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Dynamic stiction without static friction: The role of friction vector rotation
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In the textbook formulation of dry friction laws, static and dynamic friction (stick and slip) are qualitatively
different and sharply separated phenomena. However, accurate measurements of stick-slip motion generally
show that static friction is not truly static but characterized by a slow creep that, upon increasing tangential load,
smoothly accelerates into bulk sliding. Microscopic, contact-mechanical, and phenomenological models have
been previously developed to account for this behavior. In the present work, we show that it may instead be a
systemic property of the measurement apparatus. Using a mechanical model that exhibits the characteristics of
typical setups of measuring friction forces—which usually have very high transverse stiffness—and assuming
a small but nonzero misalignment angle in the contact plane, we observe some fairly counterintuitive behavior:
Under increasing longitudinal loading, the system almost immediately starts sliding perpendicularly to the
pulling direction. Then the friction force vector begins to rotate in the plane, gradually approaching the pulling
direction. When the angle between the two becomes small, bulk sliding sets in quickly. Although the system
is sliding the entire time, macroscopic stick-slip behavior is reproduced very well, as is the accelerated creep
during the “stick” phase. The misalignment angle is identified as a key parameter governing the stick-to-slip
transition. Numerical results and theoretical considerations also reveal the presence of high-frequency transverse
oscillations during the “static” phase, which are also transmitted into the longitudinal direction by nonlinear
processes. Stability analysis is carried out and suggests dynamic probing methods for the approaching moment
of bulk slip and the possibility of suppressing stick-slip instabilities by changing the misalignment angle and
other system parameters.
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I. INTRODUCTION

Dry friction plays an essential role in a great variety of
physical processes and numerous engineering, geological, bi-
ological, medical, and metrological applications [1–3]. One
of the central properties of dry friction is a sharp transition
from the static state (stick) to dynamic state (slip): If an
increasing lateral force is applied to an object, it will re-
main at rest while the force is below some threshold value
called static friction. When the threshold is met, the object
abruptly begins to slide. This property has even prompted the
development of a special branch of mechanics—dynamics of
systems with nonsmooth interactions [4,5]. However, more
accurate measurements consistently show that there is no
discrete transition. As the lateral force increases, the object
experiences, from the macroscopic point of view, a continuous
creeping motion, which accelerates smoothly as the thresh-
old is approached, and then seamlessly transitions into bulk
sliding (while the true microscopic dynamics can still remain
discontinuous) [6,7]. This accelerated creep effect not only
qualitatively changes the physical picture of static friction, but
also plays an important role in earthquake dynamics [8] and in
the tribological aspects of many modern technologies such as
robotics [9], micromechanics [10], and precision positioning
systems [11].
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How should accelerated creep be explained? One pos-
sibility is that the effect is rooted in macroscopic contact
mechanics: If a spherical contact—the perennial favorite in
friction experiments—is loaded tangentially, sliding does not
affect the entire contact area at once, but rather propagates
from the edge inward as the tangential load increases. Because
normal stress is zero at the edge of a nonadhesive contact,
there is no threshold value for the onset of partial slip, and the
acceleration of creep as more and more of the contact begins
to slide is consistent with experimental data. A prominent
representative of this approach is the theory of partial sliding
by Cattaneo [12] and Mindlin [13]. It was mostly investigated
in the context of fretting wear [14] and frictional damping
[15], but it was only recently considered as an explanation for
frictional creep [16].

Another possibility is to look for answers at the microscale.
It is not implausible to imagine, for example, that some of
the weaker “asperity bridges” in the contact start to detach
at a much lower force than is necessary for bulk sliding. As
the tangential load increases, the rate of such detachments
might accelerate and ultimately grow into an avalanche that
precipitates macroscopic slip [17]. The process may also be
thermally activated. This approach is embodied in the rate-
and state-dependent laws of friction developed in the 1970s
in the context of geophysics [18,19]. A similar but purely
phenomenological approach has been developed in the con-
text of presliding [11,20]. Further approaches combining both
of the above views exist as well, e.g., rapid propagation of
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slip or detachment fronts in the contact plane [21]. While
details vary, the currently predominant view in the tribological
community seems to be that creep or presliding is an intrinsic
property of friction and as such is caused by some microscale
mechanism.

Here we present evidence that in typical experimental de-
vices used for studying friction, an approach may be possible,
which differs from both above approaches. Instead, in the
cases described in the present paper, both apparent stick and
accelerated creep appear to be a property of the measure-
ment apparatus itself. The strong stiffness anisotropy typical
of tribological apparatus using leaf springs, combined with
subtle misalignment (possibly less than one degree) between
the direction of motion and the supporting spring, causes the
friction force vector to rotate in the contact plane, which
influences the time evolution of observed displacement. This
paves the way for a purely macroscopic mechanical theory of
static friction, slow creep, and the stick-to-slip transition.

The importance of the rotation of the direction of friction
force was previously highlighted in [22] in the context of ac-
tive control of friction by transverse oscillations. The apparent
stick due to friction vector rotation is described in greater
detail in the present paper.

II. MODEL

Consider a simple mass-spring system as shown in Fig. 1.
Sliding systems are usually depicted in a “side view”
[Fig. 1(a)] where a rigid object of mass m is coupled to a
spring and is in contact with a horizontal flat floor (XY plane)
under normal load W. The right end of the spring is driven
along the X axis with drive velocity V. However, for describing
the rotation of the friction force F, we need a “top view” of the
system [Fig. 1(b)]. In this projection, the spring is character-
ized by the stiffness tensor. Let x and y be the principal axes
of the stiffness tensor [as shown with green dashed lines in
Fig. 1(b)] and kx and ky be the corresponding principal values.
We assume that the principal axes are inclined relative to the
direction of the drive velocity by a small angle ϕ. Such a finite
misalignment angle is not an unrealistic assumption because
exact alignment between the two axes in the tribological ap-
paratus (and probably, even in any other real sliding system)
is virtually impossible. The projections of the spring forces
onto the principal axes are kxux and kyuy, where ux and uy are
the spring elongations in the x and y directions, respectively.
The velocity of the immediate contact point relative to the
stationary floor will be denoted as slip velocity vslip. The
direction of the friction force F is assumed to be opposite to
the direction of vslip and its magnitude a continuous function
of the magnitude of vslip : F = F (vslip). Two different laws of
friction are used: (i) “velocity-weakening friction” in Sec. III,
determined by F = [μ∞ + (μ0–μ∞)exp(–vslip/vf )]W (where
μ0 and μ∞ are the friction coefficients for vslip ∼ 0 and �,
respectively, and vf is a velocity constant), and (ii) “constant
friction” in Secs. IV and V, determined by F = F0 = μ0W .
Note that velocity weakening is not the only mechanism of
instabilities in sliding systems. In [23], it was shown that
rate- and state-dependent friction can also lead to stick-slip
movement. Also note that we have left the law of static friction
unspecified. Although the resulting system dynamics shows

FIG. 1. Analytical model. (a) Side view: An object in contact
with a horizontal floor is pulled to the right via a spring. (b) Top
view: A nonzero in-plane misalignment ϕ exists between the pulling
direction X and the principal axis x of the stiffness tensor. (c) Geo-
metrical relationship of velocities [drive velocity V, spring elongation
rates vx (= u̇x ) and vy (= u̇y ), and slip velocity vslip] and angles (ϕ,
ψ , and θ ). The angle ψ of friction force F in (b) is determined from
the direction of vslip in (c). Note that θ = ψ + ϕ.

what appear to be stick phases, the frictional contact is in a
permanent state of slip.

The equations of motion of the mass m in coordinates x and
y read

müx + kxux = F cos θ, müy + kyuy = F sin θ, (1)

where θ = ψ + ϕ is the angle between the friction force and
the x axis. From the geometry represented in Fig. 1(c), one
can derive

cos θ = V cos ϕ − u̇x

vslip
, sin θ = V sin ϕ − u̇y

vslip
(2)

with

vslip =
√

(V cos ϕ − u̇x )2 + (V sin ϕ − u̇y)2. (3)
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With account of Eqs. (2) and (3), Eq. (1) can be rewritten
as

müx + kxux = F (vslip)
V cos ϕ − u̇x√

(V cos ϕ − u̇x )2 + (V sin ϕ − u̇y)2
,

(4)

müy + kyuy = F (vslip)
V sin ϕ − u̇y√

(V cos ϕ − u̇x )2 + (V sin ϕ − u̇y)2
.

(5)

This system of two nonlinear second-order differential equa-
tions completely determines the dynamics of the system. They
were solved numerically using the Runge-Kutta method. The
time evolution of object position in the laboratory coordinates
can be obtained by

X = V t − ux cos ϕ − uy sin ϕ, Y = ux sin ϕ − uy cos ϕ (6)

and

Ẋ = V − u̇x cos ϕ − u̇y sin ϕ, Ẏ = vx sin ϕ − vy cos ϕ. (7)

III. SYSTEM DYNAMICS FOR VELOCITY-WEAKENING
FRICTION

Figure 2 presents numerical solutions to the equations
of motion for velocity-weakening friction. A small in-plane
misalignment of ϕ = 1◦ and a strong stiffness anisotropy
of ky/kx = 104 were assumed corresponding to typical leaf
springs used in laboratory friction tests. Other parameters are
listed in the caption.

The drive started to move at t = 0. The time dependencies
of the x and y components of the spring force are shown in
Figs. 2(a) and 2(b), respectively. The longitudinal component
of the spring force shows the classical stick-slip behavior
consisting of a linear increase in time followed by a sharp
drop [Fig. 2(a)]. The transverse component of the force, on
the contrary, reveals an unexpected behavior: It jumps to the
maximum value (equal to the magnitude of the friction force
at low sliding velocity) and subsequently decreases to vanish
at the start of the slip phase [Fig. 2(b)]. The magnitude of
the force remains practically constant during the whole stick
phase [Fig. 2(c)] dropping only in the phases of rapid slip.
Equilibrium in the pulling direction is maintained by the in-
plane rotation of the friction force vector described by the
angle ψ [Fig. 2(d)]. The time dependency of the longitudi-
nal coordinate X [Fig. 2(e)] shows a pronounced stick-slip
character. Although the stairlike object position (X) and the
sawtooth-shaped spring force (kxux) indicate typical stick-slip,
in reality, the object never comes to a full stop. During the
stick phases, the object is slowly slipping and gradually accel-
erating in the X direction [see the inset of Fig. 2(e)], which is
reminiscent of the so-called “slow creep” known from studies
of the rate- and state-dependent friction laws [6]. To underline
the dynamic nature of the apparent stick phase we call it
“dynamic stiction.”

FIG. 2. Dynamic stiction, slow creep, and stick-slip under
velocity-weakening friction. (a) Spring force kxux . (b) Spring force
kyuy. (c) Magnitude of friction force F. (d) Direction of friction
force ψ . (e) Object position X. System parameters: ϕ = 1◦, m =
0.25 kg, kx = 1 kN/m, ky = 10 MN/m, μ0 = 0.20, μ∞ = 0.15, vf =
10 mm/s, W = 10 N, and V = 0 for t < 0 and 1 mm/s for t � 0.
Initial conditions: X (0) = 0, Y (0) = 0, Ẋ (0) = εV , and Ẏ (0) = 0,
where ε = 10–6.

The dynamic nature of stiction has important physical im-
plications. One of them is the presence of high-frequency
oscillations during the “stick” phase. These oscillations,
shown in Fig. 3, are an inherent property of the described
system, and will be discussed in more detail below. Spectral
analysis shows that the oscillation frequency initially coin-
cides with the natural frequency of transverse oscillations,
ωy = (ky/m)1/2 (for the system parameters used, 1.0 kHz) and
decreases when approaching the phase of rapid slip [Figs. 3(b)
and 3(d)]. Although both transverse and longitudinal
oscillations are present, the fact that they have a common
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FIG. 3. High-frequency oscillations. (a) Spring elongation rate
vx (= u̇x ) and (b) its spectrogram. (c) Spring elongation rate vy

(= u̇y ) and (d) its spectrogram. System parameters and initial con-
ditions are the same as in Fig. 2. The spectrograms have been
obtained using short-time Fourier transform with Hamming window
of the width 0.1 s.

frequency coinciding with the transverse natural frequency
indicates that the oscillations originate in the transverse degree
of freedom, y, and are transmitted to longitudinal movement
over a nonlinear coupling.

The high-frequency dynamics of sliding systems is of sig-
nificant interest for many technical applications [24,25]. Their
physical origin and influencing factors have been studied for
many decades, but their nature often remains unclear [25]. The
concept of friction vector rotation offers a different perspec-
tive on this phenomenon.

IV. SYSTEM DYNAMICS FOR CONSTANT FRICTION

Figure 4 presents results for constant sliding friction. The
first transition from “stick” to “slip” is in this case almost
identical to the case of velocity-weakening friction; however,
no periodic stick-slip motion takes place.

The detailed character of the friction law seemingly has no
influence on the phenomenology of the stick-to-slip transition.
In retrospect, this is fairly obvious, as the whole creep phase
occurs at very small velocity; the velocity dependence is thus
mostly of interest during the phase of rapid slip. However, it
also determines the character of high-frequency oscillations
during the apparent stick phase. With constant friction, the
oscillations attenuate more rapidly compared with the case of
velocity-weakening friction law.

The character of the friction law exerts its greatest in-
fluence on the transition from slip back to stick. While the
velocity-weakening law leads to periodic stick-slip (Fig. 2),
the sliding phase continues indefinitely in the case of constant
friction (Fig. 4). Accordingly, all features related to the back
transition from slip to stick are absent in the case of constant
friction. Thus, no drop of the friction force appears during the
slip phase [compare Fig. 2(c) and Fig. 4(c)] because the rapid
drop of the magnitude of friction in Fig. 2(c) is obviously
caused by the velocity weakening of friction force.

FIG. 4. Dynamic stiction and single stick-to-slip transition un-
der constant friction. (a) Spring force kxux . (b) Spring force kyuy.
(c) Magnitude of friction force F. (d) Direction of friction force
ψ . (e) Object position X. System parameters: ϕ = 1◦, m = 0.25 kg,
kx = 1 kN/m, ky = 10 MN/m, μ0 = 0.20, W = 10 N, and V = 0 for
t < 0 and 1 mm/s for t � 0. Initial conditions: X (0) = 0, Y (0) = 0,
Ẋ (0) = εV , and Ẏ (0) = 0, where ε = 10–6. The blue circles are the
approximate solutions provided by equations in the text, where those
in (e) have been obtained by numerical integration of Eq. (13).

In the following, we focus only on the stick-to-slip transi-
tion, which is very similar for both types of friction law. As all
described features are also observed with constant friction, we
focus on this simple case to avoid unnecessary complications.
We discuss in more detail the main features of the observed
stick-to-slip transition: (a) dynamic stiction, (b) slow creep, (c)
high-frequency dynamics, and (d) low-frequency dynamics.

A. Dynamic stiction

From the results presented so far, we would like to draw
the following qualitative picture of dynamic stiction. Dynamic
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stiction starts with a jumplike rotation of the vector of friction
force to the direction almost perpendicular to the sliding direc-
tion [ψ = 90◦, see Fig. 4(b)] followed by a gradual decrease
to ψ = 0. This somewhat counterintuitive behavior arises due
to the strong anisotropy of the spring, which amplifies the
small projection of the spring elongation onto the y direction
to such a degree that it completely dominates the friction
force vector in the initial stage of dynamic stiction. During
subsequent pulling, the x component of the spring force con-
tinues to increase, but since the system is already sliding with
a very small velocity, the absolute value F = (Fx

2 + Fy
2)1/2

of the force vector remains constant and equal to F0 = μ0W
[Fig. 4(c)]. Thus, the perpendicular component of the friction
force, Fy = (F0

2–Fx
2)1/2, is decreasing, gradually approaching

zero [Fig. 4(b)]. The change in the pulling force can be sup-
ported by the rotation of the friction force vector only while
Fx � F0. As soon as the pulling force exceeds this critical
value, the quasistatic equilibrium breaks down, and the phase
of rapid slip starts.

Thus, even though the system is sliding the entire time,
the macroscopic dynamics is strongly reminiscent of classical
stick-slip.

B. Slow creep

Let us consider in more detail the stick phase (which in
reality is a phase of slow creep). The movement during this
stage is quasistatic, which means that the inertial terms can
be neglected. However, this is valid only for the movement
in the x direction. The high transverse stiffness ky guarantees
very small deflections uy. The velocity u̇y is not necessarily
small due to the high natural frequency in the y direction, but
it has zero average and can be set to zero while considering
the creep process. Thus, in the creep phase (and only for the
creeping part of the motion), we can neglect in Eqs. (4) and
(5) the terms with üx and u̇y. After some transformations, this
leads to

u̇x = V cos ϕ − kxux/F0√
1 − (kxux/F0)2

V sin ϕ. (8)

This is an ordinary differential equation of the first order,
which completely determines the dynamics of the degree of
freedom ux(t ). The coordinate X in the driving direction can
finally be found using Eq. (6). The resulting solutions al-
most exactly coincide with solutions of the complete dynamic
equations (4) and (5) shown in Fig. 5(a). One can see that at
small misalignment, the system shows almost perfect stick,
which rapidly becomes blurred when the misalignment angle
increases.

In the limiting case of very small misalignment angles,
Eq. (8) takes the form u̇x ≈ V with the solution ux = V t
(for V t < lx = F0/kx). Thus, the longitudinal and transverse
spring forces will be respectively equal to

kxux = kxV t for kxV t < F0 (9)

and

kyuy =
√

F 2
0 − (kxV t )2 for kxV t < F0. (10)

FIG. 5. Disappearance of dynamic stiction with large in-plane
misalignment. (a) Temporal changes in object position X for various
misalignment angles ϕ from 1° to 89°. (b) Trajectories of object
position in the XY plane. System parameters (except ϕ) and initial
conditions are the same as in Fig. 4.

The angle θ between the force and x direction is determined
by the equation cosθ = kxux/F0 = V t/lx or

θ = arccos

(
V t

lx

)
. (11)

For the angle ψ , we have

ψ = θ − ϕ. (12)

Dependencies described by Eqs. (9)–(11) with Eq. (12) are
shown in Fig. 4 with blue circles together with the numerical
result for ϕ = 1◦.

For the creep velocity, Eq. (8) with Eq. (7) yields

Ẋ ≈ V − u̇x ≈ V ϕ

[
ϕ + (V t/lx )2√

1 − (V t/lx )2

]
. (13)

This creep dependence is shown in the inset of Fig. 4(e)
together with results of full dynamic simulation. It contains
two contributions: One of the first order in pulling velocity
and of second order in misalignment angle, and a second
one that is linear in misalignment angle and second order
in the pulling velocity. The second term has a singularity of
the form [1–(V t/lx )2]–1/2 when approaching the moment of
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slip. Comparison with published measurements of creep [7]
seems to confirm the existence of these two contributions.
Our simulations suggest that the angle of misalignment is a
crucial parameter determining the creep rate. From Eq. (13),
one can estimate that the creep velocity achieves the order of
the pulling velocity when (V t–lx )/lx = (1/2)ϕ2. This quantity
characterizes the relative size of the “blurred region” com-
pared to the total time of stick. It is determined solely by the
misalignment angle.

Figure 5(b) shows the trajectory of the object during the
stick phase. It is seen that at a small misalignment angle of 1°,
the object starts moving in the direction perpendicular to the
pulling direction and achieves a saturation level, whose the-
oretical value is (F0/kx ) sinϕcosϕ (0.035 mm for the system
parameter used). During this process, the direction of sliding,
ψ , rotates from π/2–ϕ to 0.

C. High-frequency dynamics

At the beginning of the creep phase, V cos ϕ − u̇x ≈ 0.
Neglecting this term in Eq. (5) transforms this equation to

müy + kyuy + F0sgn(u̇y − V sin ϕ) = 0. (14)

The average value of displacement is easily found by set-
ting u̇y = 0 and üy = 0: ky〈uy〉 = F0, while the amplitude of
oscillations is determined by the nonlinear term F0sgn(u̇y −
V sin ϕ). Multiplying Eq. (14) with u̇y, we can rewrite it as
dE/dt + F0u̇ysgn(u̇y − V sin ϕ) = 0, where E is the energy of
the system. Averaging over one oscillation period yields

〈
dE

dt

〉
= −F0〈u̇ysgn(u̇y − V sin ϕ)〉. (15)

The result is negative if the amplitude of oscillation, ˙̄uy, is
larger than V sinϕ and becomes zero when it is equal to V sinϕ.
After that, the system shows undamped oscillations with the
constant amplitude

˙̄uy = V sin ϕ (16)

and frequency ωy = (ky/m)1/2. The oscillation amplitude is
equal to the y component of the drive velocity. Note that in the
case of friction with a constant magnitude, this is the upper
bound of the oscillation amplitude. In the further course of
creep, Eq. (14) is not strictly valid, and some damping appears
so that finally the oscillations die out (see a more detailed anal-
ysis of damping in Sec. V). In the case of velocity-weakening
friction, oscillations of small amplitude are amplified until
they reach the value of Eq. (16), which in this case has the
meaning of amplitude of stable limiting cycle. The above-
stated difference between constant and velocity-weakening
friction can be seen by comparison of Fig. 2(b) and Fig. 4(b).

D. Low-frequency dynamics

Let us now consider oscillations in the longitudinal direc-
tion (along the x axis) in the slip phase. In the full dynamic
equation (4), we can now neglect u̇y as a small variable and

FIG. 6. Suppression of low-frequency oscillations and enhance-
ment of high-frequency oscillations by increasing in-plane misalign-
ment. (a) Spring elongation rates vx (= u̇x ). (b) Spring elongation
rate vy (= u̇y ). (c) Direction of friction force θ (= ψ + ϕ). Red and
blue lines are numerical results for ϕ = 1◦ and 10°, respectively.
System parameters (except ϕ) and initial conditions are the same as
in Figs. 4 and 5.

consider the Taylor series expansion up to the first order in u̇x:

üx + 2δu̇x + ω2
x ux = 0 (17)

with ωx = (kx/m)1/2 and δ = F0sin2ϕ/2mV . This equation
describes oscillation with frequency (ωx

2–δ2)1/2 and exponen-
tially decreasing amplitude, exp(–δt ). The condition for an
overdamped system reads δ > ωx or F0 sin2ϕ/2V (mkx )1/2 >

1. For the system parameters described in the caption of Fig. 4,
this means ϕ > 7.2◦.

In Fig. 6(a), one can see slowly attenuating oscillations at
ϕ = 1◦ (red curve) and overdamped motion without oscilla-
tions at ϕ = 10◦. In other words, large misalignment angles
suppress friction-induced oscillations in the pulling direction
[26,27]. At the same time, they can facilitate oscillations in
the transverse direction as can be seen in Fig. 6(b). A detailed
stability analysis is carried out in Sec. V.

Note that the rotation of the friction force vector is a
common feature characteristic for both small and large mis-
alignments [Fig. 6(c)].

V. STABILITY ANALYSIS

To obtain a general view of the dynamic properties of the
considered system, let us undertake a linear stability analy-
sis. We consider the stability of the state u̇y = 0 (where the
average velocity u̇x may vary significantly, but very slowly).
Equations for small deviations ũx and ũy can be obtained by
expanding the equations of motion (4) and (5) up to the terms

063001-6



DYNAMIC STICTION WITHOUT STATIC FRICTION: … PHYSICAL REVIEW E 102, 063001 (2020)

of the first order in perturbations of displacement, velocity,
and acceleration and setting u̇y = 0:

¨̃ux + ω2
x ũx + α ˙̃ux sin3θ − α ˙̃uy sin2 θ cos θ = 0, (18)

¨̃uy + ω2
y ũy − α ˙̃ux sin2θ cos θ + α ˙̃uy sin θ cos2 θ = 0, (19)

with

α = F0

mV sin ϕ
. (20)

Searching for a solution of the form ũx, ũy ∝ exp(λt ), we find
for λ the following characteristic equation:

λ4 + λ3α sin θ + λ2
(
ω2

x + ω2
y

)
+ λα

[(
ω2

x − ω2
y

)
sin θcos2θ + ω2

y sin θ
] = 0. (21)

Assuming λ1 ≈ −iωx − �x and λ2 ≈ −iωy − �y and substi-
tuting both into Eq. (21), we find for small attenuation

�x = α

2
sin3θ, �y = α

2
sin θcos2θ. (22)

The oscillations in the x and y directions become overdamped
when the damping factors ζx and ζy exceed unity:

ζx = �x

ωx
= 
xsin3θ > 1, ζy = �y

ωy
= 
y sin θcos2θ > 1,

(23)

where


x = μ0W

2V sin ϕ
√

mkx
,
y = μ0W

2V sin ϕ
√

mky
. (24)

Note that 
x and 
y are dimensionless parameters determined
by system parameters.

Consider first the dynamic properties in the longitudinal
direction. They are determined by the factor ζx = 
xsin3θ .
This dependency is demonstrated by the damping diagram,
Fig. 7(a). During the stick phase, the angle θ of the friction
force vector slowly changes from 90° to ϕ. Depending on the
combination of 
x and ϕ, the system in the “overdamping”
region can either reach the “underdamping” region or not.
For the red line in Fig. 7(a) (i.e., 
x = 3.6 × 103 and ϕ =
1◦), the factor is initially quite high (ζx = 
x = 3.6 × 103:
overdamping) and drops toward a low value (ζx = 
xsin3ϕ =
1.9 × 10–2: underdamping), across the green line (ζx = 1:
critical damping) in the vicinity of the stick-to-slip transition.
This overdamping-to-underdamping transition causes free os-
cillations of low frequency after stick-to-slip transition [see
the red line in Fig. 6(a)]. For the blue line in Fig. 7(a) (i.e.,

x = 3.6 × 102 and ϕ = 10◦), on the other hand, the factor
that is always larger than unity makes the system stay in the
overdamping region, which in terms of results, suppresses
the free oscillations of low frequency [see the blue line in
Fig. 6(a)]. Thus, the factor ζx, determined by 
x and θ , could
be used for dynamic probing of the approaching moment of
bulk slip.

Similarly, the dynamic properties in the transverse direc-
tion are determined by the factor ζy = 
ysinθcos2θ . The
corresponding damping diagram is presented in Fig. 7(b). One

FIG. 7. Damping diagrams. (a) The contour map of damping
factor ζx (= 
xsin3θ ) in the x direction. (b) The contour map of
damping factor ζy (= 
ysinθcos2θ ) in the y direction. Green lines
denote the critical damping [i.e., ζx = 1 and ζy = 1 in Figs. 7(a) and
7(b), respectively]. Red and blue lines are trajectories for ϕ = 1◦ and
10 °, respectively, under the conditions of Fig. 6.

can see that in this case, increasing the misalignment angle
tends to transfer the system into the underdamping region,
thus facilitating oscillations of high frequency. An example
of such a transition is illustrated in Fig. 6(b).

VI. CONCLUSIONS

We studied the dynamics of a simple mass-spring system,
which can be considered representative of typical setups for
measuring the force of friction. This or similar experimental
configurations were used over centuries starting with the fa-
mous tribometer of Coulomb [28] and up to now [29]. For
example, the very much cited stick-slip curves reproduced in
[30] were obtained on a tribometer using a leaf spring for load-
ing in the sliding direction [31]. All these tribometers have a
common structure: A mass, a spring with low stiffness in the
sliding direction and high stiffness perpendicular to the sliding
direction, a frictional contact, and a pulling mechanism. The
behavior of the system is as usual as the system itself: When
being slowly pulled, the object first appears to stick and then
starts macroscopic sliding.

Analysis of the system is traditionally confined to a single
degree of freedom: the movement in the pulling direction [32].
It is easy to intuitively reject the transverse degree of freedom
as irrelevant, since the system is “guided,” with the very high
transverse stiffness preventing any noticeable movement in
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this direction. Also, any potential misalignment between the
pulling direction and the direction of the principal axis of
the stiffness tensor is never measured or reported, as it is
considered to be small and not likely to be significant.

However, upon closer examination, this logic appears to
be faulty. High transverse stiffness in combination with small
misalignment leads to the immediate start of sliding in the
direction almost perpendicular to the pulling direction. The
friction force at the beginning of the pulling process is con-
sequently not zero, as normally assumed, but equal to the
friction force in sliding at small velocities. Besides, it is
directed not oppositely to the pulling direction but perpendic-
ularly to it! Simulations show that the object is creeping all
the time and that the apparent stick is due to the rotation of
the friction force vector.

This interpretation of the apparent stick changes necessar-
ily also the view on slow creep. The rotation of the friction
force vector leads to a particular shape of the accelerated creep
and reveals the misalignment angle as its main influencing
parameter.

Numerical simulations show an additional unexpected
phenomenon—high-frequency oscillations perpendicular to

the pulling direction in the stick phase, as well as longitudinal
oscillations with much lower frequency in the slip phase.

The results offer a possible different view on static fric-
tion, slow creep, stick-to-slip transition, and the nature of
high-frequency oscillations in sliding systems. Clearly, this
is not the only possible mechanism of stick-to-slip transition,
as its prerequisite is a high stiffness anisotropy. The present
mechanism also does not include (at least so far) the kinetics
of friction, as described by the Dieterich-Ruina law.

While being completely aware that the demonstrated
mechanism of stick-to-slip transition does not exhaust all
possible mechanisms of the stick-slip phenomena, we would
like to draw the attention of researchers and engineers to the
fact that the well-known and much-debated properties of the
transition from stick to slip, including slow creep, may have a
completely different—and much simpler—purely mechanical
origin.
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