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Multiscale simulations of charge and size separation of nanoparticles with a solid-state
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Nanoporous membranes provide an attractive approach for rapid filtering of nanoparticles at high-throughput
volume, a goal useful to many fields of science and technology. Creating a device to readily separate different
particles would require an extensive knowledge of particle-nanopore interactions and particle translocation
dynamics. To this end, we use a multiscale model for the separation of nanoparticles by combining microscopic
Brownian dynamics simulations to simulate the motion of spherical nanoparticles of various sizes and charges
in a system with nanopores in an electrically biased membrane with a macroscopic filtration model accounting
for bulk diffusion of nanoparticles and membrane surface pore density. We find that, in general, the separation of
differently sized particles is easier to accomplish than of differently charged particles. The separation by charge
can be better performed in systems with low pore density and/or smaller filtration chambers when electric
nanopore-particle interactions are significant. The results from these simple cases can be used to gain insight in
the more complex dynamics of separating, for example, globular proteins.
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I. INTRODUCTION

The efficient separation of nanoparticles and other nano-
sized objects such as proteins have been a topic of significant
interest as its development can lead to advancements in
methods for rapid particle filtration [1–6]. Application of
membrane and nanopore-based technologies for this purpose
have been the focus of many studies [7–11], for example, the
effectiveness of using an electrically tunable silicon mem-
brane as an ionic filter, as studied by Vidal et al. [12]. This
is because nanoporous membranes have the possibility of
supporting fast, large-throughput particle separation desired,
for example, for commercial protein filtration. Nanopores,
often created in solid-state membranes, can be fabricated
with specific pore size and length appropriate for a particular
application [13–17]. The nanoporous membrane is usually
submerged in a container filled with an electrolyte solution,
which divides it into the cis and trans chambers with particles
initially added to the cis side as to translocate the membrane
via the nanopore to the trans chamber.

There are many techniques that are used to encour-
age translocation of particles, such as applying an electric
potential difference between the chambers to produce a driv-
ing force for ionic and charged particle movement through
nanopores [7,18,19], applying an external pressure gradient
[20–22], or through electroosmosis [23–25]. However, for
the purpose of filtering particles of similar size and charge,
these techniques may not lead to efficient and fast particle
separation as all particles may move to the trans chamber
from the cis too quickly. Some studies emphasize particle
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selectivity when developing their nanopores and techniques
for particle translocation [26,27]. A desirable environment
will encourage the rapid translocation of one type of par-
ticle while discouraging others. Therefore, systems such as
ones utilizing an electrically active semiconductor membrane
are of interest as an electric bias can also be applied to the
membrane. In this way, the electric potential landscape in
the vicinity of the membrane and in the pore can be tuned
to encourage or limit the translocation of specific particles
depending on their size and charge. Alternatively, the electric
potential can be changed by putting different charges on the
membrane surface.

Computational modeling of particle motion has been used
to discover, develop, and explain the dynamics of nanoparticle
nanopore translocation [28–31]. This is done to facilitate a
further insight into the difficult-to-access particle transloca-
tion characteristics produced by experimental investigations.
Detailed models of a protein that include its atomic structure
can in principle yield a better understanding of what is occur-
ring on the atomic level [29,32]. On the other hand, simpler
proteins models such as coarse-grained models [30,33–36] or
spherical particle models [35] can be used to gain a statistical
perspective on translocation dynamics while being less com-
putationally costly. This data can then be used to describe a
system on a macroscopic scale [4,37].

In this paper, we set up a multiscale model to study the
ability of a nanopore separating spherical nanoparticles of
different sizes and charges. The translocation dynamics of
two interacting nanoparticles modeled as spherical beads is
explored via a Brownian dynamics model. Additionally, each
bead’s size and charge is varied to determine what will fa-
cilitate filtering best. The electrostatic environment is also
considered, since an electric potential applied to a nanoporous
membrane can alter a nanoparticle’s motion [35,37,38]. We
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FIG. 1. Schematic diagram of the simulated system (not to
scale). The Si membrane has an applied bias of Vm = ±1 V and is
covered in a layer of negatively charged SiO2. Particle movement in
the cis chamber is restricted by a bounding box (dashed lines above
the pore). The x, y, and z axes originate at the bottom, center of the
pore.

then use the data obtained from the microscopic nanoparticle
translocations to develop a diffusion model [4,37], thus gain-
ing insight on separation characteristics with macroscopically
large fluid chambers. We use BD to describe translocation
of particles through the nanopore to obtain the membrane
resistance for our nanopore system, which is then used to
develop the macroscopic diffusion model.

This paper is organized as follows. The modeled system
and computational model are described in Sec. II. The results
of simulations are discussed in Sec. III and in the Appendix.
Our findings are summarized in Sec. IV.

II. METHOD

In this work, we consider a silicon membrane coated by
a surface layer of SiO2, which is 8 Å thick and has a vol-
ume charge density ρSiO2 = −4 × 1020e/cm3 (corresponding
to surface charge density of 3.2 × 1013e/cm2). A potential
of Vm = ±1 V is applied to the membrane as schematically
shown in Fig. 1 where Vm = +1 V corresponds to a positive
effective surface charge while Vm = −1 V corresponds to
a negative effective surface charge. The L = 260 Å thick
membrane separates the cis chamber, where nanoparticles
are initially placed, from the trans chamber. Both chambers
are filled with an aqueous KCl electrolyte solution of bulk
concentration CKCl = 0.1 M and the system’s electrostatic en-
vironment φ(ri ) is simulated numerically with the coupled
Poisson and Nernst-Planck (PNP) equations as described in
Appendix A and previous work [37–41]. The electrolyte bias
is held at zero across the membrane (Ve = 0).

The cis chamber is connected to the trans chamber via
a nanopore, where its radius is varied from Rpore = 34 Å to
60 Å. A bounding box of radius 100 Å and height 130 Å
confines the motion of beads within the cis chamber, giving

rise to a particle concentration of ∼0.8 mM when there are
two beads considered per box, corresponding to potentially
applicable biological systems as explored in Refs. [31,35].
The trans chamber does not have a bounding box such that
the beads can move away from the nanopore. This simulates
the effect of having a low particle concentration in the trans
chamber at all times. A simulation begins after two beads are
positioned randomly within the bounding box and ends when
both have moved into the trans chamber.

The movement of particles is simulated using Brownian
dynamics (BD), similar to our previous studies [35,41,42].
Using this approach, the ith particle’s (radius Ri, charge qi)
center of mass position ri at time t is determined using

ri(t ) = ri(t − δt ) − ∇iU [ri(t − δt )]
δt

ξi
+

√
6δtkbT

ξi
n,

i = 1, 2, (1)

where δt = 1.0 ps is the time step. In Eq. (1) the second
term corresponds to the net external force applied to the
bead determined by U (ri ) = Ub + Um + UC + qiφ(ri ) where
Ub,m = εb,m[(σb,m/rb,m)12 − 2(σb,m/rb,m)6] is the bead-bead
or bead-membrane Lennard-Jones (LJ) interaction, UC =
(4πε0ε

KCl
r )−1q1q2 exp(−rb/LD)/rb is the screened Coulomb

interaction between particles, and qiφ(ri ) is the electric po-
tential energy [31]. In these energies, εb,m = 0.1 kcal/mol,
σb = 5 Å, σm = 2.5 Å corresponding with our previous pro-
tein studies [31,35], rb,m is the distance between the bead’s
surface and the other bead’s surface or membrane surface,
relative permittivity of the KCl electrolyte solution εKCl

r = 78,
and Debye screening length LD = 0.96 nm. The last term in
Eq. (1) is the random force responsible for stochastic motion
of the bead where T = 300 K and n is the three-dimensional
(3D) random vector with components uniformly distributed in
[−1, 1] [31,43,44]. An example of a single simulation show-
ing trajectories of two particles is presented in Fig. 2.

Stokes formula ξi = 6πηRi, where η = 10−3 Pa · s is the
solution viscosity, is used to approximate the drag coeffi-
cient for the spherical particle in the bulk away from the
membrane surface and nanopore. While the particle is within
the nanopore, its movement is impeded due to the hindered
diffusion effect, which accounts for a decrease in diffusion
coefficient with increasing ratio Ri/Rpore [45], resulting in
a larger drag coefficient in Eq. (1) when compared to the
drag coefficient in the bulk. The drag coefficient outside of
the pore as the particle approaches the membrane surface is
approximately proportional to ∼(1 − Ri/h)−1 where h is the
perpendicular distance the particle is from the surface [46].
The drag coefficient is linearly interpolated between the value
when the particle is closest to the outer membrane surface and
the value of the drag inside the nanopore.

Since the particle’s drag coefficient is position dependent,
an additional term in Eq. (1) ∼ (kbT )∇ · (1/ξi ) [47,48] should
be taken into account. However, in this work said term results
in a particle’s movement ranging from 10−4-10−6 Å per time
step. This is considerably smaller than the particle movement
per time step from the external forces and stochastic term,
which are ∼0.2 Å. As such, this term is omitted from Eq. (1).
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FIG. 2. Particle traces over the course of a single simulation
(Rpore = 52 Å, Vm = 1 V, R1 = R2 = 10 Å, q1 = q2 = −5e). Both
beads begin in the cis chamber and move according to Eq. (1) until
both particles have translocated the nanopore to the trans chamber
where there is no bounding box restricting movement.

From simulating the BD motion of a spherical bead, we
calculate its waiting time tw, the time from the beginning of
the simulation to when the molecule enters the pore prior to
its successful translocation into the trans chamber (z = 0 Å).
The average of these waiting times for a given set of pa-
rameters, 〈tw〉, indicates effectiveness of separating different
particles using a nanopore, where larger differences in 〈tw〉
imply better separation [37].

When studying the separation of particles macroscopically,
we then use the average waiting time to define the effective
resistance of the membrane �m = 〈tw〉/NVb, where N is the
area density of the pores and Vb is the volume of the bounding
box in the BD simulations [37]. This membrane resistance
accounts for macroscopic pore discovery and transmembrane
permeability via the average waiting time of the BD model
results. The concentration of nanoparticles of a given kind,
c(z, t ), is determined by solving the one-dimensional diffu-
sion equation along the nanopore axis:

∂ci

∂t
= kBT

ξi

∂2ci

∂z2
, i = 1, 2, −AW1 = −W2 < z < W1,

(2)

where the cis chamber’s length is W1 and the trans chamber’s
length is W2 = AW1 where A � 1 in order to ensure all par-
ticles end up in the trans chamber. Initially, all nanoparticles
are located in the cis chamber (z > 0), so that ci(z > 0, t =
0) = c0i and ci(z < 0, t = 0) = 0.

To describe the macroscopic diffusion of particles from the
cis chamber toward and through the membrane, the effective
resistance of the fluid to the flow of particles is also taken into
account. The fluid resistance of a chamber of length W1 to

the flow of nanoparticles is given by �ci = ξiW1/kBT [4]. The
ratio of �c and �m, denoted as β, is

βi = �mi

�ci
= 〈tw〉ikBT

NVbξiW1
. (3)

Since the membrane thickness is much smaller than the
size of the cis chamber, the concentration change across the
membrane at z = 0 can be written as

kBT

ξi

∂ci

∂z

∣∣∣∣
z=0

= �−1
mi [ci(+0, t ) − ci(−0, t )]. (4)

The solution to the above boundary-value problem given
by Eqs. (2)–(4) can be written as

ci(z, t ) = c0i

[
1

1 + A
+

∞∑
n=0

anχn(z) exp

(
− kBT λ2

nt

ξiW 2
1

)]
,

(5)

where

an = 4 sin(λn)

2λn(1 + Aα2) + sin(2λn) + α2 sin(2Aλn)
, (6)

α = sin(λn)

sin(Aλn)
, (7)

χn =
{

cos(λn(W1 − z)/W1), 0 < z < W1,

−α cos(λn(W2 + z)/W1), −W2 < z < 0,
(8)

and eigenvalues λn are determined from solutions of

sin(λn) sin(Aλn)

sin((1 + A)λn)
= 1

βiλn
. (9)

From Eqs. (5)–(9), we calculate the average concentration
in the cis chamber cci(t ), which we use to define the macro-
scopic translocation probability,

Pc
Ti(t ) = 1 − cci(t )/c0i, i = 1, 2. (10)

The translocation probability for particles i = 1, 2 are then
compared to infer the viability of particle separation, where
larger differences in Pc

Ti would lead to greater separation.
In practice, these probabilities correspond to, for example,
fluorescence intensities of translocated objects vs. time as
measured by Striemer et al. [2].

III. RESULTS AND DISCUSSION

A. Separation of two differently sized or charged particles

To determine the effectiveness of using nanoporous mem-
branes for high-throughput filtering, simulations of two
different nanoparticles were performed. In these scenarios,
beads of different (same) radii of 10 Å and 20 Å with the
same (different) electric charge of −5e and 0e are considered.
The data from ∼2000 simulations were used to find the aver-
age waiting time 〈tw〉 for both particles in the system. Using
this time, the probability that a particle has translocated the
nanopore in time t , PT , can be written as

PT (t ) = 1 − exp(−t/〈tw〉), (11)

so that, in a case where there are two different types of par-
ticles, the difference between their translocation probabilities
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FIG. 3. Probability that a bead translocates the nanopore, PT 1 and PT 2, vs time t in a system where Rpore = 34 Å and (a) Vm = 1 V,
R1 = 10 Å, R2 = 20 Å, q1 = q2 = −5e and (b) Vm = 1 V, q1 = 0 e, q2 = −5e, R1 = R2 = 20 Å. The difference of translocation probability
|PT 1 − PT 2| is also calculated, the peak of which, Ptd , indicates the maximum extent of bead separation that will occur in the system at peak
translocation probability difference time ttd .

indicates how effective the separation can be. A detailed dis-
cussion on how tw depends on various parameters is given in
the Appendix B.

The translocation probabilities and their difference for two
particles are shown for two cases in Fig. 3 where the peak
of the difference is referred to as Ptd and time at which it
happens is ttd . The most favorable circumstances for filtration
is a large value of Ptd that occurs at the shortest time ttd , since
that represents high-throughput, large percent separation of
nanoparticles. In Fig. 3(a), the translocation probabilities and
their differences for R1 = 10 Å, R2 = 20 Å, q1,2 = −5e,
Vm = 1 V, and Rpore = 34 Å are shown, which is one of the
best separation scenarios studied. As it is seen, the likelihood
of the R1 = 10 Å particle translocating the nanopore first is
much greater than that of the larger particle. The difference
in their probabilities peak at Ptd ∼ 0.60. This is the same as
saying the maximum percentage difference between two types
of particles in either chamber is ∼60%.

On the other hand, Fig. 3(b) shows the translocation proba-
bility of R1,2 = 20 Å particles with different electric charges
q1 = 0 and q2 = −5e. Ptd occurs at larger times and is smaller
than that shown in Fig. 3(a). We can conclude that the sepa-
ration is less effective for beads of the same size but different
charges in this nanoporous membrane system.

The value of Ptd for all cases investigated vs. the pore ra-
dius Rpore with its corresponding ttd is shown in Fig. 4. For all
cases, Ptd decreases as the pore size increases, including the
cases when the two simulated beads have a different charge
but the same radius. The highest Ptd at the lowest time ttd

are found for separating R1 = 10 Å, q1 = −5e particles from
R2 = 20 Å, q2 = −5e particles at Vm = 1 V. This is due to the
ease at which smaller particles find and access the nanopore,
along with having a reduced drag. In general, a Vm = 1 V bias
results in a higher Ptd for separating negatively charged parti-
cles of different sizes with smaller ttd , a result that is followed
closely by neutral particles of different sizes. Separation of
negative particles of different sizes at Vm = −1 V yields much
larger ttd than the other two cases. This suggests that when
separating two particles of different sizes but same charge, it
is best to attract the particles to the membrane in order for

them to find the nanopore entrance faster since it will lead to
separation in a shorter time, and thus, a higher throughput.

For any given Rpore, the smallest Ptd values, and therefore
hardest to separate particles, correspond to particles of the
same size but different charge with results being approxi-
mately the same for Vm = 1 V and Vm = −1 V. Because of
this, peak time ttd would determine which system would be
more favorable for filtration. One can see in Fig. 4 that ttd

for Vm = −1 V is always larger than when Vm = 1 V. This is
because it is more time efficient to attract a negatively charged
particle to the nanopore at Vm = 1 V before a neutral particle
manages to translocate a pore rather than repel the charged
particle from it to allow a neutral one to translocate first.

FIG. 4. Peak translocation probability difference time ttd and
(inset) the maximum translocation probability difference Ptd for a
system where (◦) R1 = 10 Å, R2 = 20 Å, qi = 0; (�) Vm = 1 V,
R1 = 10 Å, R2 = 20 Å, qi = −5e; (�) Vm = −1 V, R1 = 10 Å,
R2 = 20 Å, qi = −5e; (�) Vm = 1 V, q1 = −5e, q2 = 0, Ri = 20 Å;
(�) Vm = −1 V, q1 = 0, q2 = −5e, Ri = 20 Å.
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FIG. 5. Probability that a bead translocates the nanopore, Pc
T 1 and Pc

T 2, vs time t in a system where Rpore = 34 Å (a) Vm = 1 V, R1 = 10 Å,
R2 = 20 Å, q1 = q2 = −5e and (b) Vm = 1 V, q1 = 0 e, q2 = −5e, R1 = R2 = 20 Å. For Eqs. (5)–(9), N = 108 cm−2, W1 = 0.1 mm, and
W2 = 10W1. The difference of translocation probability |Pc

T 1 − Pc
T 2| is also calculated where Ptd is its peak value occurring at time ttd .

B. Macroscopic nanoparticle filtration

We next use the data of the preceding section to determine
macroscopic filtration probabilities and times, as demon-
strated in Fig. 5 for the same two cases as in Fig. 3. One can
see that the values of ttd are now measured in hours rather
than μs as expected due to macroscopically large sizes of the
simulated filtering system while unexpectedly Ptd values are
only somewhat decreased.

Figure 6 summarizes our results for different pore densities
N and chamber sizes. In Fig. 6(a) where N = 106 cm−2,
W1 = 0.1 mm, and W2 = 10W1, the maximum Ptd values are
only slightly lower compared to values calculated from the
microscopic simulations shown in Fig. 4.

Increasing the pore density will decrease the time it takes
to reach maximum separation, as displayed in Fig. 6(b) when
N = 108 cm−2. This does have consequences, however, as the
peak value Ptd compared to single-particle values in Fig. 4
is decreased at large pore density N . The trend of decreasing
Ptd also occurs when the sizes of the chambers are increased,
as seen in Fig. 6(c). We found that large chamber, high pore
density systems (W1 = 1 mm and N = 108 pores/cm2) have
values of Ptd decreased by 10–80 % compared to results of
individual particle simulations in Sec. III A. Additionally, this
maximum separation of the nanoparticles would take 2–29 h
to reach.

When the particle concentration decreases in the region
around the membrane on the cis side quickly (see Fig. 7 where
concentration profiles along the z direction are shown for
different filtration times) relative to the concentration in the
bulk, then the increase of particle concentration in the trans
chamber is largely determined by how long it takes for the
concentration near the membrane on the cis side to replenish.
This can be due to large number of pores or large bulk volume
so that it cannot quickly be replenished, a result of longer
times for particle diffusion. Therefore, in membranes with a
high pore density or a large cis chamber length, the separation
of particles is determined by the difference of particle bulk
drag coefficients (diffusion) rather than the particle-nanopore
interaction. This is the reason Ptd in Fig. 6(c) collapses into
two bands, where the separation of particles with same charge

but different size (and drag coefficients) yields considerably
higher Ptd values than the separation of particles with the
same size (same drag coefficient) but different charge. In other
words, for sufficiently large fluid chambers and pore densities,
the separation effectiveness has little to no dependency on
membrane bias Vm (or charge) since membrane resistance
becomes much less impactful than fluid resistance.

IV. CONCLUDING REMARKS

In this paper we examined the feasibility of using solid-
state nanoporous membranes for separating nanoparticles
by size and charge. The movement of individual spherical
nanoparticles is modeled by using BD while the PNP ap-
proach is used to describe the electric potential landscape
produced by the applied membrane bias or surface charge.
The results of single-particle separation were then used in the
continuum approach characteristic for macroscopic filtration
process.

The cases that lead to best separation with nanoporous
membranes were identified by calculating waiting times from
simulations of two interacting particles of different size or
charge. Particle separation effectiveness was determined by
the maximum difference in the particle’s translocation prob-
ability Ptd , where large Ptd implies a system that facilitates
translocation for one particle species while impeding the
other. We found that Ptd was large in smaller nanopores
no matter size or charge of the two particles investigated.
However, smaller nanopores also increase the time it takes
to separate the particles, ttd , which is not favorable for
high-throughput filtration. The largest Ptd ’s with the smallest
ttd ’s for all pore sizes were produced for negatively charged
particles of different sizes exposed to a positively biased mem-
brane. In general, the particles of different sizes yielded larger
separation probability difference than particles of different
charges signifying that it is easier to separate beads by size
rather than by charge.

We then considered how these results translate to macro-
scopic conditions. Using a continuum model to describe
concentration of particles in the nanoporous membrane sys-
tem, the values of maximum separation probabilities and
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FIG. 6. Peak translocation probability difference time ttd and
(inset) the maximum translocation probability difference Ptd for a
system where (◦) R1 = 10 Å, R2 = 20 Å, qi = 0; (�) Vm = 1 V,
R1 = 10 Å, R2 = 20 Å, qi = −5e; (�) Vm = −1 V, R1 = 10 Å,
R2 = 20 Å, qi = −5e; (�) Vm = 1 V, q1 = −5e, q2 = 0, Ri = 20 Å;
(�) Vm = −1 V, q1 = 0, q2 = −5e, Ri = 20 Å. Ptd and ttd are calcu-
lated for systems scaled up to parameters (a) N = 106 cm−2, W1 =
0.1 mm, W2 = 10W1, (b) N = 108 cm−2, W1 = 0.1 mm, W2 = 10W1,
and (c) N = 108 cm−2, W1 = 1 mm, W2 = 10W1.

FIG. 7. Concentration profile in the z direction for Rpore = 34 Å,
Vm = 1 V, R1 = 10 Å, R2 = 20 Å, and q1 = q2 = −5e at various
times t . The macroscopic systems correspond to a higher-throughput
filtration case where (a) N = 108 cm−2, W1 = 1 mm, W2 = 10W1

and a lower-throughput filtration case (b) N = 106 cm−2, W1 =
0.1 mm, W2 = 10W1. The vertical (green) line represents the loca-
tion of the membrane at z = 0 Å.

times were calculated for systems of different sizes and
pore densities. Utilizing smaller fluid chambers and low pore
density led to the larger values of Ptd than when the chamber
size and/or pore density were large. Larger fluid chambers
increase separation time, while decreasing separation effec-
tiveness for each case studied; more porous membranes lead
to lower separation times, but at the cost of decreasing Ptd .

These results show that separating similar particles reliably
may be viable but not a simple task. When trying to separate
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similar particles, the first aspect to consider should be any size
differences, as particle size is a dominating factor in determin-
ing fluid and membrane resistance. Particle charge differences
should then be recognized since a membrane bias can be used
to encourage or impede the translocation of specific particles.
Even though electrostatic considerations may not increase
effectiveness of charged particle separation notably in systems
with larger chambers and/or more porous membranes, they
can greatly decrease the separation time, a feature desired for
high-throughput filtration of particles.
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APPENDIX A

The electric potential distribution in the membrane and
electrolyte solution is determined using the continuum ap-
proach. In this approach, the Poisson equation [39,40],

∇ · [ε(r)∇φ(r)] = −ρ(r), (A1)

is solved together with the Nernst-Plank equations,

∇ · [μiCi∇φ + ziDi∇Ci] = 0, i = {K+,Cl−}, (A2)

to determine the local concentrations of CK+ (r) and CCl− (r).
For Eq. (A2), μi is the mobility of the ith species, zi = ±1
depending on the charge of the ion, and Di = μikbT/e is the
diffusion coefficient.

The charge density ρ(r) in Eq. (A1) is comprised of an
electrolyte charge density, ρe(r), and the membrane charge
density, ρm(r). These densities are described by

ρe(r) = e{CK+ (r) − CCl− (r)}, (A3)

and

ρm(r) = ρSiO2 (r), (A4)

where ρSiO2 (r) is the surface charge density [41]. When
solving the above system of equations, the electric potential
difference is set to zero while ionic concentrations are set
to the bulk values on the top and bottom boundaries in the
z direction of the simulation domain. The membrane bias is
held at Vm while the normal derivatives of the potentials and
ionic fluxes on other boundaries are set to zero.

APPENDIX B

The following discussion focuses on how pore radius,
membrane bias, and interparticle interaction affect the translo-
cation process of spherical particles with different sizes and
charges. The waiting time, tw, is computed for two identical
spherical beads of radii R1,2 = 10 Å, 15 Å, and 20 Å and elec-
tric charge of q1,2 = −5e and 0 placed at random positions
near a nanoporous membrane with different Vm and Rpore. An
average waiting time 〈tw〉 for each case was calculated from
production runs where two particles were simulated and then
compared to simulations of only a single particle. In both
cases the average waiting time was computed from ∼2000

FIG. 8. Average waiting time 〈tw〉 from simulations of two iden-
tical and interacting spherical particles of various sizes and charges
against pore radius Rpore for applied membrane biases Vm = ±1. Sim-
ulating an additional bead per simulation does not result in noticeable
changes the waiting times observed.

translocations. For two-particle simulations, both beads are
allowed to complete translocation and the waiting time for
each bead is defined as the time from beginning of simu-
lation to its successful translocation. We do this such that
we do not consider the effects of increased particle density
that occur when the simulation is stopped after one particle
translocates.

Figure 8 shows that the longest waiting time, 〈tw〉 =
810 μs, is produced by the largest negatively charged particles
in the smallest nanopore and a negative applied membrane
bias (Ri = 20 Å, q1,2 = −5e, Vm = −1, Rpore = 34 Å). This
is due to larger beads having a larger drag coefficient in
addition to being less likely to find, enter, and then success-
fully translocate a small radius nanopore, a trend intensified
when the effective pore radius is made smaller due to particle
electric repulsion from the membrane surface [31,35,38]. For
a particle of a given radius Ri, the waiting time decays as Rpore

increases, however the particle’s charge can greatly affect this
trend as it changes the effective pore radius depending on the
membrane’s bias. For example, when Rpore decreases from
40-34 Å while Ri = 20 Å, 〈tw〉 increases by ∼270% when
Vm = −1 V and q1,2 = −5e, by ∼80% when Vm = 1 V and
q1,2 = −5e, and by ∼140% when q1,2 = 0e.

A particle’s charge affects its waiting time most notably
for a nanopore with a smaller radius. This is seen in how the
〈tw〉 values between the explored cases change from smaller
pores with Rpore = 34 Å to larger pores with Rpore = 60 Å
(Fig. 8). Waiting times for a bead moving through a smaller
pore (with smaller Rpore/R1,2 ratio) are mostly determined
by the membrane bias and particle’s charge, where Vm =
−1 V and q1,2 = −5e resulted in the longest time while Vm =
1 V and q1,2 = −5e produce the shortest as seen in Fig. 8.
This is because waiting times under these circumstances are
greatly affected by the time required by a nanoparticle to
find and enter the mouth of the nanopore, a task aided (or
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FIG. 9. Histograms of bead separation distance for when (i, blue) both beads are in the cis chamber, (ii, red) one bead is inside of the
pore, (iii, green) both beads are in the pore for (a) Rpore = 34 Å, Vm = 1 V, R1,2 = 15 Å, q1,2 = −5e; (c) Rpore = 60 Å, Vm = 1 V, R1,2 = 15 Å,
q1,2 = −5e; (e) Rpore = 60 Å, Vm = −1 V, R1,2 = 15 Å, q1,2 = −5e. (inset) Probability histogram of the system’s state. (b), (d), (f) Heatmap
of two bead’s z-coordinate center of mass position, Z1,2, while both beads are located inside of the pore for (b) Rpore = 34 Å, Vm = 1 V,
R1,2 = 15 Å, q1,2 = −5e; (d) Rpore = 60 Å, Vm = 1 V, R1,2 = 15 Å, q1,2 = −5e; (f) Rpore = 60 Å, Vm = −1 V, R1,2 = 15 Å, q1,2 = −5e.
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hindered) by an attraction (or repulsion) to the membrane
surface.

For larger pores, having a slightly smaller effective pore
opening due to surface charge effects is less impactful on
the waiting time compared to when the pore is small. When
Rpore = 60 Å, the particle charge affects translocation dynam-
ics less than particle size, as seen by the small change in
waiting times of similar bead sizes with different charges
(Fig. 8). This results in the longest (shortest) waiting times
corresponding to R1,2 = 20 Å (R1,2 = 10 Å). In this case, the
waiting time is mainly determined by the drag force on a
nanoparticle, hence larger beads have the longest 〈tw〉 regard-
less of their electric charge.

Waiting time simulations for single particles were also
performed, yielding similar results seen in Fig. 8 where the
waiting times were found to have a difference of <10%
(most cases had <4% difference). This means the presence
of two spherical beads in a nanoporous system does not
result in notable additional hindrance of the translocation
process compared to a single bead system. The largest dif-
ference in 〈tw〉 between the cases shown is R1,2 = 20 Å,
q1,2 = −5e, Vm = −1 V, Rpore = 34 Å, which is also the
case of the largest 〈tw〉 for both models. However, even in
this case the two bead simulations had lower waiting times
only by ∼26 μs (∼9% difference compared to single bead
simulations).

As the spherical nanoparticles we simulate interact with
each other, we expected that a higher particle density of iden-
tical particles would lead to motion hindrance and an increase
in waiting time. However, this was not clearly the case, so
we look at the separation of the two R1,2 = 15 Å, q1,2 =
−5e particles throughout many simulations for Rpore = 34 Å,
Vm = 1 V [Fig. 9(a)], Rpore = 60 Å, Vm = 1 V [Fig. 9(c)],
and Rpore = 60 Å, Vm = −1 V [Fig. 9(e)]. Other beads and
nanoporous membrane systems were also studied in this way,
yielding similar results.

The particle separation distance histograms in Fig. 9 show
three scenarios: both particles are outside of the nanopore,
one particle is inside the pore, and both particles are inside
of the pore. While both particles are outside of the nanopore,
their separation distance obeys Gaussian distribution (with

cutoffs at the ends since the beads cannot move too closely
to each other and their movement is confined to the bounding
box) with a peak at ∼100 Å distance between particles. The
peak particle separation when one bead is inside the nanopore
(∼130 Å) is greater than that of when both particles are in the
bulk, an expected result as the pore is longer than the size of
the bounding box in the simulations. In this situation, the two
particles rarely interact, save for when both are near the mouth
of the pore (one inside, one outside), which occurs rarely.
These trends are similar for all observed systems, however,
the total probability of each state depends on the parameters
as previously mentioned.

Both particles being located inside of the nanopore is the
most interesting state since it forces interaction between the
beads, however, it is also the least likely to occur. While both
particles are inside of the nanopore, the histograms in Fig. 9
show that for the narrower pore, beads are most likely to be a
minimum distance away from each other [Fig. 9(a)] has a peak
at minimum separation). This is not the case for the wider
pore, as the peak probability of separation occurs beyond the
minimum separation [Fig. 9(c)].

To investigate further, we display the z-position probability
(Pz) of each bead while both are inside the pore [Figs. 9(b),
9(d), and 9(f)]. For all cases explored, particularly for Vm =
−1 V, Pz is highest near the pore entrance (z = 260 Å), as
expected since unsuccessful translocations of a single bead
will most likely be near the mouth of the pore [35,49]. When
Rpore = 34 Å [Fig. 9(b)], the two particles do not occupy the
same z-position, making a diagonal of Pz ≈ 0, implying that
one particle will not pass the other while inside the nanopore
under these parameters. For the wider pore of Rpore = 60 Å,
both beads tend not to stay at the same z position, however,
Pz > 0 here indicating particles can pass each other in the
nanopore. The additional radial space allows for particles in
the pore to be further away from each other and pass each
other, thus the shift in peak separation distance in Figs. 9(c)
and 9(e). This also explains why two interactable bead sim-
ulations have a slightly shorter 〈tw〉 when the effective pore
radius is at its smallest (and beads are the largest), since a
bead trying to escape the pore cannot pass another bead under
those circumstances.
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