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Static interface profiles for contact lines on an elastic membrane with the Willmore energy
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We consider a fluid interface in contact with an elastic membrane and study the static profiles of the interface
and the membrane. Equilibrium conditions are derived by minimizing the total energy of the system with volume
constraints. The total energy consists of surface energies and the Willmore energy; the latter penalizes the
bending of the membrane. It is found that, while the membrane is locally flat at the contact line with the contact
angle satisfying the Young-Dupré equation, the gradient of the mean curvature of the membrane exhibits a jump
across the contact line. This jump balances the surface tension of the fluid interface in the normal direction
of the membrane. Asymptotic solutions are obtained for two-dimensional systems in the limits as the reduced
bending modulus ν tends to +∞ and 0, respectively. In the stiff limit as ν → +∞, the leading-order solution is
given by that of a droplet sitting on a rigid substrate with the contact angle satisfying the Young-Dupré equation;
in contrast, in the soft limit as ν → 0, a transition layer appears near the contact line and the interfaces have
constant curvatures in the outer region with apparent contact angles obeying Neumann’s law. These solutions are
validated by numerical experiments.
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I. INTRODUCTION

We consider a system consisting of two immiscible fluids
in contact with a substrate. A liquid droplet sitting on a sub-
strate is such an example. Three interfaces are present in the
system: one between the two fluids and the other two between
the fluids and the solid. The line where the three interfaces
meet is called the contact line.

The static profiles of the interfaces can be obtained by min-
imizing the total energy of the system. Consider for example
the energy due to surface tensions only,

F =
3∑

i=1

γi|�i|, (1)

where �i (i = 1, 2) are the interfaces between the fluids and
the substrate, �3 is the interface between the two fluids,
γi (i = 1, 2, 3) are the interfacial tension coefficients, and
|�i| (i = 1, 2, 3) denote the areas of the interfaces. We distin-
guish two cases: a rigid substrate and a soft substrate. In the
case of rigid substrate, the minimization of the energy (1) with
the constant volume constraint for the droplet yields a con-
stant curvature for the droplet surface and the Young-Dupré
equation for the contact angle [1]:

γ3 cos θY = γ2 − γ1, (2)
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where θY is the angle between the fluid interface and the
substrate. This equation is simply the force balance in the tan-
gential direction of the substrate. When the substrate is soft,
its deformation has to be taken into account, so the energy (1)
is minimized with respect to the three interfaces with volume
constraints. This yields constant curvatures for the interfaces
and a cusplike structure for the substrate at the contact line
with the contact angles satisfying Neumann’s law [2]:

sin θ12

γ3
= sin θ23

γ1
= sin θ31

γ2
, (3)

where θi j is the contact angle between the interfaces �i and
� j . Neumann’s law describes the force balances in both the
tangential and normal directions to the substrate.

Contact lines on deformable substrates have attracted much
attention in recent years [3–15]. These works revealed very
interesting phenomena, for example, the formation of cusps
at the contact line, the stick-slip motion of the contact line,
etc. In this work, we consider contact lines on an elastic mem-
brane and study the static profiles of the interfaces. Elastic
membranes are widely used in modeling vesicles [16–25] and
in the study of fluid-structure interactions in fluid dynam-
ics [26,27]. Those earlier works focused on the interaction of
a membrane with a single-phase fluid. When a membrane is
in contact with two-phase fluids, it is deformed at the contact
line where the fluid interface intersects the membrane. We are
particularly interested in the local profiles of the fluid interface
and the membrane near the contact line.

The total energy of the system consists of the surface
energies as discussed above, and also a contribution from the
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FIG. 1. Left panel: Setup of the system consisting of a droplet on a membrane. Right panel: The three interfaces near the contact line.

Willmore bending energy on the membrane. Using calculus
of variation, we derive the equilibrium conditions for the
profiles of the interfaces. The cusp structure of the membrane
mentioned above is regularized by the Willmore energy, so the
membrane is locally flat at the contact line. The Young-Dupré
equation, which describes the tangential force balance at the
contact line, still holds for the contact angle. However, the
gradient of the mean curvature of the membrane exhibits a
jump across the contact line. This produces a force which
balances the surface tension of the fluid interface in the normal
direction of the membrane at the contact line.

The strength of the bending energy is characterized by
a parameter called the bending modulus. We compute the
asymptotic solutions for the interface profiles in the limits
as the reduced bending modulus tends to +∞ and 0. The
former corresponds to a stiff membrane, and the latter cor-
responds to a soft membrane. In the stiff limit, the regular
perturbation applies and the leading-order solution is that
of a spherical droplet sitting on a rigid substrate, with the
contact angle satisfying the Young-Dupré equation. In the
soft limit, however, a transition layer appears near the contact
line. Using matched asymptotic analysis, we find that, though
the microscopic contact angle in the inner region satisfies the
Young-Dupré equation, the apparent contact angles between
the three interfaces in the outer region obey Neumann’s law.

We also propose a finite-difference numerical method to
compute the static interface profiles. The governing equations
are highly nonlinear, so we use a gradient flow to evolve
the system and compute the steady-state solution which gives
the static interface profiles. A semi-implicit scheme is used for
the temporal discretization to improve the numerical stability.
We find that the numerical results for the interface profiles
and the apparent contact angles agree very well with the
asymptotic solutions.

The paper is organized as follows. In Sec. II, we present
the total energy of the system and derive the governing equa-
tions for the interfaces and the conditions at the contact line.
Sections III and IV are devoted to the asymptotic analysis of
the mathematical model in the limits as the reduced bending
modulus tends to +∞ and 0, respectively. In Sec. V, we
propose the semi-implicit finite difference numerical method
and present numerical results. The paper is concluded in
Sec. VI. Details for the calculus of variation employed in
the derivation of the governing equations are provided in the
Appendices.

II. GOVERNING EQUATIONS

We consider a droplet sitting on an elastic membrane, as
shown in Fig. 1 (left panel). The membrane is denoted by �,
which consists of �1, �2, and the contact line �. The droplet
surface is denoted by �3. The whole system is confined in a
rigid box, where the membrane meets with the vertical side
walls of the box at the lines denoted by ∂�. We use 	1

and 	2 to denote the the domain occupied by the droplet
and the domain outside the droplet, respectively. We assume
the volumes 	1 and 	2 are both conserved. The unit normal
vectors to �i (i = 1, 2, 3) are denoted by n, where it points
outside the domain 	1 ∪ 	2 on the membrane and points from
	1 to 	2 on the droplet surface. The unit normal vector to the
wall is denoted by nw.

The energy of the system is given by

F =
3∑

i=1

∫
�i

γidA + cb

2

∫
�

H2dA. (4)

The first term on the right-hand side of the above equation
represents the interfacial energies, with γi (i = 1, 2, 3) being
the interfacial tension coefficient on the respective interface.
The second term, which is known as the Willmore energy,
models the bending energy of the membrane, with cb being
the bending modulus and H the mean curvature of �.

This term is also named the Helfrich energy [28] and is
widely used in modeling vesicle dynamics in fluids. Since our
focus is on the interface profiles near the contact line �, for
simplicity we have assumed that the interfacial energies be-
tween the wall and the fluids above and below the membrane
are the same, so they did not appear in (4).

The static profiles of the droplet and the membrane are
obtained by minimizing the total energy, under the constraints
that the volumes of 	1 and 	2 are conserved,∫

	i

dx = Vi, i = 1, 2. (5)

Introducing the Lagrange multipliers λ1 and λ2 for the two
constraints respectively, we write the Lagrangian as

L = F − λ1

(∫
	1

dx − V1

)
− λ2

(∫
	2

dx − V2

)
. (6)

We parametrize the membrane as q(s1, s2) with (s1, s2) ∈ Dm

and the droplet surface as r(s1, s2) with (s1, s2) ∈ Ds, where
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q and r are the position vectors. We assume that the function
q is smooth everywhere except that, across the contact line,
it is only assumed to be continuously differentiable. Thus the
normal and tangent vectors of the membrane are continuous
across the contact line. We further assume that the contact line
is a smooth curve. At the contact line �, the droplet surface
meets with the membrane, so we have q = r. The variations
of the membrane and the droplet are denoted by δq and δr
respectively, where

δq = δr on � (7)

and

δq · nw = 0 on ∂�. (8)

The first condition ensures the interfaces �3 and � meet at the
contact line, and the second condition implies the membrane
cannot penetrate into the wall.

The resulting variation of the Lagrangian is calculated as
follows. Details of the derivation are provided in Appendix A.
First, the variations of the volumes of 	1 and 	2 are given by
the sum of two surface integrals,

δ

∫
	1

dx =
∫

�1

δq · n dA +
∫

�3

δr · n dA, (9a)

δ

∫
	2

dx =
∫

�2

δq · n dA −
∫

�3

δr · n dA, (9b)

where dA is the differential of surface area. The variation of
the area of �1 is given by the sum of a line integral and a

surface integral,

δ

∫
�1

dA =
∫

�

δq · m1dl +
∫

�1

δq · (2Hn)dA, (10)

where m1 is the unit conormal vector to �1 at the contact line
(see the right panel of Fig. 1), and dl is the differential of
arclength. Similar results hold for the variations of the areas
of �2 and �3:

δ

∫
�2

dA =
∫

�

δq · m2dl +
∫

∂�

δq · mwdl

+
∫

�2

δq · (2Hn)dA, (11a)

δ

∫
�3

dA =
∫

�

δr · m3dl −
∫

�3

δr · (2Hn)dA, (11b)

where m2 = −m1 and m3 are the unit conormal vectors to
�2 and �3 at the contact line, respectively; mw is the unit
conormal vector to �2 at the boundary ∂�. H in the above
equations is the mean curvature of the interfaces, defined as

H =
{ 1

2∇s · n on �1, �2,

− 1
2∇s · n on �3,

(12)

where ∇s is the surface gradient operator and the negative sign
is due to the fact that n points upwards on �3.

Next, we consider the variation of the Willmore energy on
�. We compute the variation on �1 and �2 separately. First
on �1 we have

δ

∫
�1

cb

2
H2dA = cb

∫
�1

(−δq · n)

(
1

2
�sH + H (H2 − K )

)
dA

+ cb

2

∫
�

[−Hm1 · ∇s(δq · n) + (δq · n)(m1 · ∇sH ) + H2δq · m1]dl, (13)

where K is the Gaussian curvature and �s is the Laplace-Beltrami operator. It should be noted that the expression in the integral
along the contact line should be interpreted as the directional limit approaching � from �1. A similar result can be obtained for
the variation on �2,

δ

∫
�2

cb

2
H2dA = cb

∫
�2

(−δq · n)

(
1

2
�sH + H (H2 − K )

)
dA

+ cb

2

∫
�

[−Hm2 · ∇s(δq · n) + (δq · n)(m2 · ∇sH ) + H2δq · m2]dl

+ cb

2

∫
∂�

[−Hmw · ∇s(δq · n) + (δq · n)(mw · ∇sH ) + H2δq · mw]dl, (14)

where the expressions in the line integrals are the directional limits approaching the lines from �2.
Combining these results and using the conditions δq = δr and m1 = −m2 at the contact line �, we obtain

δL =
2∑

i=1

∫
�i

(δq · n)

[
2γiH − cb

(
1

2
�sH + H (H2 − K )

)
− λi

]
dA

+
∫

�3

(δr · n)(−2γ3H + λ2 − λ1)dA

+
∫

�

[
δq · (γ1m1 + γ2m2 + γ3m3) + cb

2

(−m1 · [H∇s(δq · n)]1
2 + (δq · n)m1 · [∇sH]1

2

)]
dl

+
∫

∂�

(
γ2δq · mw + cb

2
[−Hmw · ∇s(δq · n) + (δq · n)(mw · ∇sH ) + H2δq · mw]

)
dl, (15)
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where [·]1
2 denotes the jump across the contact line from �2

to �1.
The governing equations for the static configuration of the

system are obtained using the fact that the first variation of L
has to vanish at the equilibrium state. Specifically, on �i (i =
1, 2) we have

2γiH − cb

(
1

2
�sH + H (H2− K )

)
− λi = 0 on �i(i= 1, 2),

(16)

where the second term is the bending force resulting from the
Willmore free energy, and the Lagrange multipliers λi can be
interpreted as the pressure in 	i. On the droplet surface, we
have

−2γ3H + λ2 − λ1 = 0 on �3. (17)

At the contact line �, δq and ∇sδq are both arbitrary. This
yields the following conditions at �:

cb

2
[H]1

2 = 0 (18)

and

γ1m1 + γ2m2 + γ3m3 + cb

2
m1 · [∇sH]1

2n|� = 0, (19)

where n|� denotes the normal vector of the membrane � at
the contact line. On the boundary ∂�, using the condition δq ·
nw = 0 and the fact that both δq and ∇sδq are arbitrary, we
obtain

cb

2
H = 0 (20)

and

Pw

(
γ2mw + cb

2
(mw · ∇sH )n

)
= 0, (21)

where Pw = I − nw ⊗ nw is the projection operator onto the
wall.

Equations (16)–(21) form the governing equations for the
static profiles of the membrane and the droplet surface. Note
that in the absence of the bending energy, i.e., when cb = 0,
the droplet surface and the membrane have constant curva-
tures and thus assume spherical shapes, and the contact angles
satisfy Neumann’s law: γ1m1 + γ2m2 + γ3m3 = 0.

In the two-dimensional (2D) case, the membrane and the
droplet surface are represented by curves. We parametrize the
curves as q(s) and r(s), respectively. Denote the curvature
of the curves by κ: κ = ∇s · n on �1 and �2, κ = −∇s · n
on �3, where the different signs are due to the fact that
the unit normal vector points downward on the membrane
and upward on the droplet surface. Then, from the total
energy

F2 =
3∑

i=1

∫
�i

γidl + cb

2

∫
�

κ2dl, (22)

we can derive the governing equations for the static profiles
of the interfaces following the same procedure as in the above

three-dimensional (3D) case. These equations read

γiκ − cb

(
�sκ+ 1

2
κ3

)
− λi = 0 on �i (i = 1, 2), (23a)

−γ3κ + λ2 − λ1 = 0 on �3, (23b)

[κ]1
2 = 0,

γ3m3 − (γ2 − γ1)m1 + cb
(
m1 · [∇sκ]1

2

)
n|� = 0 on �,

(23c)

κ = 0, γ2 cos θw + cb(mw · ∇sκ ) sin θw = 0 on ∂�,

(23d)

where θw ∈ [0, π ] is the angle measured from the downward
tangent vector of the wall to the conormal vector of the mem-
brane mw, as depicted in Fig. 1.

From the contact line condition (23c), we see that the
Young-Dupré equation γ3 cos θY = γ2 − γ1 still holds in
the conormal direction of the membrane m1, where θY =
cos−1(m3 · m1) is the contact angle between m3 and m1. In
addition, we have γ3 sin θY = −cb(m1 · [∇sκi]1

2) in the normal
direction n, which states that the surface tension force in the
normal direction is balanced by the force resulting from the
jump of ∇sκ across the contact line.

We next analyze the interface profiles based on the govern-
ing equations derived above. We first consider the 2D model
and study its asymptotic limits when the reduced bending
modulus tends to +∞ and 0, respectively. Then we consider
the 3D model in the axisymmetric case and show that the
asymptotic results derived for the 2D model also hold in three
dimensions.

III. ASYMPTOTIC ANALYSIS FOR
THE TWO-DIMENSIONAL MODEL

In this section, we perform asymptotic analysis for the 2D
model (23a)–(23d). We first make these equations dimension-
less by rescaling the variables and parameters as

s̃ = s/L, q̃ = q/L, r̃ = r/L, κ̃ = Lκ,

γ̃i = γi/γ3, λ̃i = λiL/γ3, ν = cb/(L2γ3),

where we have used the size of the box L as the characteris-
tic length. Then equations (23a)–(23d) become (omitting the
overhead tildes)

γiκ − ν

(
�sκ + 1

2
κ3

)
− λi = 0 on �i (i = 1, 2), (24a)

−γ3κ + λ2 − λ1 = 0 on �3, (24b)

[κ]1
2 = 0,

−γ3t3 + (γ2 − γ1)t1 − ν
(
t1 · [∇sκ]1

2

)
n|� = 0 on �,

(24c)

κ = 0, γ2 cos θw + ν(t2 · ∇sκ ) sin θw = 0 on ∂�,

(24d)

where we have introduced ti (i = 1, 2, 3), the unit tangent
vectors along the interfaces which point away from the contact
line � and satisfy ti = −mi at the contact line.
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Next, we consider two limiting cases: (i) ν � 1, i.e.,
cb/γ3 � L2, for a stiff membrane; and (ii) ν 	 1, i.e.,
cb/γ3 	 L2, for a soft membrane. We will show that in the
first case the leading-order solution corresponds to a circular
interface on a flat membrane with the contact angle satisfy-
ing the conventional Young-Dupré equation; any deviation
from this configuration is a regular perturbation effect. In the
second case, a two-scale structure emerges near the contact
line. The leading-order solution is obtained by matching the
interface profiles in the inner and outer regions. In particular,
we show that the three apparent contact angles which are
defined in the outer region obey Neumann’s law.

A. Stiff membrane

We first consider the case where ν � 1. Let ε = 1
ν

be
the small parameter in the problem. We expand the unknown
quantities in powers of ε as

q = q0 + εq1 + · · · , r = r0 + εr1 + · · · ,

λi = λi,0 + ελi,1 + · · · . (25)

The tangent and normal vectors, the curvatures, and the sur-
face gradient operator are expanded accordingly as

ti =ti,0 + εti,1 + · · · , n = n0 + εn1 + · · · ,

κ =κ0 + εκ1 + · · · , ∇s = ∇s,0 + ε∇s,1 + · · · . (26)

Substituting these expansions into the above system of equa-
tions, we obtain on the leading order O(1) that

�s,0κ0 + 1
2κ3

0 = 0 on �i,0 (i = 1, 2), (27a)

−γ3κ0 + λ2,0 − λ1,0 = 0 on �3,0, (27b)

[κ0]1
2 = 0, t1,0 · [∇s,0κ0]1

2 = 0, on �0, (27c)

κ0 = 0, t2,0 · ∇s,0κ0 = 0 on ∂�0, (27d)

where �s,0 = ∇s,0 · ∇s,0 is the leading-order Laplace-
Beltrami operator.

It is easy to see that a solution is given by

κ0 = 0 on �1,0, �2,0; κ0 = λ2,0 − λ1,0

γ3
on �3,0. (28)

This solution corresponds to a flat membrane and a circular
droplet surface with a constant curvature which is determined
by the two volume constraints. The complete profile of the
droplet is yet to be determined, as the contact angle has to be
obtained by considering the O(ε) problem.

On the order O(ε), we have

�s,0κ1 + 1
2κ3

1 + λi,0 = 0 on �i,0, (i = 1, 2), (29a)

−γ3κ1 + λ2,1 − λ1,1 = 0 on �3,0, (29b)

[κ1]1
2 = 0,

−γ3t3,0+ (γ2− γ1)t1,0−
(
t1,0 · [∇s,0κ1]1

2

)
n0|� = 0 on �0,

(29c)

κ1 = 0, γ2 cos θw,0+ (t2,0 · ∇s,0κ1) sin θw,0 = 0 on ∂�0.

(29d)

From the tangential component of the second equation
in (29c), we obtain the Young-Dupré equation for the contact

angle:

γ3 cos θY,0 = γ2 − γ1, (30)

where θY,0 = cos−1 (t3,0 · t1,0) is the angle between the
leading-order droplet surface and the flat membrane. Together
with (30) and the volume constraints, Eq. (28) determines the
leading-order profile of the droplet surface.

B. Soft membrane

Next we consider the other limiting case: ν 	 1 for a soft
membrane. In this case, an interior layer appears along the
membrane near the contact line. We assume that the size of
this inner region is ξ 	 1. We perform the outer and inner ex-
pansions separately, then match the two solutions to determine
the complete profile of the interfaces.

Outer solution. In the outer region away from the con-
tact line, we use the same expansions as in (25) and (26)
but with ε replaced by ν. Substituting the expansions into
Eqs. (24a), (24b) and (24d), we obtain on the leading order
O(1) that

γiκ0 − λi,0 = 0 on �i,0 (i = 1, 2), (31a)

−γ3κ0 + λ2,0 − λ1,0 = 0 on �3,0, (31b)

κ0 = 0, cos θw,0 = 0 on ∂�0. (31c)

This yields the constant-curvature solution

κ0 = λ1,0

γ1
on �1,0; κ0 = λ2,0 = 0 on �2,0;

κ0 = −λ1,0

γ3
on �3,0. (32)

Together with the boundary condition θw,0 = π
2 , we obtain

that the interface �2,0 in the outer region is part of a horizontal
line perpendicular to the vertical wall. The interfaces �1,0 and
�3,0 are circular arcs. The configuration is shown in the left
panel of Fig. 2.

Also shown in the figure are the angles between the
leading-order interfaces in the outer region, denoted by θ12,
θ23, and θ31 respectively. These are the apparent contact an-
gles, and will be determined by matching with the inner
solution.

Inner solution. We focus on the inner region near the left
contact line. We rescale the spatial variables by ξ and define
the inner variables as

s̄ = s − sl

ξ
, q̄ = q − ql

ξ
, r̄ = r − rl

ξ
,

κ̄ = ξκ, λ̄i = λi,

where ql = rl is the position of the contact line, and sl is the
parameter value at the contact line. Making the transforma-
tions in Eqs. (24a)–(24c) and using dominant balance, we
obtain ξ = ν1/2. This states that, near the contact line, the
forces due to the surface tension and the bending energy are
the dominant terms in the equations.
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FIG. 2. Sketch of the solutions in the outer (left panel) and inner (right panel) regions. The red and black curves represent the droplet and
the membrane surfaces respectively. Left panel: The radii of the leading-order surfaces �1,0 and �3,0 are given by R1 = γ1

λ1,0
and R3 = − γ3

λ1,0
,

respectively. Right panel: The contact point locates at s̄ = 0, and the apparent contact angles are defined as the angles between the asymptotes
of the inner solution as s̄ → ±∞.

Then we expand the inner variables in ν as

q̄ = q̄0 + ν1/2q̄1 + · · · , r̄ = r̄0 + ν1/2r̄1 + · · · ,

λ̄i = λ̄i,0 + ν1/2λ̄i,1 + · · · . (33)

The tangent and normal vectors, the curvature, and the surface
gradient operator are expanded accordingly as

t̄i = t̄i,0 + ν1/2 t̄i,1 + · · · , n̄ = n̄0 + ν1/2n̄1 + · · · ,

κ̄ = κ̄0 + ν1/2κ̄1 + · · · , ∇̄s = ∇̄s,0 + ν1/2∇̄s,1 + · · · ,

(34)

where ∇̄s is the surface gradient operator with respect to the
rescaled parameter s̄.

Using these expansions, we obtain on the leading order
O(1) that

γiκ̄0 − (
�̄s,0κ̄0 + 1

2 κ̄3
0

) = 0 on �̄i,0 (i = 1, 2), (35a)

−γ3κ̄0 = 0 on �̄3,0, (35b)

[κ̄0]1
2 = 0,

−γ3t̄3,0+ (γ2− γ1)t̄1,0−
(
t̄1,0 · [∇̄s,0κ̄0]1

2

)
n̄0|� = 0 on �̄0.

(35c)

From (35b), we obtain κ̄0 = 0 on �̄3,0. Thus the leading-order
profile of the droplet surface is a straight line in the inner
region.

To solve (35a), we shall choose the arclength to
parametrize the membrane. Under this parametrization, the
Laplace-Beltrami operator takes the simple form �̄s,0 = d2

ds̄2 .
Multiplying both sides of the equation by d κ̄0

ds̄ followed by an
integration yields

1

2

(
d κ̄0

ds̄

)2

= −1

8
κ̄4

0 + 1

2
γiκ̄

2
0 + Di on �̄i,0 (i = 1, 2),

(36)

where D1 and D2 are the integration constants. For the inter-
face, in particular its slope, to asymptotically match between

the inner and outer regions, it is necessary that κ̄0 → 0 and
d κ̄0
ds̄ → 0 as s̄ → ±∞. This yields Di = 0 for i = 1, 2.

Equation (36) can be further integrated to give

κ̄0(s̄) = −
√

4γi sech[
√

γi(s̄ + Ci )] on �̄i,0 (i = 1, 2),
(37)

where sech(x) = 2
ex+e−x is the hyperbolic secant function, and

C1 and C2 are the integration constants. Here we have retained
the negative sign based on the observation that κ̄0(s̄) < 0 on
�̄i,0 (i = 1, 2) from the numerical results to be shown in the
next section. The constants Ci (i = 1, 2) are determined by
using the contact line conditions in (35c). Specifically, we
have

√
4γ1 sech(

√
γ1C1) =

√
4γ2 sech(

√
γ2C2) = C, (38a)

γ3 sin θY =
√

γ1C2 − 1

4
C4 +

√
γ2C2 − 1

4
C4, (38b)

t̄3,0 · t̄1,0 = cos θY , (38c)

where the first equation is from the continuity condition for
the curvature, and the last two equations are from the force
balance condition in (35c). In Eq. (38c), θY is the Young’s an-
gle defined in Eq. (2). Once θY is known, the constants C > 0,
C1 > 0, and C2 < 0 can be uniquely solved from the algebraic
equations (38a) and (38b). Here the sign of Ci (i = 1, 2) is
chosen based on the observations from the numerical results
that d κ̄0

ds̄ > 0 on �̄1,0 and d κ̄0
ds̄ < 0 on �̄2,0.

Once C1 and C2 have been determined, Eq. (37) can be
integrated again to give the interface profile in the inner re-
gion. To see this, we let t̄i,0 = ( cos θ̄i,0(s̄), sin θ̄i,0(s̄)), where
θ̄i,0(s̄) (i = 1, 2) are continuously differentiable and satisfy
θ̄2,0(0) = θ̄1,0(0) + π due to the assumption that the tangent
vectors point away from the contact line. Then (37) can be
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written as

d θ̄1,0

ds̄
= −

√
4γ1 sech[

√
γ1(s̄ + C1)] for s̄ > 0,

(39a)

d θ̄2,0

ds̄
= −

√
4γ2 sech[(

√
γ2(s̄ + C2)] for s̄ < 0.

(39b)

Integrating these equations from 0 to s̄ respectively yields

θ̄1,0(s̄) = θ0 − 2(tan−1{sinh[
√

γ1(s̄ + C1)]} − φ1),

s̄ > 0, (40a)

θ̄2,0(s̄) = θ0 + π − 2(tan−1{sinh[
√

γ2(s̄ + C2)]} − φ2),

s̄ < 0, (40b)

where θ0 = θ̄1,0(0), φ1 = tan−1 [sinh(
√

γ1C1)], and φ2 =
tan−1 [sinh(

√
γ2C2)].

Finally, the constant θ0 is determined by matching θ̄2,0(s̄)
with the outer solution on �2. We have found that the leading-
order outer solution for the membrane �2 is a straight line
with zero slope, thus lims̄→−∞ θ̄2,0(s̄) = π (mod 2π ). This
yields

θ0 = π − 2φ2. (41)

This completely determines the inner profiles for the
interfaces.

Apparent contact angles. The limiting angles of �̄1,0

and �̄2,0 as s̄ → ±∞ can be readily computed from (40a)
and (40b) respectively:

θ̄1,0(+∞) := lim
s̄→+∞ θ̄1,0(s̄) = 2φ1 − 2φ2, (42a)

θ̄2,0(−∞) := lim
s̄→−∞ θ̄2,0(s̄) = π. (42b)

In addition, since the leading-order profile of �̄3 is a
straight line, its angle is a constant and is given by

θ̄3,0 = θY + θ0 = θY + π − 2φ2. (43)

By the matching condition, these limiting angles agree with
the outer solutions (shown in the right panel of Fig. 2). Thus
the apparent contact angles defined in the outer region are
given by

θ12 = θ̄1,0(+∞) − θ̄2,0(−∞) = 2φ1 − 2φ2 − π, (44a)

θ23 = θ̄2,0(−∞) − θ̄3,0 = 2φ2 − θY , (44b)

θ31 = θ̄3,0 − θ̄1,0(+∞) = π + θY − 2φ1. (44c)

These angles satisfy Neumann’s law,

sin θ23

γ1
= sin θ31

γ2
= sin θ12

γ3
. (45)

This can be verified by straightforward algebraic calculations
using the trigonometric identities. First,

γ2 sin θ12 = −γ2

(
2 tan φ1

1 + tan2 φ1

1 − tan2 φ2

1 + tan2 φ2
− 2 tan φ2

1 + tan2 φ2

1 − tan2 φ1

1 + tan2 φ1

)

= − C2

4γ1
[(C2 − 2γ2) tan φ1 − (C2 − 2γ1) tan φ2], (46)

where we have used the facts that tan φ1 =
√

4γ1/C2 − 1 and tan φ2 = −
√

4γ2/C2 − 1 which follow from (38a). Similarly,

γ3 sin θ31 = −
(

C2

2
(tan φ1 − tan φ2)

1 − tan2 φ1

1 + tan2 φ1
− (γ2 − γ1)

2 tan φ1

1 + tan2 φ1

)

= − C2

4γ1
[(C2 − 2γ2) tan φ1 − (C2 − 2γ1) tan φ2], (47)

where we have used the fact that γ3 sin θY = C2

2 (tan φ1 − tan φ2), which follows from (38b). Therefore, γ2 sin θ12 = γ3 sin θ31.
By similar calculations, we can verify that γ1 sin θ12 = γ3 sin θ23. This proves that Neumann’s law holds for the three apparent
contact angles θ12, θ23, and θ31.

IV. ASYMPTOTIC ANALYSIS FOR THE
THREE-DIMENSIONAL AXISYMMETRIC MODEL

The asymptotic results obtained for the 2D model also
hold for 3D systems. We consider the axisymmetric case for
ease of presentation. Using the dimensionless variables and
parameters as defined in the 2D model, the dimensionless
model in 3D reads

2γiH − ν

(
1

2
�sH + H (H2 − K )

)
− λi = 0 on �i(i= 1, 2),

(48a)

−2γ3H + λ2 − λ1 = 0 on �3, (48b)

[H]1
2 = 0,

γ3m3 − (γ2 − γ1)m1 + ν

2

(
m1 · [∇sH]1

2

)
n|� = 0 on �,

(48c)

H = 0, γ2 cos θw + ν

2
(mw · ∇sH ) sin θw = 0 on ∂�.

(48d)

Since the membrane and the droplet are axisymmetric and
can be generated by the curve (r(s), z(s)) revolving about
the symmetry axis, they can be parametrized in the form
(r(s) cos θ, r(s) sin θ, z(s)) where s ∈ R and θ ∈ [0, 2π ] are
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parameters. In this parametrization, the contravariant basis
and the covariant basis are given by

ts = (r′ cos θ, r′ sin θ, z′), tθ = (−r sin θ, r cos θ, 0),

ts = 1

r′2 + z′2 (r′ cos θ, r′ sin θ, z′),

tθ =
(

−1

r
sin θ,

1

r
cos θ, 0

)
.

The mean curvature and the Gaussian curvature are given by

H = 1
2 (κr + κθ ), K = κrκθ , (49)

where κr and κθ are the two principal curvatures given by

κr = r′z′′ − r′′z′

(r′2 + z′2)3/2
, (50a)

κθ = z′

r(r′2 + z′2)1/2
. (50b)

The surface gradient and Laplacian operators are given by

∇s = ts ∂

∂s
+ tθ ∂

∂θ
, (51a)

�s = 1

r′2 + z′2
∂2

∂s2
− r′r′′ + z′z′′

(r′2 + z′2)2

∂

∂s

+ r′

r(r′2 + z′2)

∂

∂s
+ 1

r2

∂2

∂θ2
. (51b)

Now we consider asymptotic results of the system in the
stiff limit and the soft limit, respectively. In the case of a
stiff membrane with ν � 1, an analysis similar to that in the
2D case gives the leading order solution, which corresponds
to a planar membrane and a spherical cap configuration for
the droplet with the contact angle satisfying the Young-Dupré
equation.

In the case of a soft membrane, ν 	 1, the outer solution is
the same as that in 2D and corresponds to spherical shapes for
�1 and �3 and a planar surface perpendicular to the vertical
wall for �2. To find the inner solution, we rescale the spatial
variables by ν1/2 and define the inner variables as

s̄ = s − sl

ν1/2
, r̄ = r − rl

ν1/2
, z̄ = z − zl

ν1/2
,

where sl , rl , zl are values of s, r, and z at the contact line,
respectively. The mean and Gaussian curvatures transform to

H = 1
2 (ν−1/2κ̄r + κ̄θ ), K = ν−1/2κ̄r κ̄θ , (52)

where κ̄r and κ̄θ are given by

κ̄r = r̄′z̄′′ − r̄′′z̄′

(r̄′2 + z̄′2)3/2
, (53a)

κ̄θ = z̄′

(ν1/2r̄ + rl )(r̄′2 + z̄′2)1/2
. (53b)

The surface gradient and surface Laplacian transform to

∇s = ν−1/2∇̄a
s + ∇̄b

s , (54a)

�s = ν−1�̄a
s + ν−1/2�̄b

s + �̄c
s, (54b)

where

∇̄a
s = 1

r̄′2 + z̄′2 (r̄′ cos θ, r̄′ sin θ, z̄′)
∂

∂ s̄
,

∇̄b
s = 1

ν1/2r̄ + rl
(− sin θ, cos θ, 0)

∂

∂θ
,

�̄a
s = 1

r̄′2 + z̄′2
∂2

∂ s̄2
− r̄′r̄′′ + z̄′z̄′′

(r̄′2 + z̄′2)2

∂

∂ s̄
,

�̄b
s = r̄′

(ν1/2r̄ + rl )(r̄′2 + z̄′2)

∂

∂ s̄
,

�̄c
s = 1

(ν1/2r̄ + rl )2

∂2

∂θ2
.

Making these transformations in Eqs. (48a)–(48d), we obtain
the leading-order problem

4γiκ̄r,0 − (
�̄a

s,0κ̄r,0 + 1
2 κ̄3

r,0

) = 0 on �̄i,0(i = 1, 2),

(55a)

κ̄r,0 = 0 on �̄3,0, (55b)

[κ̄r,0]1
2 = 0,

4γ3m̄3,0 − 4(γ2 − γ1)m̄1,0

+ (
m̄1,0 · [∇̄a

s,0κ̄r,0
]1

2

)
n̄0|� = 0 on �̄0. (55c)

We notice that κ̄r,0 is the curvature of the generating curve
and �̄a

s,0 is the surface Laplacian along the curve. Therefore,
this leading-order inner problem is the same as the 2D prob-
lem (35a)–(35c), after replacing 4γi by γi. Thus, we have the
same inner solution as in the 2D problem. Together with the
same outer solutions, the asymptotic results obtained for the
2D problem also hold for the 3D problem. In particular, the
three apparent contact angles obey Neumann’s law.

V. NUMERICAL SOLUTIONS

In this section, we solve Eqs. (24a)–(24d) numerically by
means of gradient flow. The membrane � = �1 ∪ �2 ∪ �

evolves according to the normal velocity given by

vn = −γ κ + ν
(
�sκ + 1

2κ3
) + λ − γ3 sin θdδ(s − sl ), (56)

with the boundary condition (24d). Here, γ and λ are piece-
wise constant functions: γ = γ1χ1 + γ2χ2, λ = λ1χ1 + λ2χ2,
with χi being the characteristic function on �i (i = 1, 2);
δ(s − sl ) is the Dirac delta function concentrated at the con-
tact line, and θd = cos−1(t1 · t3) is the dynamic contact angle
between the droplet surface and the membrane. The contact
line moves along the membrane with the velocity

vl = γ3(cos θd − cos θY )t1, (57)

where θY is the static contact angle determined by the Young-
Dupré equation. In addition, the droplet is assumed to relax
infinitely fast, so (24b) is satisfied at any instant. The droplet
surface has a circular profile which can be uniquely deter-
mined by the contact line location and the volume constraint.
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It can be easily seen that, at the steady state when vn =
vl = 0, the solution satisfies the governing equations (24a)–
(24d). In particular, an integration of (56) over a control
volume with infinitesimal thickness across the contact line
yields

−γ3 sin θd + ν[∇sκ]1
2 · t1 = 0, (58)

which is the normal component of (24c) (the second equa-
tion). Equation (57) with vl = 0 is equivalent to the tangential
component of (24c) (the second equation).

A. Numerical methods

We parametrize the membrane as (x, y(x, t )), where
x ∈ Dm = [−1, 1]. The two contact points are located at
(xi

l , y(xi
l , t )), with the dynamic contact angles θ i

d (i = 1, 2).
Under this parametrization, the dynamic equations (56)–(57)
can be written as (up to a constant shift of the solution)

∂y

∂t
= 1

c
γ κ − ν

(
c
∂2κ

∂x2
− c3 ∂y

∂x

∂2y

∂x2

∂κ

∂x
+ 1

2c
κ3

)

+ γ3

2∑
i=1

sin θ i
dδ

(
x − xi

l

) − 1

c
ξ, x ∈ Dm (59)

dxi
l

dt
= γ3

(
cos θ i

d − cos θY
) · c|x=xi

l
, i = 1, 2 (60)

with

κ = c3 ∂2y

∂x2
, x ∈ Dm (61)

and the boundary conditions

κ = 0, γ2
∂y

∂x
− cν

∂κ

∂x
= 0 for x = ±1. (62)

Here, c = 1/

√
1 + ( ∂y

∂x )
2
, and

γ (x, t ) = γ1χ(x1
l ,x2

l )(x) + γ2χDm\(x1
l ,x2

l )(x),

ξ (x, t ) = (λ1 − λ2)χ(x1
l ,x

2
l )(x) = γ3

R
χ(x1

l ,x
2
l )(x),

where R is the radius of curvature of the droplet. The second
equality of the above equation follows from the assumption
that the droplet is at equilibrium at all times. Note that we need
to shift the solution y = y(x, t ) to meet the area constraint
of 	2.

We use a semi-implicit finite difference scheme to solve
the above system of equations. The spatial-temporal do-
main is discretized using a uniform mesh with −1 =
x0 < x1 < · · · < xn = 1 and 0 = t0 < t1 < · · · < tm < · · · ,
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FIG. 3. Interface profiles for the hydrophilic case with θY = π/3 and different values of ν: ν = 100 (upper left), ν = 1 (upper right),
ν = 10−2 (lower left), and ν = 10−4 (lower right). The insets show the interface profiles near the contact line where the contact angle θY = π/3
can be observed.
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where x j+1 − x j = h = 2/n and tm+1 − tm = �t . Denote by ym
j , κm

j , xm
l,i and θm

d,i (i = 1, 2) the numerical approximations to
y(x j, tm), κ (x j, tm), xi

l (tm), θ i
d (tm), respectively. The finite-difference discretization of (59)–(62) reads

ym+1
j − ym

j

�t
= 1

cm
j

γ m
j κm+1

j − ν

(
cm

j D2
xκ

m+1
j − (

cm
j

)3
Dxym

j D2
xym

j Dxκ
m+1
j + 1

2cm
j

(
κm

j

)2
κm+1

j

)

+ γ3

2∑
i=1

sin θm
d,iδh

(
x j − xm

l,i

) − 1

cm
j

ξm
j , j = 0, 1, . . . , n, (63a)

xm+1
l,i − xm

l,i

�t
= γ3

(
cos θm

d,i − cos θY
) · c|x=xm

l,i
, i = 1, 2 (63b)

κm+1
j = (

cm
j

)3
D2

xym+1
j , j = 0, 1, . . . , n (63c)

κm+1
j = 0, γ2Dxym+1

j − cm
j νDxκ

m+1
j = 0, j = 0, n, (63d)

where m = 0, 1, . . . , γ m
j = γ (x j, tm), ξm

j = ξ (x j, tm), cm
j =

1/

√
1 + (Dxym

j )
2
, Dx and D2

x are the standard centered finite
difference operators,

Dxy j = y j+1 − y j−1

2h
, D2

xy j = y j+1 − 2y j + y j−1

h2
,

and similarly for Dxκ j and D2
xκ j . The Dirac delta function and

the characteristic functions are smoothed out to the neighbor-
ing grid points.

Equations (63a), (63c), and (63d) form a linear system for
{ym+1

j , κm+1
j : j = −1, 0, . . . , n + 1}. This system is solved at

each time step, followed by a shift of the interface {ym+1
j } to

satisfy the area constraint of 	2. The updating procedure is
summarized as follows: Given {ym

j , κm
j : j = −1, 0, . . . , n +

1} and {xm
l,i : i = 1, 2},

(1) Use the area constraint for 	1 to determine the
droplet configuration, in particular, its contact angles
θm

d,i (i = 1, 2).
(2) Solve the linear system (63a), (63c), and (63d) for

{ym+1
j , κm+1

j : j = −1, 0, . . . , n + 1}.
(3) Update the contact line position {xm+1

l,i : i = 1, 2} ac-
cording to (63b).
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FIG. 4. Interface profiles for the hydrophobic case with θY = 2π/3 and different values of ν: ν = 100 (upper left), ν = 1 (upper right),
ν = 10−2 (lower left), and ν = 10−4 (lower right). The insets show the interface profiles near the contact line where the contact angle θY =
2π/3 can be observed.
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The computation is terminated when the steady state is
reached. In practice, we terminate the computation when
max0� j�n |ym+1

j − ym
j | < tol for some small tolerance tol.

B. Numerical results

We consider two examples: one a hydrophilic case with the
static contact angles θY = π/3 and the other a hydrophobic
case with θY = 2π/3. The surface tension coefficients are
γ1 = 0.5, γ2 = γ3 = 1 for the hydrophilic case and γ1 = 1.5,
γ2 = γ3 = 1 for the hydrophobic case. Initially, the membrane
is flat and the droplet is given by a semicircle with radius R =
0.4. The reduced bending modulus of the membrane varies
between ν = 100 and ν ≈ 10−6. The mesh size h ranges from
10−2 for ν = 100 to 10

3 × 10−4 for ν ≈ 10−6. The time step
�t ranges from 10−2 for ν = 100 to 10−4 for ν ≈ 10−6.

The numerical results for the interface profiles are shown in
Fig. 3 for the hydrophilic case and Fig. 4 for the hydrophobic
case. The different panels in the figures correspond to different
values of ν. It is seen that the membrane is stiff and does not
deform much when ν is the large (upper panels); in contrast,
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FIG. 5. The angle of the membrane for small values of ν in the
hydrophilic case (upper panel) and hydrophobic case (lower panel).
The contact line is shifted to s = 0 and the s coordinate is rescaled
by

√
ν. The asymptotic solution in (40b) is shifted by π so that the

angle is continuous at the contact line. Insets: numerical solutions for
the angle before rescaling.

TABLE I. The apparent contact angles computed from the nu-
merical solutions for the hydrophilic case (top) and hydrophobic
case (bottom). These values agree well with the theoretical values
predicted by Neumann’s law (ν = 0).

ν θ12 θ23 θ31

1 × 10−4 2.4204 1.4322 2.4305
1
4 × 10−4 2.4196 1.4389 2.4247
1
16 × 10−4 2.4196 1.4413 2.4223
1

64 × 10−4 2.4192 1.4429 2.4211
0 2.4189 1.4455 2.4189

1 × 10−4 1.7049 2.6234 1.9549
1
4 × 10−4 1.7753 2.6299 1.8780
1
16 × 10−4 1.8088 2.6342 1.8402
1

64 × 10−4 1.8287 2.6370 1.8175
0 1.8235 2.6362 1.8235

it becomes rather soft and large deformation occurs when ν is
small (lower panels). In both cases, the microscopic contact
angle is independent of ν and remains π/3 and 2π/3 when
ν varies from 100 to 10−4, respectively. This can be observed
from the insets of the figures.

In Fig. 5, we plot the angle of the membrane for small
values of ν ranging from 10−4 to 10−6. From the numerical
results (insets), we clearly observe the existence of a transition
layer near the contact line, whose width decreases with ν.
After rescaling the s coordinate by

√
ν, these solutions agree

well with the solution obtained from the asymptotic analysis
[(40a) and (40b)]. The agreement improves as the value of ν

decreases.
The apparent contact angles for the solutions shown in

Fig. 5 are presented in Table I. These angles are computed
by reconstructing the membrane and the droplet using their
curvatures obtained in the numerical solution away from the
contact line (the outer region). These values are compared
with the theoretical values predicted by Neumann’s law
(ν = 0). They agree well in the small bending modulus limit.
This again validates the results obtained from the asymptotic
analysis.

VI. CONCLUSION

We have considered contact lines on an elastic membrane
and studied the static profiles of the interfaces. Such systems
arise, for example, when a vesicle is in contact with an inter-
face between two fluids. This work also sheds light on other
systems involving deformable substrates, e.g., in coating and
the design of smart surfaces.

We derived the governing equations for the static problem
by minimizing the total energy, which consisted of the surface
energies and the bending energy of the membrane. In this
model, the membrane is locally flat at the contact line due to
the regularization effect of the Willmore energy. The contact
angle satisfies the Young-Dupré equation, which describes the
force balance along the membrane. The gradient of the mean
curvature of the membrane, however, exhibits a jump across
the contact line, which produces a balancing force for the
surface tension in the normal direction of the membrane.
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We carried out asymptotic analysis for the model in the
limits as the reduced bending modulus ν tends to +∞ and
0, respectively. Asymptotic solutions in both cases were ob-
tained. We found that, in the stiff limit, the leading-order
profiles of the interfaces are those of a circular droplet sit-
ting on a rigid substrate with the contact angle satisfying the
Young-Dupré equation. In the soft limit, a transition layer with
width ν1/2 appears near the contact line, and we computed the
leading-order solutions in the inner and outer regions using the
matched asymptotic technique. The leading-order interfaces
in the outer region have constant curvatures, and the apparent
contact angles between them obey Neumann’s law.

We also developed an efficient numerical method to com-
pute the static profiles of the interfaces. The numerical method
is based on the gradient flow and semi-implicit finite dif-
ference discretization. We simulated two systems, one in
the hydrophilic case and the other in the hydrophobic case.
The numerical results agreed very well with the asymptotic
solutions.

In the current work, we only considered the bending energy
of the membrane, and neglected the stretching energy. As a re-
sult, the problem only involved the geometry of the interfaces.
The stretching energy penalizes the extension/contraction of
the membrane. In earlier work, a local inextensibility condi-
tion has been used to prohibit the extension/contraction of the
membrane [16–18], and this models systems with very large
stretching energy. In the general situation, one needs to take
the strain into account in order to model the stretching energy.
We will investigate the effect of the stretching energy on the
interface profiles in the future work.

In future work, we also intend to study the dynamical
problem which couples the evolution of interfaces and contact
lines with hydrodynamics. This extends the classical moving

contact line problem, for which most of the earlier work has
focused on rigid substrates [29–38]. The dynamical problem
is more challenging as one has to couple the dynamics of
the substrate, the evolution of the fluid interface, and the
motion of the contact line with hydrodynamics equations; in
particular, one has to deal with the difficulty arising from the
inconsistency of the classical no-slip boundary condition with
the contact line motion. We will leave these issues to our
future work.
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APPENDIX A: VARIATION OF VOLUMES
AND SURFACE AREAS

Let x = (x1, x2, x3) and X = (X1, X2, X3) denote the Eule-
rian and Lagrangian coordinates of a fluid parcel, respectively,
and q(s1, s2) denote a surface parametrized by (s1, s2). Fur-
thermore, let D be a differential or variation operator which
satisfies the chain rule and product rule, and commutes with
the spatial differential operator.

For the volume element det ( ∂x
∂X ), we have

D det

(
∂x
∂X

)
=

∑
σ∈S3

sgn(σ )

(
∂Dx1

∂Xσ1

∂x2

∂Xσ2

∂x3

∂Xσ3

+ ∂x1

∂Xσ1

∂Dx2

∂Xσ2

∂x3

∂Xσ3

+ ∂x1

∂Xσ1

∂x2

∂Xσ2

∂Dx3

∂Xσ3

)
= (∇ · Dx) det

(
∂x
∂X

)
, (A1)

where σ = (σi )3
i=1 is a permutation in the symmetric group S3 and ∇ is the gradient operator with respect to x. In the second

equality, we have used the chain rule ∂Dxi
∂Xσi

= ∑3
k=1

∂Dxi
∂xk

∂xk
∂Xσi

.

For the surface element
√

h = | ∂q
∂s1 × ∂q

∂s2 |, we have

D
√

h = 1√
h

(
∂q
∂s1

× ∂q
∂s2

)
·
(

∂Dq
∂s1

× ∂q
∂s2

+ ∂q
∂s1

× ∂Dq
∂s2

)
=

√
h

(
t1 · ∂Dq

∂s1
+ t2 · ∂Dq

∂s2

)
=

√
h(∇s · Dq), (A2)

where {t1, t2} is the covariate basis of the tangent plane to the surface and ∇s is the surface gradient operator.
Now we consider two special choices of D. First, if D = ∂

∂t , we obtain

∂

∂t
det

(
∂x
∂X

)
= (∇ · ẋ) det

(
∂x
∂X

)
, (A3)

∂

∂t

√
h = (∇s · q̇)

√
h, (A4)

where the overhead dot denotes the derivative with respect to t . It follows that, for a given function f defined in a 3D domain 	

and a surface �, respectively,

d

dt

∫
	

f (x, t )dx =
∫

	

(
∂ f

∂t
+ u · ∇ f + (∇ · u) f

)
dx, (A5)

d

dt

∫
�

f (q, t )dA =
∫

�

(
∂ f

∂t
+ u · ∇ f + (∇s · u) f

)
dA. (A6)

where u = ẋ in (A5) and u = q̇ in (A6).
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Next, we take the variation operator D = δ in (A1)
and (A2). We obtain

δ det

(
∂x
∂X

)
= (∇ · δx) det

(
∂x
∂X

)
, (A7)

δ
√

h = (∇s · δq)
√

h. (A8)

It follows that

δ

∫
	

dx =
∫

	

(∇ · δx)dx =
∫

∂	

n · δxdA, (A9)

δ

∫
�

dA =
∫

�

(∇s · δq)dA =
∫

∂�

δq · mdl

−
∫

�

δq · (2Hn)dA, (A10)

where n is the outward normal of ∂	 in (A9) and H = − 1
2∇s ·

n with n being the normal to � whose direction is such that
H is positive when the surface curves towards n in (A10); m
is the outward conormal to ∂�. In (A10), we have used the
surface divergent theorem [39].

APPENDIX B: VARIATION OF THE WILLMORE ENERGY

For a surface x = q(s1, s2), the contravariant basis vectors
of the tangent plane of the surface are given by ti = ∂q

∂si (i =
1, 2). The first fundamental form is

I = h11ds1ds1 + 2h12ds1ds2 + h22ds2ds2, (B1)

where hi j = ti · t j (i, j = 1, 2). Define the symmetric metric
tensor

MI =
(

h11 h12

h12 h22

)
, (B2)

and denote its determinant by h = h11h22 − h2
12 = |t1 × t2|2.

The unit normal vector to the surface is given by n = 1√
h
t1 ×

t2. The covariant basis {t1, t2} of the tangent plane is defined
as the reciprocal basis set satisfying ti · t j = δi

j , where δi
j is

the Kronecker delta. It is easy to see that hi j = ti · t j is the
(i, j)th entry of M−1

I , and ti = himtm, where we have used the
Einstein summation convention.

The second fundamental form is given by

II = l11ds1ds1 + 2l12ds1ds2 + l22ds2ds2, (B3)

where li j = ∂ti
∂s j · n = −ti · ∂n

∂s j (i, j = 1, 2). Denote the sym-
metric tensor formed by the coefficients li j by

MII =
(

l11 l12

l12 l22

)
. (B4)

Then the mean curvature of the surface is given by the mean
of κ1 and κ2, the eigenvalues of the Weingarten transformation
MII M

−1
I ,

H = 1
2 (κ1 + κ2) = 1

2 Tr
(
MII M

−1
I

) = 1
2 hi j li j = − 1

2∇s · n,

(B5)

where ∇s = t1 ∂
∂s1 + t2 ∂

∂s2 = (I − n ⊗ n)∇ is the surface gra-
dient operator.

A direct calculation using hi j = ti · t j , ti = himtm, and
li j = ∂ti

∂s j · n yields

δhi j = −himt j · ∂δq
∂sm

− h jmti · ∂δq
∂sm

, (B6)

δli j = ∂2δq
∂si∂s j

· n −
(

∂ti

∂s j
· tm

)
∂δq
∂sm

· n, (B7)

where we also used the fact that δn = −(n · ∂δq
∂sm )tm, which fol-

lows from δn = (δn · tm)tm and δn · tm = −n · δtm. It follows
that

δH = 1

2
δhi j li j + 1

2
hi jδli j = −Mm

j t j · ∂δq
∂sm

+ 1

2
(�sδq) · n,

(B8)
where Mm

j = li jhim is the ( j, m)th entry of MII M
−1
I , and

�s = ∇s · ∇s = hi j ∂2

∂si∂s j + (ti · ∂t j

∂si ) ∂
∂s j is Laplace-Beltrami

operator.
To facilitate the calculation of the variation of the Willmore

energy, we rewrite (B8) as

δH = 1
2�s(δq · n) + (δq · n)(2H2 − K ) + ∇sH · δq, (B9)

where K = κ1κ2 is the Gaussian curvature. To see this, we
decompose δq as δq = δqn + δqt , where δqn = (δq · n)n and
δqt = (δq · tk )tk . Then

1

2
(�sδqn) · n − Mm

j t j · ∂δqn

∂sm

= 1

2
�s(δq · n) − 1

2
(δq · n)Mm

i Mi
m + (δq · n)Mm

i Mi
m

= 1

2
�s(δq · n) + 1

2
(δq · n)Mm

i Mi
m

= 1

2
�s(δq · n) + (δq · n)

(
2H2 − K

)
, (B10)

where we have used the fact that Mm
i Mi

m = Tr(MIIM
−1
I )

2 =
4H2 − 2K . For the tangential component δqt , a direct calcu-
lation yields

1

2
(�sδqt ) · n − Mm

i Mi
mt j · ∂δqt

∂sm
= ∇sH · δqt = ∇sH · δq.

(B11)
Equation (B9) follows from (B10) and (B11).

Finally, the variation of the Willmore energy is given by

δ

∫
�

H2dA

=
∫

�

(2HδH + H2(∇s · δq))dA

=
∫

�

(H�s(δq · n) + (δq · n)H (4H2 − 2K )

+ ∇s · (H2δq))dA

=
∫

�

(δq · n)(�sH + 2H (H2 − K ))dA

+
∫

∂�

(Hm · ∇s(δq · n) − (δq · n)m · ∇sH

+ H2m · δq)dl, (B12)

where we have applied the surface divergent theorem.
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