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Characterizing most irregular small-scale structures in turbulence using local Hölder exponents
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Two scalar fields characterizing respectively pseudo-Hölder exponents and local energy transfers are used to
capture the topology and the dynamics of the velocity fields in areas of lesser regularity. The present analysis
is conducted using velocity fields from two direct numerical simulations of the Navier-Stokes equations in a
triply periodic domain. A typical irregular structure is obtained by averaging over the 213 most irregular events.
Such structure is similar to a Burgers vortex, with nonaxisymmetric corrections. A possible explanation for such
asymmetry is provided by a detailed time-resolved analysis of birth and death of the irregular structures, which
shows that they are connected to vortex interactions, possibly vortex reconnection.
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I. INTRODUCTION

Batchelor and Townsend [1] speculated about the nature of
small-scale turbulent motion on the basis of hot-wire veloc-
ity measurements in the Cavendish wind tunnel. Their main
conclusion was that the energy associated with small scales
is intermittent in space and time and organized into strong
discrete vortices. Since then, progress in computer power and
image velocimetry has made it possible to investigate in more
detail the nature and the properties of small-scale turbulent
motion, at scales of the order of or below the Kolmogorov
scale. For example, it is now well established that regions
where the vorticity supersedes the strain (the so-called Q
criterion) are indeed organized into small-scale elongated co-
herent structures that display a complex dynamics [2]. In some
circumstances, they may interact and reconnect iteratively,
following a self-similar vortex reconnection cascade. During
reconnection, a distinct −5/3 inertial range is observed for the
kinetic energy spectrum, associated with numerous resulting
fine-scale bridgelets and thread filaments [3].

In the meantime, theoretical models of vortex reconnection
using the Biot-Savart model have evidenced a self-similar
process, resulting in a near-finite-time singularity at the apex
of the tent formed by the vortices [4]. Additional evidence
for quasiblowup is provided by the zeroth law of turbulence
[5], according to which the nondimensional energy dissipation
per unit mass becomes constant at large Reynolds numbers,
implying a blowup of the enstrophy in the limit of zero viscos-
ity. This suggests that the small-scale structures of turbulent
motions are very irregular and is related to the question of
the existence of singularities in the solutions to Navier-Stokes
equations. Detecting and cataloging irregular structures found
in numerical and experimental turbulence is therefore a first
step in finding a candidate for a mathematical nonstationary

singular solution to Navier-Stokes equations. This calls for
specific tools to analyze the irregular structures. A suitable
tool to deal with them was invented by Leray [6] and named
weak formulation. The main idea is to make a detour via the
scale space and work with a coarse version of the initial field
(a mollified field), over a characteristic scale (resolution) �. At
any given resolution �, the mollified field is sufficiently regu-
lar so that all classical tools and manipulation of the analysis
of vector fields are valid. Limiting behaviors as the resolution
� → 0 can then be used to infer results and properties for the
rough field.

The problem of detection of turbulent irregular structures
in numerical simulations has a long story. Most of these
studies are conducted in the inviscid limit, using the Euler
equations, where irregular structures are characterized by di-
verging vorticity [7–10]. Clear evidence of blowup structures
was claimed in [11] in an axisymmetric configuration, near
a stagnation point. The relationship between diverging vor-
ticity and vortex dynamics was investigated by Kerr (see,
e.g., [12,13]), while [14] used an instanton method to cap-
ture the most probable irregular structure. Fewer studies have
been devoted to the possible topology of singularities or qua-
sisingularities in Navier-Stokes equations, characterized by
diverging velocity. In particular, the study in [15] used a cri-
terion based on the geometry of the streamlines of velocity to
search for singularities in Navier-Stokes turbulence. Another
line of study is the analysis of the formation of extreme values
of energy dissipation or vorticity with increasing Reynolds
number [16]. More recently, Buaria et al. [17,18] studied the
formation of extreme events of velocity gradients in simula-
tions of Navier-Stokes equations with a very good resolution.
In the present paper, we build upon our previous work, where
we showed how the mollified vector fields, over the scale �,
can be used to follow extreme events of two scalar fields that
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encode the regularity properties of the small-scale motions: (i)
a pseudo-Hölder exponent h̃(x) built using the wavelet trans-
form modulus maximum (WTMM) method and providing the
best local estimate of Hölder regularity compatible with the
global multifractal analysis (see [19]) and (ii) a local energy
transfer DI

�(x) built using the energy balance at the scale � of
the weak solutions to Navier-Stokes equations [20,21].

Here we apply the tools based on local Hölder exponents to
velocity fields issued from direct numerical simulations of the
Navier-Stokes equations in a triply periodic domain to capture
the topology and the dynamics of the velocity fields in areas
of lesser regularity. We further compute a typical irregular
structure by averaging over the 200 most irregular events.
Such a typical structure is similar to a Burgers vortex, with
small nonaxisymmetric corrections. A possible explanation
of such asymmetry is provided by a detailed time-resolved
analysis of the birth and death of the events, which shows
that they are connected to vortex interactions, possibly vortex
reconnections.

II. TOOLS FOR STUDYING IRREGULAR MOTIONS

In order to probe areas of lesser regularity in the flow,
we use two different tools, based upon weak formulation and
connected with the concept of Hölder continuity. A velocity
field is said to be h-Hölder continuous with some exponent
h < 1 if there exists C such that for � small enough

‖u(x + �) − u(x)‖ < C�h, (1)

where u(x) is the velocity field and � is a vector of length �.
This regularity condition is intermediate between simple

continuity and differentiability and is based on the velocity
increment δu(x, �) = u(x + �) − u(x). Velocity fields with
exponent h < 1 are locally nondifferentiable, but we can build
derivatives in a weak sense by considering the quantity

∇�u = −
∫

∇��(y)u(x, y)dy, (2)

where ��(x) = �(x/�)/�3 and � is a regular, even, non-
negative function with norm 1. In the following, we take �

equal to a Gaussian for simplicity so that we can make a sim-
ple connection to the classical wavelet transform. The weak
derivative is well behaved for any � > 0 and diverges locally
as �h−1. This has various consequences in turbulent flows that
can be used to build useful local regularity indicators, which
we now discuss.

A. Duchon-Robert energy transfer

A first indicator of regularity properties of the velocity
field is the local transfer of energy across scales. Indeed, a
real singularity is expected to carry energy at a scale � → 0.
As a consequence, we expect that very irregular fields carry
energy at a scale below the Kolmogorov scale � < η before it
eventually gets dissipated through viscous effects.

This view was formalized by Duchon and Robert [22].
They defined local energy transfers from large to small scales
at the scale � using a wavelet transform

D�
I (x) = 1

4

∫
∇��(y) · δu(x, y)‖δu(x, y)‖2dy. (3)

It is worth stressing that this term should not be interpreted as
the local transfer to a given scale �, analogous to the energy
transfer function in [23]. Instead, it should be interpreted as
the energy transfer from the field u�(x) = ∫

��(y)u(x − y)dy
filtered at the scale � to the residual field u − u�. Similarly,
one can compute the energy locally dissipated by viscosity by
(see [21])

D�
ν = ν

2

∫
∇2��(y)‖δu(x, y)‖2dy. (4)

If the velocity is locally Hölder continuous with exponent h,
δu ∼ �h, and so then D�

I ∼ �3h−1 and D�
ν ∼ ν�2h−2.

The two terms are balanced at a scale ηh ∝ ν1/(h+1). The
scale ηh corresponds to the classical Kolmogorov scale η for
h = 1/3, which is the value of h predicted by Kolmogorov
[24]. This also means that the scale ηh gets lower than the Kol-
mogorov scale if h < 1/3. The physical meaning of ηh is that
of a regularizing scale, below which the velocity increment
transitions to a regular scaling dictated by a Taylor expansion
δu ∼ �∇u. Note that a real singularity of the velocity field
occurs with a Hölder coefficient of h = −1 since η−1 = 0, so
the velocity field is never regularized.

In practice, a turbulent field follows the Hölder continuity
condition only for scales larger than ηh. Regions where the
local energy transfer D�

I stays larger than the dissipation D�
ν

for a scale � close to the Kolmogorov scale are very irregular
in the sense that their Hölder exponent is less than h = 1/3.
With such a local indicator, we are therefore able to bound
locally the regularity of the flow. However, we cannot derive
a hierarchy of quasisingular behavior, since we only have an
upper bound on the Hölder exponent. To refine results, we
need a more precise indicator.

B. Local Hölder exponents

In a previous paper, we have developed a method to provide
an estimate of the local Hölder exponent h̃(x) using a local
statistical method [19]. The scalar field computed using this
method is continuous in space and shares the properties of
the true Hölder exponent. In particular, the value of h̃ gets
lower for areas of lesser local regularity, which makes it a
good criterion to detect irregular events. We provide here
only the general ideas that are necessary to understand how
we estimate the local Hölder exponent and refer to [19] for
technical details.

The physical idea is the following: If a velocity field is
locally Hölder continuous with exponent h, its derivatives (in
a weak sense) ∇�u will locally blow up and produce large
deviations with respect to the most probable value (an extreme
event). The smaller the h, the faster the blowup, so at a given
small enough scale, we can expect that the intensity of the
local weak derivative can be used to measure h. This argu-
ment is only qualitative, as it ignores constants that cannot be
neglected when working at finite scale. To make it quantitative
and calibrate the constants, we use multifractal theory.

For that, we introduce the scalar wavelet-based velocity
increment denoted δW�(u) that is defined from the weak
derivative as δW�(u) = �2‖∇2

� u‖, corresponding to taking the
norm of the Mexican hat wavelet transform of u. The proba-
bility of observing a large deviation for δW�(u) is then given
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by the rate function C(h), obtained in the � → 0 limit as

Prob{ln[δW�(u)] = h ln(�/L)} ∼ eln(�/L)C(h) =
(

�

L

)C(h)

.

(5)

In a turbulent flow, C(h) is observed to have a parabolic
shape, with a minimum C(h) = 0 reached at the most prob-
able Hölder exponent h0 ≡ h(p = 0), which is slightly shifted
from the Kolmogorov value 1/3 due to intermittency (see,
e.g., [25]). In the multifractal interpretation of Parisi and
Frisch [26], the quantity D(h) = 3 − C(h) corresponds to the
fractal dimension of the subspace of the Hölder exponent
h. The multifractal spectrum is connected with the scal-
ing exponents of the velocity structure function through a
Legendre transform property ζ (p) = minh[ph + C(h)], where
〈[δW�(u)(x)]p〉 ∼ �ζ (p).

The Legendre property can then be used to define the scale
variation of a typical amplitude of the wavelet increments,
connected with the most probable exponent h0 as

T0(�) = exp{〈ln[δW�(u)]〉} ∼ �h0 . (6)

More generally, one can define the scale variation of a typi-
cal amplitude of the wavelet increments, connected with the
exponent h(p) = dζ (p)/d p as

Tp(�) = exp

( 〈ln[δW�(u)][δW�(u)]p〉
〈[δW�(u)]p〉

)
∼ �h(p). (7)

The higher the p, the deeper in the tail of the probability
distribution function of δW� we dig to build Tp(�), so we
indeed probe the extreme deviations that we are looking for.
Naively, we could therefore decide that if there exists a p
such that locally δW� = Tp(�), then we can assign the local
value h = h(p) at such a point. However, this is not so simple,
because first the scaling is only defined up to a constant [one
may multiply Tp(�) by any cp and get the same scaling, but a
very different amplitude] and second the multifractal scaling
is only valid in a statistical sense, so there is no chance to
match δW� and any Tp(�) over a range of scale.

A coherent statistical construction then goes through the
definition of active volumes Ap, characterizing regions where
δW� exceeds a fraction of Tp(�):

x ∈ Ap if and only if δW�(u)(x) � cpTp(�). (8)

Here cp is a scale-independent constant, to be chosen later.
Due to the scaling properties of Tp(�) [Eq. (7)], a point in an
active volume Ap has a local Hölder exponent less than h(p).
This leads us to interpret the boundaries of active volumes as
sets of points with a given local Hölder exponent. The fractal
dimension of those boundaries can further be measured using
a box-counting method. We then choose the coefficients cp

such that the box-counting dimensions from the active vol-
umes Ap match the dimension extracted from the multifractal
spectrum 3 − C[h(p)].

The algorithm in the inertial range then proceeds in four
steps, represented graphically in Fig. 1 for a given set of
velocity fields.

Step 1. Compute the associated multifractal spectrum D(h)
and the thresholds Tp(�) from the data.

FIG. 1. Graphical representation of the algorithm for determin-
ing the local Hölder exponent in the inertial range.

Step 2. Choose a value �0 of � in the inertial range and a
set of values T spanning the interval [0, max(δW�0 )]; for each
value of T , draw the isocontours δW�0 = T and compute their
associated box-counting dimension Dbc(T ).

Step 3. For each T , find h̃�0 so that Dbc(T ) = D(h̃�0 ) to
build a function h̃�0 = f�0 (T ).

Step 4. Associate a local exponent h̃ to any δW�0 via the
formula h̃�0 = f�0 (δW�0 ).

Note that while the local Hölder exponent h cannot be
continuous in the multifractal formalism, the exponent h̃ is
continuous by definition. As a result, it is not a real measure
of the Hölder exponent. However, it will still be relevant as
a measure of the local regularity of the field, as discussed in
[19].

C. Generalization to low-Reynolds-number flow
using extended self-similarity

The method described in [19] is well adapted to high-
Reynolds-number flows with a well-developed inertial range.
However, it can be extended to lower-Reynolds-number flows,
by using an empirical interesting universality property of the
turbulent flows, called extended self-similarity [27], that is
not fully understood yet. In the present case, it consists in
realizing that while the scaling Tp(�) ∼ �h(p) is valid only
in the inertial range, it can be extended towards the dissipa-
tive range by considering the relative function Tp(�)/T0(�),
which scales like �h(p)−h0 . Due to the linearity properties of
the active volume definitions, we can repeat all the steps
described in the preceding section by considering the renor-
malized wavelet coefficient δW�(u)(x)/T0(�) and thresholds
Tp(�)/T0(�) and check that they belong to the same active
volume as δW�(u)(x), while C(h) is just translated by h0.
Through the procedure, we therefore get the relative expo-
nent δh = h̃ − h0 for the quantity δW�(u)(x)/T0(�), which
enables us to compute an effective scaling exponent h̃ = δh +
d log10(T0)/d log10(�) at any scale �.

D. Diving into dissipative scales

While the notion of the Hölder exponent only makes sense
in the inertial range of scales, it is useful to generalize it at
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FIG. 2. Graphical representation of the algorithm for determin-
ing the local Hölder exponent in the dissipative range.

dissipative scales so as to probe regularity properties of the
flow at such scales. To do so, we use the fact that cp is scale
independent and the extended-self-similarity (ESS) to follow
down the scales an irregular event down to the dissipative
scale �d . The algorithm in the dissipative range is then de-
scribed by adding the following steps.

Step 5. Determine the regularity indicators h�0 (p) and
h�d (p) using the fit of power laws corresponding to h(p) =
d log10(Tp)/d log10(�) or, equivalently, using ESS, as h(p) =
d log10(Tp/T0)/d log10(�) + d log10(T0)/d log10(�).

Step 6. In the inertial range, for each p, find cp by imposing
that cpTp(�0) = f −1

�0
[h�0 (p)].

Step 7. Build the calibration function f�d by plotting, for
each p, h�d (p) as a function of cpTp(�d ). The calibration func-
tion is then the smooth curve going through all the points such
that h�d (p) = f�d [cpTp(�d )]. It can then be used to associate
with each value of δW�d a local Hölder exponent h̃(δW�d ) via
the link h̃(δW�d ) = f�d (δW�d ).

The complete algorithm is represented graphically in
Fig. 2. The determination of the local Hölder exponent at the
scale �d proceeds similarly to step 4 using this new function
f�d . Because the flow regularizes as the scale decreases, the
local exponent d log10(Tp)/d log10(�) will gradually change
from h�0 (p) to 2 (such a value can be measured due to the
use of the Mexican wavelet transform and corresponds to a
twice differentiable velocity field). Therefore, the flow will be
considered very irregular at the dissipative scale whenever the
effective regularity indicator is smaller than 2.

III. COMPUTATION OF LOCAL HÖLDER EXPONENTS

In the following, we apply our method to the two sim-
ulations described by Nguyen et al. [19]. For the sake of
convenience, the parameters for the simulation are reported in
Table I. The corresponding energy spectra are shown in Fig. 3.

TABLE I. Parameters used in the simulations with resolution
7683. With dealiasing, the cutoff wave number is kmax = 256. In
addition, L is the integral scale, λ is the Taylor scale, η is the
Kolmogorov scale, 〈u2〉1/2 is the rms velocity, ε is the energy dissi-
pation rate, ηkmax characterizes the resolution (ηkmax > π is resolved
at Kolmogorov scale), ReL is the Reynolds number based on the
integral scale, and Reλ is the Taylor-based Reynolds number.

Run L λ η 〈u2〉1/2 ε ηkmax ReL Reλ

I 0.79 0.19 0.0083 0.54 0.089 2.1 570 140
II 0.94 0.48 0.034 0.55 0.097 8.5 104 53

Run I has a larger Reynolds number, but a small dissipative
range. Run II has a smaller Reynolds number, but an extended
dissipative range. In the following, we use run I to illustrate
the outcome of our method in the inertial range, while we use
run II to dive into the dissipative range. Run II in particular
is split in two parts. In the first part, we extracted 40 velocity
fields at least three eddy turnover times tη = (ν/ε)1/2 apart
for the computation of all statistics. As another objective is
to study the time evolution of potentially singular events, the
simulation is extended in order to collect 100 snapshots of
time-resolved data (saved every 0.15tη).

Calibration of the local Hölder exponent

In the following, all wavelets transforms are performed
using a Mexican wavelet. The first three moments of the
Mexican wavelet are null, which allows us to measure Hölder
exponents up to 3 [28]. The final outcome of steps 1–3 for the
two runs is summarized in Fig. 4 so as to have a clear synthetic
view of the differences and similarities between the two runs.

The computation of the multifractal spectrum (step 1) is
done using the WTMM method [25]. Because the inertial
range is much shorter in run II than in run I, computations are
performed at a scale closer to the injection scale. As such, the
convergence of the WTMM method is hard to reach, as there

10−2 10−1 100

k/kd

10−19

10−15

10−11

10−7

10−3

101

105

E
(k

)η
−

5/
3

−
2/

3

FIG. 3. Energy spectra for the two simulations. The blue solid
(red dashed) curve stands for the simulation in the inertial (dissipa-
tive) range. The black line materializes the k−5/3 slope for the inertial
range. The vertical lines materialize the Taylor scale wave number kλ

for each simulation.
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FIG. 4. Results related to run I (II) are shown by blue with solid
lines and circular markers (red with dashed lines and triangular
markers). (a) Multifractal spectrum fitted from � ≈ 1.2λ to � ≈ 1.4λ.
The vertical line materializes h = 1/3. The error bars correspond to a
shift of the fitting range by 5% for the power laws. (b) Box counting
dimensions evaluated at the same scale. The velocity increments are
normalized by the characteristic velocity at this scale. (c) Matching
function resulting from the combination of (a) and (b). (d) Coeffi-
cients cp obtained by combining the results of (c) with the thresholds
Tp(�).

are many fewer lines of maxima compared to the previous
case. In order to reach the convergence, 40 velocity fields
uncorrelated in time are used. We further verify that adding
60 more velocity fields from the time-resolved data set do
not modify the results significantly. This does not prevent the
effect of the proximity to the injection scale, which is em-
phasized by the fact that the most probable Hölder coefficient
for run II in Fig. 4(a) drops to h = 0.3. This value is signif-
icantly lower than for run I and may affect the other steps.
As such, we need to keep in mind that the estimation of the
local Hölder exponents may be inaccurate. Steps 2 and 3 are
then implemented, leading to the calibration function for the

inertial scale shown in Fig. 4(c). The implementation of step 5
is then performed using the extended self-similarity property,
shown in Fig. 5(a) for run I and Fig. 6(a) for run II. In both
cases, a power law, compatible with the prediction of Sec. II C,
is obtained, yielding the quantity δh(p) = h(p) − h0. The ref-
erence value h0 is then evaluated by fitting a power law over
the thresholds T0(�) at a chosen scale. Finally, the coefficient
cp is computed using step 6 and illustrated in Fig. 4(d). We
see that its variation with p seems to depend on the Reynolds
number. More simulations at different Reynolds numbers are
needed to clarify this point, but this is beyond the scope of the
present paper.

Using these results, we may then get a cartograph of the
local scaling exponent, by applying step 4. In Fig. 7 we pro-
vide an illustration of an event detected in run I corresponding
to a low value of h in the inertial range. This representation
includes both the local Hölder exponents and local energy
transfers introduced in Sec. II. We see that it corresponds to
a swirling region organized around a filamentary region of
low regularity and characterized by a strong negative (inverse)
local energy transfer at the center, surrounded by regions of
high positive (direct) local energy transfer.

We now focus on run II and use the procedure described
in Sec. II D to obtain an estimate of h̃ near the dissipative
scale. Here we adopt �d = 1.8η, which is as close to the
Kolmogorov scale as we can afford without losing accuracy
on the Mexican wavelet used for computations. Applying step
5 at this new scale, we then compute h0 at this scale from a
local power-law fit of T0(�) around such a scale and obtain h̃
by the appropriate subtraction. Finally, applying step 7, we
get the calibration function f�d shown in Fig. 8. From the
results and even if we take into account the uncertainty on the
exact value of the local Hölder exponent, it is clear that events
with h̃ < 2 exist at this scale. Such events are interpreted as
locations where the velocity field is not twice differentiable at
this scale.

As the objective of this paper is to probe for very singular
events at the dissipative scale, we want to give an estimation
of the local Hölder exponent even if the rescaled velocity
increment T /(ε�)1/3 is greater than 1.2. For this purpose, we
choose to extrapolate the matching function up to h̃ = 1.2
(corresponding to a value h̃ ∼ 0.1 in the inertial range), as
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FIG. 5. (a) Values of the threshold Tp(�) as a function of scale for several p computed over ten snapshots of run I. The thresholds are
renormalized by T0(�). Fits are given by dotted lines. (b) Reference thresholds T0(�). The fit used in the calibration of the method is materialized
by a dotted line.
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FIG. 6. (a) Values of the threshold Tp(�) for the global increments as a function of scale for several p computed over run II. The thresholds
are renormalized by T0(�). (b) Reference thresholds T0(�). Fits corresponding to the inertial range associated with �0 ≈ 1.4λ are given by
dotted lines, while fits in the dissipative range associated with �d = 1.8η are given by dashed lines.

shown in Fig. 8. As such large increments are expected to be
rare and very localized in space (see Fig. 7), we deem a simple
linear extrapolation to be sufficient for our purpose. Note that
we are unable to associate values of local Hölder exponents
with very small velocity increments. This is because such
velocity increments are also rare, corresponding to the p < 0

branch of the multifractal spectrum. This lack of information
about large values of local Hölder exponents will not affect
our study of very irregular events.

In the following, we use the matching function shown in
Fig. 8 to map and characterize areas of low regularity at
the dissipative scale. For this, we use step 5 to get maps

FIG. 7. Region with strong irregularity at � = 1.4λ in the inertial range extracted from one snapshot of run I. (a) Velocity along a slice
passing through the point of maximal velocity increment (corresponding to an undetermined minimal value of the local Hölder exponent).
The arrows stand for the in-plane velocity and the colormap for the third component of the velocity. (b) Local energy transfers on the same
slice. (c) Local Hölder exponents on the same slice. The white area corresponds to strong velocity increments which cannot be associated with
a value of h̃ using the mapping function of Fig. 4(c). (d) Three-dimensional representation of the irregular region. The magenta isosurface
corresponds to h̃ = 0.25. The red isosurface corresponds to D�

I = 4ε.
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FIG. 8. Matching function linking the velocity increment to a
value of the local Hölder exponent at the scale �d = 1.8η. The red
curve with circles corresponds to the result of the procedure de-
scribed in Sec. II D. The dotted blue line is the extrapolation used
when the velocity increment is outside the range of the red curve.

of h̃ at the dissipative scale. Detailed cartography of very
irregular regions at the dissipative scale are provided in the
Supplemental Material [32]. They all appear to be associated
with filamentlike vortices. Before discussing their individual
properties and their possible origin, we first perform statistical
analysis of the corresponding velocity fields.

IV. CLASSIFICATION USING VELOCITY GRADIENT
TENSOR INVARIANTS

As a first step, we may try to classify the most irregular
velocity fields by using the velocity gradient tensor (VGT)
invariants, as first suggested by Debue [29] in the case of
experimental data sets, and using local energy transfer as
regularity indicators. The VGT invariants, first described by
Chong et al. [30], allow us to classify the local topology of the
streamlines of velocity into four categories, vortex stretching,
vortex compressing, filament, and sheet, depending on two
invariants Q and R. As the tools introduced in Sec. II are
based on wavelet transforms, we use a mollified version of
these VGT invariants with a Mexican wavelet transform at the
same (inertial or dissipative) scale for the sake of coherence.
For an incompressible flow, this leads to

Q = − 1
2 Tr

(
A2

�

)
, (9)

R = − det(A�), (10)

where

A�,i j = −
∫

∇ jG
�(y)ui(x + y)dy, (11)

with G� the Mexican wavelet at scale �.
We then follow Debue [29] and compute joint probability

density functions (PDFs) of the invariants Q and R, as well as
conditional averages of the energy transfer D�

I and the local
Hölder exponent h̃ at given Q and R. The results for run I,
computed over ten snapshots of velocity at an inertial scale
�0 ≈ 1.4λ, are shown in Fig. 9. Because of the use of wavelet

FIG. 9. (a)–(c) Results from run I (inertial scale). (d)–(f) Results from run II (dissipative scale). (a) and (d) Joint PDF of Q and R. (b) and
(e) Conditional average of the local energy transfer D�

I at given Q and R. (c) and (f) Conditional average of the local Hölder exponents at given
Q and R. For each figure, Vieillefosse lines (see [31]) are drawn as dashed lines. In the inertial case, the Vieillefosse lines correspond to the
equations 27R2 + 4Q3 = −500, 0, 500, and 4000. In the dissipative case, they correspond to 27R2 + 4Q3 = −62 500, 0, and 62500.
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transforms, our results are smoother than those of Debue [29];
however, the qualitative observations stay the same. We obtain
the well-known droplet shape for the distribution of the invari-
ants Q and R in Fig. 9(a). For joint PDFs with the local energy
transfer, displayed Fig. 9(b), we recover strong positive energy
transfer along the Vieillefosse line in the lower right quadrant,
corresponding to the limit between vortex compression and
sheets, and in the vortex stretching region. Meanwhile, we
observe negative energy transfers in both the vortex stretching
and the vortex compressing regions for high values of Q.

However, the local Hölder exponents follow a different
distribution. Overall, we observe lower regularity whenever
the invariants Q and R are large in absolute value. This is
true in particular, but not only in the vortex region. This
result is expected, as high values of the VGT invariants come
with strong velocity gradients, which means a low regular-
ity. This confirms the observation made by Nguyen et al.
[19] that the structure of low local Hölder exponents are
not exactly localized in the same regions as the structure
of high-energy transfers and are not limited to the same
topologies.

The previous analysis can be reproduced in the dissipative
range of run II due to the computations done in the preceding
section. As we analyze extreme irregular events at the dissipa-
tive scale, we will use the VGT invariants in order to infer the
typical topologies. For this purpose, the unconditioned PDF of
the invariants Q and R is required as a reference. The results,
computed over 40 snapshots at the scale �d ≈ 1.8η, are shown
in Figs. 9(d)–9(f). We can repeat the observations made in the
inertial case: The common droplet shape is recovered for the
joint PDF of Q and R in Fig. 9(d). With the exception of a sin-
gle excursion in the vortex stretching region, strong positive
Duchon-Robert energy transfers appear strongly concentrated
in the lower right quadrant of Fig. 9(e), corresponding to the
sheet region. This is even more salient for run I than for run
II. Here again this is in agreement with the observations made
by Debue [29]. Finally, we observe very low values of the
local Hölder exponent wherever the VGT invariants are large,
similarly to the inertial case.

V. STATISTICAL STUDY USING UNCORRELATED DATA
AT THE DISSIPATIVE SCALE

A. Detection of irregular events and the approach
using the VGT invariants

The first step to characterize extreme events at the dissipa-
tive scale is to get statistics using uncorrelated velocity fields.
For that purpose, we use 40 velocity fields of run II saved over
120 eddy turnover times. On those fields, we compute the lo-
cal Hölder exponents using the mapping function from Fig. 8.
We then extract all events where the local Hölder exponents
get below the threshold value of h̃ = 1.3. This value is low
enough that it can only be estimated using extrapolation due
to the shift of h̃ values in the dissipative range (see Sec. II D).
It would be equivalent to finding a value of h̃ � 0.2 in the
inertial range. On the other hand, the threshold is high enough
to detect 213 distinct events in our data set for a statistical
analysis. We have verified that changing the value of the
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FIG. 10. Scatterplot of the mollified velocity gradient tensor in-
variants Q and R at the location of the minimal local Hölder exponent
for the 213 extreme events extracted at the dissipative scale. Three
Vieillefosse lines at 27R2 + 4Q3 = −62 500, 0, and 62 500 are drawn
as dashed lines.

threshold (e.g., increasing it to h̃ = 1.5, selecting less extreme
events) gives qualitatively similar results.

Before any further analysis, we can get a first grasp of
the topology of the singular events using the VGT invariants.
The location of the minimum of the local Hölder exponent
is defined as the center of the event. The VGT invariants Q
and R computed at the center of each using the smoothed
velocity gradient [see Eq. (10)] are shown as a scatterplot
in Fig. 10. We first observe that, with only two exceptions,
all events are in either the vortex stretching or the vortex
compressing regions of the QR plane. Moreover, there is a bias
toward the former as more than 75% of the events detected
verify R < 0. This bias is stronger than what is observed in
the whole domain in Fig. 9, which implies that the vortex
stretching favors quasisingular structures. This observation is
in agreement with other studies relating singularities to vortex
stretching (e.g., [8] in the case of Euler equations).

B. Visualization of singular events

The next step is to observe the events individually. The
mean velocity over a cubic subdomain of side 1.7λ centered
on the point of the minimal local Hölder exponent is sub-
tracted in order to reduce the influence of the large-scale
motion in the visualizations.

For each event, we compute the local Hölder exponent, the
interscale energy transfer D�

I [from Eq. (3)], the viscous dis-
sipation at this scale D�

ν [from Eq. (4)], the smoothed velocity
gradient tensor invariants Q and R [from Eq. (10)], and the
vorticity. A first overview of the events detected leads to two
observations. First, we verify visually the conclusion obtained
through the use of the VGT invariants: The streamlines of
velocity for most events are typical of vortices. In addition,
the isosurfaces of local Hölder exponents h̃ are seemingly
oriented in the same direction as the lines of vorticity. The
second observation is that the structure of the low local Hölder
exponent appears to be surrounded by a pair of structures
of strong energy transfer D�

I in a way similar to what was
observed in Fig. 7.
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(a) (b)

FIG. 11. (a) Streamlines of velocity for a roll-vortex event (event 2 from the Supplemental Material [32]). Two different colors of
streamlines are used to visualize the change of direction: The axial velocity is oriented away from the x = 0 plane. (b) Streamlines of velocity
identifiable to a screw-vortex event (event 107 from the Supplemental Material [32]). The axial velocity is oriented toward x > 0.

For the following analysis, we reorient all events in the
same way in order to compare and classify them. The method
chosen is as follows.

(i) The local Hölder exponent h̃ is the most relevant scalar
for our study. In consequence, the X axis is aligned with the
the first eigenvector e1 of the covariance matrix of h̃.

(ii) As irregular events appear to be vortices, we want all
vortices to face the same direction. The direction of the first
axis is thus chosen such that ωx > 0 at the center.

(iii) From the structures of D�
I and D�

ν it appears that irreg-
ular events are not axisymmetric. This justifies the definition
of a second axis, orthogonal to the first one. Using the first
eigenvector e2 of the covariance matrix of D�

ν , the events are
reoriented such that e1 × e2 is along the Z axis.

We have not found any feature which would provide a
direction for the second axis. This means that rotating the
event by an angle π around e1 still fulfills the conditions. See
the Supplemental Material [32] for visualizations of all events
found.

Using the data collected, we can repeat the classification
for the extreme events produced by Debue [29] in experimen-
tal data sets, using extreme events of D�

I . In that work, the
author distinguishes two types of vortices based on the behav-
ior of the helicity: the roll vortices and the screw vortices. The
roll vortices correspond to events where the helicity changes
sign over the structures, as opposed to screw vortices, which
have a helicity of constant sign. Debue also mentions that the
difference between the two types of events might just be a
simple Galilean transformation.

The predominant structure in our data set is the one cor-
responding to roll vortices. Such a structure is illustrated
in Fig. 11(a). In some cases, the change of helicity occurs
slightly away from the point of the minimum local Hölder
exponent. We can attribute this observation to a remnant
contribution of the large-scale velocity. Meanwhile, screw
vortices rarely appear. One could interpret the aforementioned

off-centered roll vortices like in, for example, Fig. 11(b), as
screw vortices. However, no qualitative difference between
those two types of vortices is observed in any of the ob-
servables used here. This leads to the conclusion that, as
hypothesized by Debue [29], those two structures are the same
up to a Galilean transformation.

The work of Debue [29] identifies a third type of struc-
ture called a U-turn. It is characterized by a sharp change of
direction of the velocity streamlines. No U-turn is observed
in our data set. The closest match is tight vortices, such that
they could be identified as U-turns if observed at a lower
resolution with the addition of experimental noise. However,
we cannot reject the possibility that U-turns fit the criterion
based on local energy transfer but not the one based on local
Hölder exponents, which would mean they are not detected
in our case. Another possibility is that U-turns correspond to
an earlier phase in the development of an irregular event such
that the local Hölder exponent is still too high to be detected
by our method. Finally, it could also be a structure appearing
only at higher Reynolds number. If the last hypothesis is true,
we would not be able to observe this type of event through the
simulations performed in this study. This hypothesis is sup-
ported by the high-Reynolds-number simulation performed by
Yeung [16], which exhibits a different type of event, which
might correspond to U-turns.

C. Typical event

As we have extracted and reoriented the extreme events
along a common direction, we can average them in order
to extract a typical event. This is justified by the fact most
events share the common structure of roll vortices. The
few exceptions consist mainly in complex patterns which
could be related to several events happening close to each
others. Those events are kept in the average in order to
avoid introducing any bias. We expect that these events,
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FIG. 12. (a) Streamlines of velocity. The axial velocity is ori-
ented away from the x = 0 plane. The red (blue) isosurface
corresponds to a helicity of H = 2.5 (−2.5). (b) The magenta iso-
surface corresponds to the local Hölder exponent h̃ = 1.35. The red
isosurface corresponds to D�

I = 2ε. The blue isosurface corresponds
to D�

ν = 4ε.

with no clear common feature, will contribute little to the
average.

The average is taken over the 213 most singular events
extracted, corresponding to all events with a local Hölder
exponent h̃ < 1.3 at the scale � = 1.8η. As before, we verify
that changing the value of the threshold gives qualitatively
similar results. In this case, choosing a lower threshold leads
to more extreme values of the averaged local Hölder exponent,
energy transfers, and vorticity but preserves the topology of
the averaged event. We provide a visualization for this aver-
aged event in Fig. 12 as well as in the Supplemental Material
[32] for more details. Note that the scalars displayed are the
averaged values of the exponent h̃, the energy transfer D�

I , and
the energy dissipation D�

ν . Because those quantities are not
linear functions of the velocity field, they do not correspond to
the values that would be computed from the averaged velocity
field, materialized by the streamlines.

The streamlines of the typical event match the pattern of
roll vortices, with a change of helicity at the x = 0 plane,
corresponding to the location of the minimum of the local
Hölder exponent. This seems to be the typical behavior for
extremely singular events. In particular, one might recognize

in the streamlines the profile of a Burgers vortex [33]. An
axisymmetric Burgers vortex can be characterized by its vor-
ticity profile

ωx(r) = �

2πν
exp

(
− σ r2

2νη2

)
. (12)

We can fit the profile of vorticity in the plane x = 0, which
gives the values �τν/2πν = 5 and σ/ν = 0.08. The fit works
very well in the z direction but fails in the y direction,
as illustrated in Fig. 13(a). Note that the nonaxisymmetric
Burger vortex would not provide a better result as the vor-
ticity changes sign in the y direction. This asymmetry in the
vorticity can be visualized in Fig. 13(b).

We likewise observe a very strong nonaxisymmetry of
the averaged D�

I and D�
ν . While the invariance by a rotation

of π around the x axis is a consequence of the orientation
of the events before averaging, we do confirm the presence of
structures of D�

I and D�
ν on both sides of the axis in individ-

ual events. A possible explanation of these nonaxisymmetric
structures would be that extreme events correspond to an
interaction between vortices of different strength so that the
weakest, least singular vortex is canceled out in the process
of averaging. Furthermore, the reversal of helicity appears
similar to what happens around a vortex reconnection [3].
This is also reminiscent of the classical works from Couder
(see, e.g., [34,35]) analyzing the formation and death of vortex
filaments in turbulence, even if the structures observed here
are at a smaller scale than those of the cited papers. In the
following, we refine such a hypothesis using time-resolved
data. Indeed, because of the way those events are extracted,
it is not clear whether the snapshots are captured prior to,
during, or subsequent to the time for which the event is the
most singular.

D. Link with energy transfers

While there are extreme events with negative energy trans-
fer D�

I , i.e., energy going to the larger scales, the averaged
event only transfers energy to smaller scales so that the av-
erage of the term D�

I stays positive around the region of low
regularity. We further observe that the energy transfer D�

I and

(a) (b)

FIG. 13. (a) Fit of the component of the vorticity ωx in the x = 0 plane for the averaged event. The vorticity along the z (y) direction is
represented by blue circles (red crosses), while the Burgers fit is shown as a black solid curve. (b) Colormap of the component of the vorticity
ωx in the x = 0 plane for the averaged event.
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FIG. 14. Snapshots of the time-resolved event: (a) and (d) before the interaction, (b) and (e) beginning of interaction, and (c) and (f) time of
the minimum of h̃. (a)–(c) Isosurfaces of vorticity ωtη = 23 are red and blue for positive and negative helicity, respectively. (d)–(f) Isosurface
h̃ = 1.3 is shown in blue, D�

I /ε = 4 in red, and D�
ν/ε = 6 in green.

the dissipation energy transfer D�
ν do not reach their maxima

at the same location. Most of the energy transfer happens
slightly upstream on the streamlines from the peak of dissi-
pation. We currently do not have a physical explanation for
this phenomenon.

E. Temporal evolution of an event

We use the time-resolved part of our data set to try to
uncover the generation mechanism for extreme events. During
the time period covered, nine events for which the minimum
of the local Hölder exponent is kept under the threshold of
h̃ = 1.3 for at least ten snapshots (or at least 1.5 eddy turnover
times tη) are found. The choice of this thresholds keeps the
number of events to analyze low, as the analysis of time series
is more time consuming than the one of isolated snapshots.
Movies of the corresponding time evolution can be found in
the Supplemental Material [32]. Each event is characterized
by isosurfaces of vorticity (with red and blue corresponding
to positive and negative helicity, respectively), local Hölder
increments, energy transfers D�

I , and dissipation D�
ν . We also

plot the time evolution of the extrema for these quantities.
Those results appear to confirm the relation between

extreme events of the local Hölder exponent and vortex in-
teraction. Indeed, the events observed are localized around
two or more vortices, with possible vortex reconnections. One
of these events is represented in Figs. 14 and 15. This event
has been selected for its strength and simplicity, making it
easier to visualize. For this event, the structures of high-energy
transfer and energy dissipation and low local Hölder expo-

FIG. 15. Snapshots of time-resolved event: (a) and (c) toward
the end of the interaction and (b) and (d) slightly before the local
Hölder exponent h̃ grows back above 1.3. (a) and (b) Isosurfaces
of vorticity ωtη = 23 are red and blue for positive and negative
helicity, respectively. (c) and (d) Isosurface h̃ = 1.3 is shown in blue,
D�

I /ε = 4 in red, and D�
ν/ε = 6 in green.
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FIG. 16. Time evolution of the local Hölder exponents (magenta
solid line, left axis), the vorticity ωtν (green dot-dashed line, middle
axis), the local energy transfer D�

I /ε (red dashed line, rightmost axis),
and the energy dissipation D�

ν/ε (blue dotted line, rightmost axis).
The vertical lines indicates the times of the five snapshots represented
in Figs. 14 and 15.

nents start to appear in Fig. 14(d), before the onset of the
interaction between two vortices. We can identify the structure
of the typical event previously discussed in Fig. 14(e), when
the interaction with another vortex coming from z > 0 starts to
deform the vortex in Fig. 14(c). When the vortices come close
in Fig. 14(f), the event deviates from the typical structure. In
this particular case, the structures of strong energy dissipation
D�

ν move away from the structures of low local Hölder expo-
nents h̃ and high-energy transfer D�

I during the second part of
the interaction visualized in Fig. 15. The structures shown in
Fig. 15 differ from the typical event from Fig. 12.

This could explain the complex structures observed in the
uncorrelated data set. It should be noted that the local Hölder
exponents become greater than the threshold of 1.3 before the
end of the interaction.

A timeline of this particular event is provided in Fig. 16.
It shows the evolution of the maxima for the different scalars
used during the event. Note that the event chosen is particu-
larly singular, as the local Hölder exponent drops to almost
h = 1.2. Such a value is very low, as can be interpreted from
the extrapolation needed in Fig. 8 to reach it.

From the time evolution, the most singular instant happens
during the interaction, at the time corresponding to Fig. 14(c).
At this time, the local Hölder exponents reach their minimum
and the vorticity and the energy dissipation reach their max-
ima. We observe that the maximum of energy transfer D�

I is
reached slightly earlier. Such observation can be repeated for
other events in the data set. This matches with the previous
observation that regions of high-energy transfer are located
upstream on the streamlines of velocity. This observation hints
at the formation mechanism of quasisingularities.

VI. DISCUSSION

In this paper, we have used the tool developed by Nguyen
et al. [19] to extract extremely singular events from numerical
turbulent velocity fields. These events have been analyzed
using local energy transfers at the Kolmogorov scale as well as
the velocity gradient tensor invariants. From this analysis, we

derived several characteristics common to the most singular
events.

The first observation is that most events are roll vortices,
i.e., vortices with a change of helicity at the most singular
point. The average structure computed from the most sin-
gular events is similar to a Burgers vortex, with a strong
nonaxisymmetry. In this work, we did not recover the U-turns
observed by Debue [29] and possibly present in the simulation
by Yeung et al. [16], both of these studies having been realized
at a higher Reynolds number. Note, however, that trajectories
around a Burgers vortex typically produce both roll vortices
and U-turns, as recently discussed by Moffat [36].

The second observation is that the local energy transfers
around singular events are both away from the vortex axis and
strongly nonaxisymmetric. The averaged event, as well as the
individual events, exhibits two regions of energy transfer to
lower scales D�

I located on both sides of the main axis. The
same observation can be done about the viscous energy dissi-
pation D�

ν . To explain these facts, we emit the hypothesis that
the extreme events are caused by interactions between at least
two vortices, which would explain the nonaxisymmetry. This
hypothesis is supported by the analysis of the time-resolved
data which shows that the singular events are associated with
several vortices close to one another. Some cases involve a
vortex reconnection, but we are unable to confirm the impact
on the singularity of the event.

As those results were obtained from simulation data, all
events detected were regularized at a lower scale by the
numerical scheme. In this case, the pseudospectral method
filtered out wave numbers higher than kmax. As the small
scales were expected to have a non-negligible contribution
for very singular events, using simulation data might have
prevented us from observing more singular events. It would
be interesting to reproduce this study using very well resolved
experimental data, in order to validate the conclusions of the
present work.

Another limit to this work is the relatively modest mi-
croscale Reynolds number of the simulations used. This
limitation is imposed by the high resolution required for the
study of potentially singular events and the relatively high
computational cost of the postprocessing limiting the size
of the fields. It would nevertheless be interesting to apply
the current method to much more simulation data (e.g., the
previously cited work by Yeung [16]).

Possible extensions to this work could involve the study
of different types of flows, including turbulence induced by
Richtmyer-Meshov or Rayleigh-Taylor instabilities [37,38].
Such an extension would require one to apply the method
presented in this paper to inhomogeneous and/or anisotropic
flows. While the present method makes no particular hypoth-
esis about the isotropy of the flow, we can expect difficulties
when processing strong inhomogeneities. Indeed, this method
requires the evaluation of multiple statistical averages, with
a high requirement on the size of the statistical set related to
the rarity of the events we want to detect. Strong statistical
inhomogeneities would prevent us from taking statistics over
space and thus reduce the size of the usable statistics in each
snapshot of velocity fields. This would in turn greatly increase
the number of snapshots required to estimate local values of
the Hölder exponent.
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