverse flow in the
downstream [see Fig. 1(a) for r̄3 < −0.5 and |r̄1| < 1] makes
the upstream drift larger than the downstream drift at high Pe.

It is interesting to compare the drift induced by a towed
particle or drop in a stratified fluid at high Pe with that induced
in a homogeneous fluid at small or finite Re. In the latter case,
the flow is again fore-aft asymmetric but now, due to u · ∇w′,
this leads to unequal upstream and downstream drifts. At a
non-zero Re in a homogeneous fluid, because the flow in the
downstream wake decays slower than that in the upstream, the
downstream drift is larger than the upstream drift.

In homogeneous fluids, the slow decay of velocity with
position as well as the open streamline flow lead to the diver-
gence of the partial drift with time as τ0 → −∞ or τ → ∞.
Hence, small particles or drops towed in homogeneous fluids
can drag an infinite volume of fluid with them. Far away from
the towed particle or drop, at r ∼ l

a or L
a , the stratification cuts

off this slow decay and closes the streamlines, and this effect
of stratification eliminates the divergence of Dp as τ0 → −∞
or τ → ∞. For instance, this is demonstrated in Fig. 4 at
2εh = 2Ri1/3

h = 1 where Dp asymptotes to a constant value as
−τ0, τ approach 10 or more. Hence, the drift, an asymptotic
value of Dp in the limit τ0 → −∞ and τ → ∞ in the stratified
fluids is finite. At low Pe, the drift is nonzero, as demonstrated
again by the curve at 2εh = 1 in Fig. 4(a). This drift found
from the leading-order calculation is O(h2) [see Eq. (33)] and
as h � 1, a towed drop in the stratified fluid at low Pe drags
a large volume of fluid relative to its own volume. At high Pe,
the leading-order drift turns out to be zero, as illustrated again
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FIG. 4. The variation of the normalized partial drift induced by a towed drop Dp/Rh2 with (a) τ , εh at low Pe and (b) Ri1/3
h at high Pe. To

obtain general results that do not depend on R, h, we normalized Dp by Rh2. Here, we choose τ0 = −10. The low Pe limit Pe � ε is the same
as l/lo � Pr−1 while the high-Pe and low-Re limit Pe � Ri1/3, Re � Ri1/3 is same as Pr−1 � l/lo � Pr−1/4, where Pr = ν/κ is the Prandtl
number. Panel (a) is adapted from Ref. [17] with permission from the American Physical Society.

by the curve at 2Ri1/3
h = 1 in Fig. 4(b) with τ0 = −10 and

τ ≈ 20. This zero drift is due to the faster decay of velocity at
high Pe than that at low Pe and also due to the sizable reverse
flow seen downstream at high Pe. Even though such reverse
flow downstream exists at low Pe, it is not as significant as
that at high Pe. Hence, the volume dragged by a towed drop
at high Pe is at least an order of magnitude smaller than the
volume dragged at low Pe.

In stratified fluids, the time it takes for the partial drift to
achieve a finite (zero or nonzero) asymptotic value is inversely
proportional to the stratification strength εh or Ri1/3

h . In the
limit of zero stratification, the partial drift never attains a
finite asymptotic value or it diverges with time, as expected
in homogeneous fluids.

B. Partial drift due to an organism

Because of Eq. (18), the stream function associated with
the far-field flow due to an organism (ψ ′

s) and a towed particle
are related by

ψ ′
s = − b

F

∂

∂r3
ψ ′. (35)

Hence, this stream function evaluated at the edge of the
marked fluid disk is given by

ψ ′
s∗ = − b

F

∂ψ ′

∂r3

∣∣∣∣
(r3=−hτ,R=h)

= b

hF

dψ ′
∗

dτ
. (36)

Substituting for ψ ′
s∗ from the above equation in Eq. (31) and

using the three arguments mentioned there, we get

Dp = 2πb

(
ψ ′

∗(τ ) − ψ ′
∗(τ0)

F

)
. (37)

This equation was derived earlier in the homogeneous fluids
[30] but thanks to the Boussinesq approximation, it is also

valid in the stratified fluids. We rewrite ψ ′ in terms of ψ̄ ′,
express ψ̄ ′ in terms of ˆ̄ψ ′ through the inverse Fourier trans-
form written in cylindrical coordinates and integrate first in
the azimuthal direction to derive the following expression for
Dp:

Dp = b

2πξ

∫ ∞

−∞
dk3

∫ ∞

0
dkr

ˆ̄ψ ′(kr, k3)

F
e−ik3ξhτ krJ0(krξh)

∣∣∣∣∣
τ

τ0

,

(38)

where f (τ )|ττ0
= f (τ ) − f (τ0). Using τ0 → −∞, we plot the

variation of Dp with τ , εh or Ri1/3
h at low and high Pe in Fig. 5.

From this figure, we can find Dp for any initial and finite time
or position of the organism relative to the marked fluid, τ0,
τ f by subtracting Dp(τ = τ0) from Dp(τ = τ f ) on any given
curve.

Similar to a towed drop, an organism induces smaller par-
tial drift in stratified fluids than that in homogeneous fluids.
Also, as the stratification strength ε or Ri1/3 increases for
fixed h, the partial drift decreases. As mentioned earlier, these
are the consequences of the stratification effect on the flow
field, which causes a rapid decay of flow as well as the closed
streamline flow, and both these effects reduce the drift.

Similar to that in the homogeneous fluid, at low Pe in
the stratified fluid, the far-field flow due to an organism is
fore-aft mirror symmetric (see Fig. 5 in Ref. [15]). Hence,
the downstream drift is equal to the negative of the upstream
drift. This means that zero drift is induced by any organ-
ism that travels symmetrically with respect to the initially
marked fluid, starting and stopping before reorienting at equal
distances from the initially marked fluid (τo = −τ f ). This
is because the organism undergoing such motion makes the
marked fluid elements move in closed-loop paths. Hence,
at low Pe, any organism that exhibits most asymmetric
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FIG. 5. The variation of the normalized partial drift induced by a swimming organism Dp/bh with (a) τ , εh at low Pe and (b) Ri1/3
h at high

Pe. Here, we choose τ0 → −∞. To find Dp for any value of τ0, τ f , subtract Dp(τ0) from Dp(τ f ) on any specific curve.

paths with respect to the marked fluid induces the maximum
partial drift Dp,max. Because the most asymmetric path cor-
responds to the swimmer starting right behind the marked
fluid (τ0 → 0) and stopping far ahead (τ f � 1) or starting
far behind (−τ0 � 1) and stopping right after crossing the
marked fluid (τ f → 0), the maximum partial drift in stratified
fluids at low Pe is given by Dp,max = Dp(−τ0 � 1, τ f = 0) =
−Dp(τ0 = 0, τ f � 1). Dp,max in homogeneous fluids is bh/4.
As the stratification reduces the drift, Dp,max in stratified fluids
at low Pe is less than bh/4 and is a decreasing function of εh.

At high Pe, the lack of fore-aft mirror symmetry means
that the drift does not vanish for any symmetric travel paths
of the organism. The nonmonotonic variation of Dp in the
downstream [see red or black curve in Fig. 5(b)] is due to
the flow reversal with respect to the usual downward flow
for a pusher near r̄3 ≈ −3 [see Fig. 2(a)]. Even though such
flow reversal exists at low Pe [see Fig. 5(b) in Ref. [15] ],
the magnitude of the reverse flow as well as the extent of
the reverse flow at low Pe is not as large as that at high Pe,
due to which Dp in the downstream at low Pe exhibits no
nonmonotonic trends [see Fig. 5(a)].

Because the integral in Eq. (38) is O(1), in general Dp

in stratified fluids is O(b/ξ ), where ξ = ε, Ri1/3 at low and
high Pe, respectively. As long as b � O(1) and a swimmer
at low Pe does not travel symmetrically with respect to the
marked fluid, Dp � 1 because ξ � 1 in our analysis. Hence,
a swimmer in stratified fluids displaces a volume of fluid that
is much larger than its own.

As mentioned earlier, the error in finding Dp comes from
neglecting the deflection of streamlines at the edge of the
marked fluid with respect to the free stream position, neglect-
ing the bracketed term in Eq. (31) and neglecting the near-field
flow contribution to the drift. The error from these three
sources is O(1) for a swimming organism. Because Dp � 1
unless b � 1 or the swimmer travels symmetrically relative
to the marked fluid at low Pe, this error can be neglected.

We note that the only theoretical calculation of the mixing
efficiency of swimming organisms in a stratified fluid at neg-

ligible inertia and weak stratification was done for point-sized
swimmers [16], whereas the partial drift found here is valid
for finite-sized organisms. Naively, we compare these two
estimates at low Pe and find that, while the mixing efficiency
is O(ε3) � 1, the dimensionless partial drift is O(b/ε) � 1
unless the stresslet strength b � 1. A consistent comparison
of these two estimates requires the calculation of the mixing
efficiency of the finite-sized organisms. Unlike the drift or
partial drift, the mixing efficiency of the finite-sized organisms
depends solely on the near-field variables (see the following
discussion) and hence its calculation is beyond the scope of
the present paper because we focus on the derivation, analysis,
and application of the far-field flow.

We show here why the mixing efficiency of a finite-sized
organism depends only on the near-field variables. As men-
tioned in the introduction, the mixing efficiency is the ratio
of the rate of creation of gravitational potential energy to the
rate of work done on the fluid and is precisely given by the
following expression:

Ri

∫
ρ ′w′

3dV∫
n · σ ′ · w′dS

∼ Ri
∫

ρ ′w′
3dV . (39)

Here σ ′ is the stress associated with the disturbance flow
w′, the volume integral should be evaluated over the entire
fluid domain while the surface integral should be evaluated on
the swimmer’s surface. Because w′ ≈ O(1) and σ ′ ∼ ∇w′ ≈
O(1) on the swimmer’s surface, we can estimate the surface
integral to be O(1). At low Pe, the flow and the density
disturbance far away from the organism decay rapidly with the
position (see Ref. [15]). At high Pe, we showed in this paper
that the far-field disturbance flow again decays rapidly with
position. At high Pe, ρ ′ far from an organism is governed by
u · ∇ρ ′ = −w′

3 = − b
F

∂
∂r3

(the far-field vertical velocity due
to a towed particle). This means that, at high Pe, the far-field
density disturbance due to an organism scales as the far-field
vertical velocity due to a towed particle that also decays
rapidly with position. Hence, at both low and high Pe, ρ ′, w′

3
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far from the organism decay rapidly with position. This means
that the far-field region does not contribute to the integral and
the mixing efficiency depends only on the near-field variables.

IV. CONCLUSIONS

In this work, we derived the far-field flow due to a towed
particle and a neutrally buoyant swimming organism in a
linearly density stratified fluid in the limits of low Re, Ri,
and high Pe. Here, the Reynolds number Re is the ratio of the
inertia to the viscous forces, the viscous Richardson number
Ri is the ratio of the buoyancy to the viscous forces, and the
Péclet number Pe is the ratio of the advection to the diffusion
of the density. Our work complements the similar calculation
done in the limit of low Re, Ri, Pe to find the flow due to a
point-force and force-dipole in a stratified fluid [15], which in
the limit considered is the same as the far-field flow due to
a towed particle and a neutrally buoyant swimming organism.
Similar to that at low Pe, stratification causes the flow to decay
rapidly and also makes the streamlines closed but, unlike
that at low Pe, the fore-aft symmetry or mirror symmetry is
destroyed at high Pe due to the advective transport of density
in only one direction.

To demonstrate the application of these far-field flows at
low and high Pe, we used them to derive the drift induced by
a towed drop and a swimming organism. At low Pe, the drift
due to a towed drop is O(h2Vb) � O(Vb), while at high Pe,
the induced drift is at least an order of magnitude smaller than
that at low Pe. Here, h measures the extent of the marked fluid
and Vb is the volume of the drop or the organism. Hence, a
towed drop drags a large volume of stratified fluid as com-
pared with its volume at low Pe but not so much at high Pe.
The partial drift due to a swimming organism is O(bVb/ξ )
where b is the stresslet strength and ξ � 1 is the stratification
strength characterized by ε = (RiPe)1/4, Ri1/3 at low and high
Pe, respectively. Interestingly, the partial drift induced by a
swimmer in a homogeneous fluid at finite Re is also of the
similar form O(bVb/Re). Hence, unless a swimmer exerts a
low stresslet (b � 1), it displaces a large volume of stratified
fluid relative to its own volume.

There are certainly two avenues for future research. To
generalize the validity of our calculation to large swimming

organisms like crustaceans (1 � Re � 1000), where inertia is
not negligible, it is necessary to consider the simultaneous
influence of inertia and stratification. Usually, the gait of a
swimming organism is unsteady and time-periodic, unlike the
steady gait considered in this work. In homogeneous fluids,
at finite Re, it was shown that the drift induced by a steady
swimmer is the same as the time-averaged drift due to an
unsteady swimmer [30]. It would be interesting to explore
such correlations between the drift induced by steady and
unsteady swimmers in stratified fluids.
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APPENDIX: RELATION BETWEEN THE FLOW FIELD
AND THE STREAM FUNCTION IN THE FOURIER SPACE

In the cylindrical coordinates whose origin is at the center
of the particle or the organism, the flow in the radial direction
is related to the stream function via

w̄′
ζ = − 1

ζ̄

∂ψ̄ ′

∂ z̄
, (A1)

where ζ̄ = r̄1
cos φ

= r̄2
sin φ

is the rescaled radial coordinate in
the cylindrical coordinate system while φ is the azimuthal
angle. We express w̄′

ζ in terms of w̄′
1 and w̄′

2 through w̄′
ζ =

w̄′
1 cos φ + w̄′

2 sin φ and simplify the above equation to obtain

r̄1w̄
′
1 + r̄2w̄

′
2 = −∂ψ̄ ′

∂ z̄
. (A2)

Noting that the Fourier transform of ∂ψ̄ ′
∂ z̄ , r̄1w̄

′
1, and r̄2w̄

′
2

are respectively ik3
ˆ̄ψ ′, i ∂ ˆ̄w′

1
∂k1

, and i ∂ ˆ̄w′
2

∂k2
, we take the Fourier

transform of the above equation to derive

i
∂ ˆ̄w′

1

∂k1
+ i

∂ ˆ̄w′
2

∂k2
= −ik3

ˆ̄ψ ′. (A3)

Solving for ˆ̄ψ ′ then gives Eq. (32).
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