PHYSICAL REVIEW E 102, 062801 (2020)

Clemens Moritz®,' Marcello Sega®,? Max Innerbichler®,' Phillip L. Geissler®,? and Christoph Dellago

Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
2Forschungszentrum Jiilich GmbH, Helmholtz Institute Erlangen-Niirnberg for Renewable Energy (IEK-11),
Fiirther Strafse 248, 90429 Niirnberg, Germany
3Department of Chemistry, University of California, Berkeley, California 94720, USA
*Erwin Schrédinger Institute for Mathematics and Physics, Boltzmanngasse 9, 1090, Vienna, Austria

® (Received 21 August 2020; accepted 30 October 2020; published 2 December 2020)

A pair of flat parallel surfaces, each freely diffusing along the direction of their separation, will even-
tually come into contact. If the shapes of these surfaces also fluctuate, then contact will occur when their
centers-of-mass remain separated by a nonzero distance £. An example of such a situation is the motion of
interfaces between two phases at conditions of thermodynamic coexistence, and in particular the annihilation
of domain wall pairs under periodic boundary conditions. Here we present a general approach to calculate the
probability distribution of the contact distance ¢ and determine how its most likely value £* depends on the
surfaces’ lateral size L. Using the Edward-Wilkinson equation as a model for interfaces, we demonstrate that
£* scales weakly with system size, i.e., the dependence of £* on L for both (141)- and (2+41)-dimensional
interfaces is such that lim; . (£*/L) = 0. In particular, for (2+1)-dimensional interfaces £* is an algebraic
function of log L, a result that is confirmed by computer simulations of slab-shaped domains formed under
periodic boundary conditions. This weak scaling implies that such domains remain topologically intact until ¢
becomes very small compared to the lateral size of the interface, contradicting expectations from equilibrium
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I. INTRODUCTION

In the initial stages of many large-scale changes in the
shape of interfaces, microscopic thermal fluctuations play
a crucial role. The rupture of a thin liquid film [1-3], the
breakup of a liquid jet [4-8], and the fusion of two liquid
droplets [9-13] are examples of processes that on the meso-
and macroscopic scale are governed by surface tension and
hydrodynamics, while at their earliest stages they are con-
trolled by thermal undulations.

Thermal fluctuations also govern the distance up to which
two planar interfaces will approach before they come into
contact for the first time; a situation which can be viewed as
an approximation to the droplet fusion problem for large radii.
Figure 1 shows a snapshot taken from a computer simulation
of a Lennard-Jones fluid that is an example of this kind of
interfacial system. The two interfaces are formed by a single
slab of atoms in the liquid phase that is connected through
the periodic boundaries of the simulation box. Figure 2 shows
a similar scenario for a two-dimensional (2D) Ising model at
coexistence. The aim of this paper is to determine how close
the centers-of-mass of two such interfaces approach before
they come into contact for the first time.
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Larger surfaces, whose topographical fluctuations are gen-
erally more extreme, should contact each other at larger
average separation. At the same time, interfaces that diffuse
more slowly relative to each other are expected to come into
contact at a larger distance, since more configurations can be
explored by the system while the center-of-mass moves over
a certain length. We find both of these trends reflected in our
analysis. However, the dependence of the most likely distance
of the centers-of-mass at the time of first contact £* on both
the linear system size L and on the diffusion coefficient of the
centers-of-mass of the interfaces Dj, turns out to be weak. In
particular, in the case of a two-dimensional interface that is
embedded in three-dimensional space [a (2+1)-dimensional
interface], L and Dj, enter the result for £* as an alge-
braic function of log L and log Dy, only. This dependence of
£* on log L resembles previous results obtained by Ponthus
et al. [16] for static (2+1)-dimensional interfaces, where it
has been observed that the average distance between two such
interfaces when they are in single point contact grows with
system size in a similar manner.

Our results not only imply that the distance at which two
freely diffusing, macroscopic interfaces come into contact
for the first time is still likely microscopic, but also has in-
teresting consequences for the situations shown in Figs. 1
and 2. In both cases, the slab is thermodynamically metastable
at conditions that fix the relative proportions of coexisting
phases. Alternate geometries—a spherical gas bubble and a
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FIG. 1. Example configuration of a Lennard-Jones gas slab en-
closed by liquid. The configuration has been obtained from a
molecular dynamics simulation at liquid-gas coexistence using pe-
riodic boundary conditions. This snapshot has been rendered using
VMD [14,15].

disk formed by spins pointing in the same direction—would
have a considerably smaller surface and, therefore, also a
lower free energy [17-21]. Nevertheless, these slab geome-
tries are remarkably long lived. In fact, we will show that the
critical widths of these slabs, at which they transition into the
thermodynamically preferred shape, grow with L much more
slowly than the scaling £* ~ L expected from equilibrium
considerations (see Sec. V for details on how this scal-
ing comes about). Hence, this two-interface system has the
interesting property that with increasing system size the be-
havior of the system increasingly diverges from the behavior

FIG. 2. Example configuration obtained from a simulation of the
200 x 200 Ising model with vanishing external field. The gray circle
indicates a disk with the same area as the slab composed of black
spins. This circle has a circumference that is roughly 45% smaller
than the surface of the slab. Matplotlib [23] has been used to generate
graphs and Ising model simulation snapshots throughout this work.

expected based on equilibrium principles, eventually leading
to a complete suppression of the transition to the stable state
altogether [22].

The remainder of the article is structured as follows: in
Sec. I we present a rough estimate of the expected scaling
of the most likely contact distance £* with system size L. In
Sec. III we explain our approach to calculating the distribution
of contact distances u(£). Section IV introduces the Edward-
Wilkinson (EW) equation as a model for surface dynamics
and goes through all the steps necessary to predict the scal-
ing of the contact distance between two EW interfaces with
system size. In Sec. V we report on simulations of slabs in
the Ising model and in a Lennard-Jones system at liquid-gas
coexistence. The predicted scaling behavior of the EW model
is then compared with the critical width of slabs observed in
simulation. Section VI provides a summary and a discussion
of the results.

II. A SIMPLE SCALING ARGUMENT

One expects the meeting of initially distant interfaces to
occur through a combination of two basic processes. First, the
interfaces’ mean positions (averaged over directions perpen-
dicular to their separation) each execute a random walk with
diffusion coefficient D, ~ 1/L¢, where L is the surfaces’ lin-
ear size and d is their dimensionality. Second, as their shapes
change in the course of natural fluctuations, a point on one
interface can draw transiently nearer to a point on the other
interface, even if the mean separation £ is fixed. An extreme
fluctuation in interfacial shapes can thus achieve contact while
the mean positions remain separated by a considerable dis-
tance. Contact occurs when the rate k(€) of contact-forming
shape fluctuations is roughly comparable to a rate kp, of further
diffusion

k(£) ~ kp(£). (1

This diffusion rate kp ~ D/A? is determined by the diffusion
constant D = ﬁDim that is associated with the time evolution
of the mean distance between the two interfaces, together
with a length scale A whose magnitude is not straightforward
to anticipate. For the purpose of roughly calculating £*, we
assume simply that A is independent of L.

According to notions of transition state theory, the rate of
an extreme shape fluctuation that establishes contact at fixed
£ should be proportional to its equilibrium probability, i.e.,
the probability of an undulation that closes the mean gap. The
distribution P(x) of the fluctuating height x at a single point on
an interface is simply estimated from Gaussian field theories
as [24]

P(x) ~ exp[—x*/(2w?)], 2)

where w is the roughness of the interface and w? ~ L ford =
1 and w? ~ log L for d = 2. Assuming the gap-closing prob-
ability to follow these simple statistics, we estimate k(£) ~
exp[—€%/Qu)].
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Assembling these arguments, we expect the typical separa-
tion £* at contact to scale with L as

14~ +/LlogL and ¢35, ~logL 3)

for one- and two-dimensional interfaces, respectively. Ac-
cording to this rough prediction, growth of £* with system
size is so gradual that ¢* can remain microscopic even for
macroscopic systems.

This line of reasoning is loose, imprecise, and incomplete.
First, as mentioned, the balance between k(£) and kp involves
a length scale XA, which is not specified here. Second, the
gap-closing probability should reflect extreme value statistics
of the closest points on the two interfaces, not that of ar-
bitrarily chosen points [16]. Finally, since long-wavelength
undulations of an interface evolve very slowly in time, the
assumptions of transition state theory are difficult to justify
in this context.

Sections III and IV present a much more careful treatment
of the dynamics that lead to interfacial contact. By making
controlled approximations for well-defined models, they re-
veal and clarify subtleties associated with all of the issues
listed above. The theory developed yields improved scaling
predictions for £* that confirm an extremely slow divergence
of £* with system size.

III. A FRAMEWORK FOR CALCULATING CONTACT
DISTANCE DISTRIBUTIONS

A. Reaction-diffusion equation for the contact distance
distribution

As a first step towards the estimation of the typical contact
distance £*, we devise a simple reaction-diffusion equation
that governs the time evolution of the distribution of dis-
tances between fluctuating interfaces. Consider two planar
interfaces, in a two- or three-dimensional simulation box with
periodic boundary conditions, that do not interact with each
other until they are brought in contact by thermal fluctuations.
These interfaces are released at an initial distance £ that is
much larger than the typical size of interface fluctuations. As
shown in Fig. 3 we describe the geometry of the surfaces by
two continuous functions 4, (x) and h,(x), where the vector x
collects the lateral coordinates (i.e., those orthogonal to the
h direction). The distance between the two interfaces at a
given position x is denoted by Ak(X) = hy(x) — h;(x) and the
mean distance of the two interfaces is given by £ = hy — hy,
where h; and h, are the spatially averaged means of /; and
h,, respectively. The distance between the two interfaces at
the point where they are closest is denoted by

s = min[Ah(x)]. )

As long as the two interfaces are not in contact with each
other, 2, and h, freely diffuse relative to each other along the &
direction governed by the diffusion coefficient Djy. In the case
of a liquid slab, the interfaces diffuse due to mass transport in
the slab, due to evaporation and condensation on the surface,
and, in the case of simulations at constant pressure, due to
fluctuations of the box size.

The rate k(£) with which fluctuations of the interfaces are
formed that are large enough to bridge the gap between the

FIG. 3. Two surfaces are described by functions %, (x) and /,(x)
where x is a vector that collects the lateral coordinates (those orthog-
onal to the surface normal). The dashed lines indicate the average
positions hy and hy of the interfaces, £ is the average distance be-
tween the interfaces, and s is the minimum distance between the two
interfaces, i.e., s = miny [AA(X)] = miny [h(X) — A (X)].

two interfaces depends on ¢, i.e., k = k(£). This situation is
formally equivalent to a particle that diffuses along a single
direction £ and undergoes a reaction with a position dependent
reaction rate k(£). Using this analogy we write down the fol-
lowing partial differential equation that governs the evolution
of the probability density p(£, t) that two interfaces have not
yet touched, and have mean distance £ at time ¢:

ap(L.1) _ Dazp(ﬁ,t)

—k()p(L,1). 5

¥ e (©)p(, 1) 5)
The initial condition is given by

p(€,0) = 5(€ — L), (6)

where 8(x) is the Dirac § function and ¢ is the initial separa-
tion of the interfaces.

This equation is reminiscent of the theory of diffusion-
controlled reactions [25-27], however, instead of reactions
that occur at a boundary, the reaction in our model is con-
trolled by a position and concentration dependent loss-term
k(€)p(£,t). The time integral over the loss term yields the
distribution of distances at which the reaction occurs,

u(f) = /oodrk(z)p(z,t). (7)
0

In the next section we introduce a path-integral formalism that
allows us to calculate u(£).

B. A path-integral formulation of u(£)

In order to derive an expression for the probability distri-
bution u(£), we use a well-known correspondence between
reaction-diffusion equations and the Schrddinger equation
that has been pointed out by various authors before; see
Refs. [28-31] for comprehensive treatments. Furthermore, our
derivation is closely related to the Feynman-Kac path integral
formula [32].

We start by considering a discrete diffusive trajectory
A that consists of N steps and that has been obtained by

062801-3



CLEMENS MORITZ et al.

PHYSICAL REVIEW E 102, 062801 (2020)

sampling a continuous trajectory £(¢) at times i At. We write

A:{EO’£]7""£YL5EI1+I5"'EN}7 (8)

where ¢; = £(iAt). The probability of observing A for given
initial position £ is given by

N—-1

[]rtti = €0, ©)

i=0

Pyige[A] =

where p(£; — £;41) is the transition probability of a freely
diffusing random walker:

€= £1) 1 |: (lit1 _Zi)21| (10)
i—> b)) = ——exp| —— |.
P W Jampar LT 4Dad

Now let us assume that the first contact between the inter-
faces occurs in the time interval between steps n and n + 1.
The probability of observing such a trajectory is then given by
the product of Py with the conditional probability Py[n|A]
that no reaction occurs until time step n given that we are
following trajectory A, and the probability P[n|A] that the
reaction occurs between nAt and (n + 1)At,

P[A] = Paisi[ A1 Poc[n| A]P[n| A]. Y

J

de;--dby
ul) = NILHQOZ/ (@nDAIY? (g”_g)eXp[

de;---de,
@nDAry? €

= k(0) Z At

n=0

In the second line we have carried out the integrations over

all £; with i > n and have taken the limit N — oo. We now

take the limit A+ — O while keeping the trajectory lengths
= nAt fixed. With the abbreviations

/ deDz li A dby - db- (16)
= 11m —_—
T a0 & (4T DAty

and
B T , UT(Z/)Z ,
S[er ()] —/0 dt{ D + k[T (t )]}
© o[ W — 0
L i+1 — & '
= Am, Z A’{ 4D(ArY? +W’)}’ an
this yields

u(l) = k(z)/oo dT/D[KT(t)]e’S[ZT(’)]. (18)
0

Here ¢7(t) is a trajectory of length T and vy (¢) = O7(r). As
suggested by a comparison to Eq. (7), the probability density

We approximate P;[n|A] by

Pl byl = 1 — e MR k(o) A, (12)

i.e., we assume that k(£) is approximately constant in the
region the particle visits between ¢, and £,;. In the same
manner we also approximate P, [n|A] by

n—1 n—1
Puln|A] ~ ]‘[ e HEIAL — oxp |:—At Zk(@i)}. (13)
i=0 i=0

Note that for ease of notation we define here that the product
in this equation is equal to one if its end index is smaller
than its starting index and, by extension, that the sum on the
right-hand side is O in the same situation. Substituting these
expressions into (11) and expanding P, for small Az yields
the probability of a specific trajectory A that reacts at time
nAt,

n—1
k(€,) At
W exXp |:—At Zk(ﬁl)
i=0

Z(ml —,)? ] (14
4 4D At

The probability u(€) of observing a reaction at a specific
position £ is now the sum of P[A] over all possible paths A
and path lengths n where the initial point £, and the final point
£, = £ are kept fixed:

[A] =

(EH—I E;)Z ! , )
; “apar M ;k(ﬁi) k(€ At
b =)
At( 4D(A1)? +k(€,~)>}. )

[
p(£, 1) is given by

p(l 1) = / Dler(t)]e SOl (19)

Equation (19) is known as a path integral in quantum me-
chanics (QM) and in the following we will use results obtained
there to calculate an approximation for u(€). In particular,
in analogy to the semiclassical approximation in QM, we
can calculate an expression for the probability of the most
likely path between two points £y, and €. This can be done
most easily by comparing Eq. (17) to the classical action of a
particle in a potential that follows a trajectory x(z),

T . 2
SIx(t)] = / dr[m’f) —V[x(rn], (20)
0

with the kinetic energy K = mx?/2 and the potential energy
V. The paths with extremal action are the paths that are
solutions of the classical equations of motion. Hence, the
path £(¢) that minimizes the action (17) is the Newtonian
trajectory taken by a classical particle with mass 1/2D in a
potential V(£) = —k(£) [28], i.e., the inverted reaction rate
function. Hence, the trajectories with maximum probability
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(

fo e f
FIG. 4. Sketch of an example rate function k(¢): the Gaussian

rate function suggested by Eq. (2). The initial position is marked by
£Lo.

(or the classical paths) Z7(¢) are solutions of the equation

£ (1) = £/aD(E + KTr () @1

that fulfill the boundary conditions £7(0) = £y and Z7(T) =
£. The constant E that is determined by these boundary
conditions together with T [i.e., E = E (¢, £y, T )], resembles
the total energy of the classical particle E = K + V. Alter-
natively, Eq. (21) can be derived by optimizing the ¢; in
Eq. (14) for maximum P[A] and subsequently taking the limit
At — 0.

It is reasonable to assume that the rate of gap-closing
fluctuations shrinks with increasing mean distance ¢, so in the
following we assume that the derivative of the rate function
fulfills £'(¢) < 0. This situation is sketched in Fig. 4. In addi-
tion, we place a reflecting boundary at the initial position £;.
This has two effects: first, the average length of trajectories is
finite in this case [which is not necessarily the case if the rate
function k(£) goes to zero fast enough as £ — oo]; second, the
solution to Eq. (21) is unique for any given set of boundary
conditions (¢, ¢, and T'), i.e., there is only a single classical
path that leads from ¢y to £ in time 7. Note that we have
chosen ¢y > ¢ and will keep this convention through the rest
of the derivation.

Dynamics with such a reflecting boundary can be mapped
onto an unbounded system with a symmetrized rate function
ksym (x) such that kgym(€) = keym(2£o — €) [31,33], i.e.,

keym(£) = O — Lo)k(£) + O(—L + Lo)k(2ly — £), (22)

where ©(x) is the Heaviside step function. The transition
probability from £ to € in time T, p(£y, £, T), is then given
by

p(z()a Ea T) = psym(zo’ Ea T) + psym(EOa ZZO - Z’ T)
= 2psym(€01 Es T)’ (23)

where pgym(£o, £, T) is the transition probability calculated
using the extended rate function kg, without boundaries and
in the second line we have used the symmetry of kg, and
the fact that £ = £ at t = 0. In other words, one has to sum
the path probabilities that move from £, to £ and another set
of paths that move from ¢, to the symmetrically equivalent
20y — £. We calculate the probabilities of these paths using a
semiclassical approximation. The principal difficulty in this
calculation lies in the fact that the extended rate function
keym(£) is not analytic at £y and, hence, can only be treated
perturbatively [33]. In the following calculation we assume
that, due to the shape of the rate function k(£€), the corrections

to our semiclassical calculations are small. In Appendix B
we then numerically check our results for exponential and
Gaussian rate functions and find that our calculations are in
excellent agreement for small but finite D.

We approximate the path integral in Eq. (18) by expand-
ing the action § up to leading order around the likeliest
paths [28,31,34]. This approximation yields

key 5 . .
u(l) = %/ dT e 51 CDE (. 0y, T), (24)
0

where Ty is the length of the longest possible path which has
the minimum “energy” Ey = —k(£o), S7 (€, £y, T) = S[L7(1)]
is the action of the likeliest path, and the factor Fre, 0y, T)
arises from the expansion around the likeliest path. It is given
by [31]

Fr(,0,,T) = {2m@<[£, 0o, E(T)]

—12

Lo
« / dz/[E(T)+k(6/>r3/2} . @5
¥4

with

K(€, Lo, E) = /[E + k(£)][E + k(0)]. (26)

The normalization constant

[[) Tb -~
Z= f de [k(ﬂ) / dT eST“’f“-“FT(e,zo,T)] 27)
0

—00

is introduced in Eq. (24) to normalize the distribution u(¢) and
includes contributions that are neglected due to the assump-
tions we made regarding the boundary condition at £, and the
multiplicity of the classical paths; because the initial position
£y is also the location of a reflecting boundary, there are two
identical paths for each value of 7" with the same energy E.
The action of the likeliest path of length T’ can be expressed

in terms of an integral over the velocity @),

T T
ST(Z,ZO,T)=/ dt[K—V]:/ dt[—E + 2K]
0 0

- E(T)T+/szf br
- o Tap

ya dg/ ¥4 Z E/
e [ - +/ arr)
o by Jo 2D

0

where we have used the fact that

14 dae’
T = - . (28)
b Lr(L)
By substituting Eq. (21) (using the minus sign because we
consider the path from £y > £ to £) we arrive at the expression

- b E(T)/2+ k('
Sr(€, £y, T) = dv (1)/2 + k() .

¢ VDIE(T) + k(€)]

Due to the placement of the reflecting boundary at £, and
the assumption that k" < 0, E(T) is a monotonic function of
T so that we can rewrite the integral in Eq. (24) as an integral

(29)
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over E by using the derivative

dT 1

— == = , (30)
dE 8t D (£, Ly, E)Fr(L, £y, E)?
leading us to the expression
k(L 00 —S8g(€,00.E)
u(t) = = . . 6D
8nDZ Ey K(£9£01E)FE(£7£07E)

where the notation Sg and Fy indicates that these functions
are now evaluated using E as the independent variable instead
of T.

This integral can be evaluated using a saddle point approx-
imation. A calculation of the derivatives

aSp (L, £y, E b E
98 (¢, Lo, E) 2/ v ——— = (32)
oE ¢ 4/D[E + k(0]
and
928k (L, Ly, E bo 2k(0) — E
£, £y, E) _ av £) 33)

dE? ¢ V64D[E + k()

demonstrates that the minimum of Sz can be found at E = 0,
as long as the rate function itself is larger than zero in the
whole range between £y and £. E = 0 corresponds to the paths

where
é(O) = —/ 4DK[E(0)] (34)

and their action is given by

Ly
So(l, £9) = / dt’' Jk)/D. (35)
¢
Rewriting Eq. (31) by setting Sp(, £y, E) = EE(E)/\/B SO
that 5¢ (E) is independent of D, yields
o—5E(E)/ND
K(E, O)Fg(E)

k() [

0= —2
“O =80z |,

(36)
In the limit of small but finite D we can now use Laplace’s
method [35] to approximate the integral using the minimum
of Sg at E = 0, resulting in

e—S“O(Z,ZU)k(E)S/4

ul) ~

~o T 37
2DV2k(00)\/4Z 37)

It is instructive to calculate the location of maximum prob-
ability £* by setting

dlogu(?)

— —0. (38)

=t

Evaluating the derivative yields one of the main results of this
paper: a simple condition that determines the likeliest reaction
distance £* in terms of the rate function k(£) and the diffusion
coefficient D:

k(t*) 3
D 4

k' (£*)
k(e |

(39)

The prime indicates a derivative with respect to £*. Note
that this result hinges on the validity of the quadratic

expansion (24) which depends on the details of k(£)." In
Appendix B we calculate the distributions u#(¢) for the rate
functions k(£) that are of interest to us later on and compare
them to numeric results in order to test the theory developed so
far. This comparison shows excellent agreement as D becomes
small which corresponds to the limit of infinite system size
when we consider the contact distance of two interfaces later
on.

By squaring both sides and rearranging the factors we can
rewrite Eq. (39) to read

D D
{(@4/3)[k(e) /R (€N e

where A(£*) = (4/3)[k(£*)/k'(£*)]. This expression recalls
the reasoning of Sec. II, equating reaction and diffusion rates
at the critical separation £*. The systematic approximation
to the reaction-diffusion equation developed in this section
allows us to identify the diffusive length scale [A in Eq. (1)]
that was previously left ambiguous. It is dictated by how
quickly log[k(£)] changes with distance. Specifically, contact
of the two interfaces occurs when the reaction time scale
1/k(£) becomes comparable to the time it takes to diffuse to a
location where k(£) has changed significantly.

By using a rate function k(£), the ansatz (5) tacitly assumes
that the equilibration of the shape of the interface happens
faster than the center-of-mass diffusion. Based on Eq. (40) we
can check the internal consistency of this assumption using
the pertinent timescale of diffusion 7p(¢) = A(0)? /D. For the
interfaces to be equilibrated up to the first contact between
them, tp has to be larger than the timescale associated with
the relaxation of the interface t,5, for all values of ¢ that the
system visits before first contact. This yields the condition

1 [k@)/K (O]
1 < I - 1 k@®)/K O ] (41)
Trix o> ¢ Trlx D >0

k(e*) = (40)

Coming back to our initial problem of determining the
scaling of contact distance ¢* with system size, Eq. (39)
demonstrates that this scaling is determined by the scaling of
both k(£) and D. In the following section we investigate these
scaling behaviors for a simple interface model as an example:
the Edward-Wilkinson model.

IV. APPLICATION TO THE EW MODEL

A. The EW equation as a microscopic model for interfaces

The Edward-Wilkinson (EW) model [39] was first intro-
duced to model the statistics of surfaces that are produced by

!'The problem discussed in this paper is in structure very similar to
the problem of diffusion in a potential as discussed, e.g., in [36-38].
In this context it has been pointed out that the second order expansion
of the path integral breaks down in the case of effective potentials
V that feature degenerate, or quasidegenerate minima. Similarly, for
rate functions k(¢) that feature minima at either £ or ¢, a treatment
along the lines of [37] or [38] may be necessary. In the case of the
Gaussian rate function, which is discussed in the following, ¢ is
never located at a minimum of the effective potential and, hence, the
expansion becomes exact in the limit of small but finite D.

062801-6



WEAK SCALING OF THE CONTACT DISTANCE BETWEEN ...

PHYSICAL REVIEW E 102, 062801 (2020)

depositing a granular material onto a surface. It is given by the
stochastic differential equation

Oh(x,1) 92h(x, 1)
ar 9x2

where h(x,t) is the height of the surface, as shown in
Fig. 3, y is the surface or line tension, cp is an effective
diffusion constant, and #(¢) represents random noise that is
specified separately. Together with the Kardar-Parisi-Zhang
equation [40] it has since become one of the basic equations
used to model surface growth [41]. In order to perform simu-
lations we discretize Eq. (42) in space resulting, in the case of
the (14-1)-dimensional EW interface, in the set of N = L/Ax
equations of motion

hj = ,ByDOAx<hJ+1 2y + hf“) +2Donj(1), (43)
(Ax)?

where Dy = c¢p/Ax. We choose the 7;(t) to be indepen-
dent, delta-correlated noise processes with (n;) =0 and
(ni(t)n;(t")) = &;;6(t —t'). Equations (43) then become a set
of N coupled overdamped Langevin equations where each
random walker h; diffuses with a diffusion coefficient Dy and
is coupled to its immediate neighbors by harmonic springs.
These equations can also be derived from a discretization of
the Hamiltonian

Y¢p + 1), (42)

H = g/d“’—”x VAP, (44)

where d is the dimensionality. This is the Hamiltonian of an
interface with an energy that is proportional to its surface area
provided that gradients V/A(x) in the height function are small.
The generalization of the above equations to d dimensions is
given in Appendix A.

An expansion of (X, t) into a Fourier series, substituted
into the equations of motion (43), demonstrates that the re-
laxation timescale t;x scales with system size like tx ~
L?[24,42,43]. This result is independent of the dimensionality
of the system.

Consider now a pair of identical EW interfaces which we
assume to be noninteracting. We are ultimately interested in
the rate k(£) of interfacial fluctuations that result in the two
interfaces coming into contact with each other. As before,
£ = hy — hy is the distance between the mean positions of the
two interfaces. The position of the interface at each point x
can be written as h;(x) = h; + 8h;(x), where the 8h; are the
relative heights of the two interfaces with respect to their mean
position ;. We can then write the separation between the two
interfaces as

Ah(X) = hy(X) — hi(x)
=L —[6h(X) - )] =¢—-AX), “5)

where we have used the abbreviation A(x) = 6 (x) — §hy(X)
in the last line. The two interfaces touch if there is a point
where the separation between them is less than or equal to
zero, i.e., if

min[Ah(x)] = £ — max[A(x)] < 0. (46)

Rearranging these terms results in the condition

max[A(x)] > ¢ 47)

that all fluctuations that close the gap between the interfaces
must fulfill. These are the events that contribute to the rate
k(£).

Note that we can infer the equilibrium statistics of A(X)
from the equilibrium statistics of a solitary interface h(x) by
using the fact that the equilibrium fluctuations of the EW in-
terface are Gaussian [24]. Hence, also the A(x) are distributed
according to a Gaussian distribution. In addition, the spatial
correlations of A(x) are simply given by [44,45]

(A0)A(x)) = 2(8Ri(0)8hi(x)), (48)

i.e., the correlations are the same, except their variance
(A(0)A(0)) is doubled. This variance is also known as the
square of the roughness w of the EW interface which is given
by [44]

5 L

= — 49
YT 128y )
for the (1+1)-dimensional EW interface and by [46]
L
wr= T (50)
2m2By

for the (2+1)-dimensional EW interface. Here f(L) is a
system size dependent, dimensionless factor that approaches
f(L) ~log(L) as L — oo [46]. Hence, the correlations of
A(x) are the same as the correlations of a solitary EW in-
terface where the surface tension y has been halved [16].
In the following we use this property to make contact with
results that are available in literature as well as to reduce
the computational effort required to perform simulations. In
particular, instead of calculating the rate of fluctuations of two
interfaces that fulfill condition (47), we instead calculate the
rate K(¢) at which the maximum relative height (MRH) of a
single EW interface maxy [6/(x)] reaches a threshold value ¢.

For y = #/2, where 7 is the surface tension of each of the
two interfaces of interest, the rate k(£) is then given by

k(£) = K(£). (51D

B. Simulation details and rate calculation method

To calculate K(¢) for the EW interface we numerically
integrate the equations of motion (43) using the Euler for-
wardlike scheme

hi(t + At) = hi(t) + BDoAtFi(t) + /2D At§,  (52)

where £ is a random number chosen from a Gaussian distribu-
tion with unit variance and F;(¢) is the force on random walker
i that is given by

(53)

Fit) = y(/’li+1(t) —2h;(t) + hi1(t))

Ax

in the case of a one-dimensional interface. The straight-
forward generalization to higher dimensions is given in
Appendix A. The time step Af¢ is chosen such that
(ByDo/Ax)At = 0.005 and By DoAt = 0.01 for (1+1)- and
(241)-dimensional simulations, respectively. A calculation of
the MRH at each time step then yields trajectories ¢ (¢) that
we use in the following to calculate the rate K(¢).

We define the rate K(¢) via the so-called mean first-
passage time (MFPT) t(¢), which is the average time it takes
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FIG. 5. Sketch of the direct method used to calculate the mean
first-passage time at a checkpoint ¢; starting from a region £ close to
the minimum of the free energy landscape. Each time the checkpoint
¢; is crossed, the time difference to all points within the equilibrium
region £ that have been visited since the last time ¢; has been crossed,
are added to a running average.

for a configuration to occur with an MRH that is larger than
¢ given that one starts from a configuration drawn from an
initial ensemble & (see Fig. 5). If ¢; are the times where con-
figurations from the ensemble £ are found, then this average
is given by

n

where 7 is the number of samples ¢; and 7;(t;) is the next time
checkpoint ¢; is reached after time #;. K(¢;) is then calculated
via the relationship

1
K(&) = e (55)

that holds for the so called flux-over-population rate [47]. In
our case the ensemble £ consists of configurations with an
MRH close to the most likely MRH (see Appendix C for
details).

The definition (54) can be used to estimate the MFPT
directly by evaluating it based on a finite set of samples, e.g.,
those generated by propagating a long unbiased trajectory.
This has the advantage that no assumptions are made about
the dynamics of ¢ () and that, in principle, the method is exact
in the limit n — oo. However, in practice this direct method
is strongly limited by the length of trajectories available. If
the MFPT that one wants to estimate is on the same order
as or larger than the length of the trajectory used, 7, then
the resulting estimates of 7(¢) are systematically smaller than
the true MFPT because not all waiting times can be observed
with an equal prior probability (consider, for example, waiting
times longer than 7 which cannot be observed at all). In
Appendix D it is shown that for a flat distribution of waiting
times the expected observed waiting time is 7 /4, which is

1 . .
(&) = lim - Z[Ti(t ) — ], (54) where the MFPTs measured using the direct method level off
oo n i in Figs. 6 and 8.
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FIG. 6. (a) Mean first-passage times 7 as functions of the MRH ¢ calculated by integrating the Langevin equations of motion (43) for
(141)-dimensional interfaces for several system sizes L [L increases from left to right in (a) and from top to bottom in (b)]. The MFPTs are
calculated from initial configurations where ¢ is close to its average value (see Appendix C for details of the calculation). Solid and dashed
lines indicate results obtained using the direct and the Poisson method, respectively. The dotted gray line indicates the value of T = 7 /4 =
3.75 x 10° (in dimensionless units) that we expect to be the result of the direct method in the limit T — oo (see Appendix D for details).
(b) Same data with scaled axes as suggested by Eq. (57). For clarity, the results of the direct and the Poisson method are stitched together so
that the results of each method are shown where we expect them to be accurate. Inset: T as a function of L at a fixed value of ¢2/L = 1.25. See

Appendix E for the same plot at other values of ¢2/L.
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FIG. 7. Free energy BF ()= —logP(Z) as a function of the
shifted maximum relative height ¢ for the (24-1)-dimensional
Edward-Wilkinson interface and several system sizes L. The dotted
line is a fit of Eq. (62) with parameters ¢, = —1.66 and width
0y = 0.65. The data has been obtained using umbrella sampling
simulations with harmonic biases that were subsequently matched
using the WHAM method [56-58]. For details on these simulations
see Appendix G.

Despite this limitation, in the following we use a slight
variation of this direct method (see Appendix C for details)
to estimate MFPTs without having to make prior assumptions
about the statistics of crossing events. We then compare these
results to a second set of calculations, where we assume that
the statistics of first crossing events—i.e., the crossings of a
checkpoint for the first time after visiting £—are those of a
Poisson process. With this approximation the rate can simply
be estimated by calculating

n;
K(&) = 7 (56)

where n; is the number of first-crossing events observed at
checkpoint ¢; over time 7. For this method (the Poisson
method) the results from different simulations can be com-
bined by simply summing over the respective n;s and the
simulation lengths of the individual simulations. The Poisson
method significantly extends the range of MFPTs that can be
estimated and, additionally, allows us to gauge the influence
of correlations between crossing events on their statistics.

C. The (1+1)-dimensional EW interface

For the (141)-dimensional EW interface a wide array
of results is available. It has been shown that a tagged
random walker within the interface behaves according to frac-
tional Brownian motion [48,49] with a Hurst exponent of
H = 1/4 [43,50] (for conventional diffusion H = 1/2). This
suggests that also the MRH shows some non-Markovianity.
Nevertheless, a calculation of first-passage times (FPTs) by
Gross [43], from an initially flat interface to a given value of
the MRH, found that they follow a Kramers-like form [51] of

2
d } (57)

2
2014

T(¢) = TOCXP[

where alzd ~ L/(By) and ¢ > w. A dimensional analysis in
Ref. [43] shows that 7y ~ L*. No theoretical argument has yet

predicted the value of the exponent «, but numerical results in
Ref. [43] suggest that « = 2.

Figure 6 presents a similar analysis, however, we calcu-
late the MFPT not from an initially flat configuration but
rather from configurations observed along long trajectories.
For small 7 the Poisson method underestimates the MFPTs,
as judged by results from the direct method that should be ac-
curate in this regime. In the intermediate range of T values we
find excellent agreement between the two methods, indicating
that different crossing events are indeed largely uncorrelated.
For large values of T we expect the MFPTs measured using the
direct method to approach 7 /4 (see Appendix D) and, indeed,
this is the behavior we observe.

To estimate the scaling behavior of 7(¢), we show in the
lower panel of Fig. 6 the MFPTs as a function of ¢2/L as
suggested by Eq. (57). We observe that for values ¢2/L larger
than 1, 7(¢) is approximately proportional to ¢/, where a
is a constant (as was previously observed for the FPTs). The
scaling of the prefactor 7, approaches a behavior proportional
to L? in the limit L — oo.

In summary, we observe the MFPTs to approach the form
of Eq. (57) as the system size and the value of ¢ increase.
Assuming that Eq. (57) holds, we substitute k(¢) = K(£) =
1/7(€) into Eq. (40). Solving for £* then yields a prediction
for the most likely contact distance between two interfaces,

2
() = 2aﬁdw< 814 ) (58)

where W(x) is the inverse of f(x)= xexp(x), otherwise
known as the Lambert-W function. Substituting tp ~ L%,
ol ~L,D ~ L™" and using the fact that for large arguments
W becomes logarithmic [52],> we get

" ~ /Llog(cL), (59)

where c is an L-independent constant, just as anticipated from
the simple reasoning of Sec. II. The exponent « ultimately
only appears as an argument to a logarithm and, hence, be-
comes a multiplicative factor in front of the scaling function.
Notice the key result here that the most likely contact distance
between two EW interfaces scales sublinearly with the system
size.

The equilibrium condition (41) can now be assessed
by substituting the rate function (57). Since the diffusion
timescale increases with increasing Z, it is sufficient to show
that the equilibrium condition is fulfilled at £ = £*. Hence, we
substitute the solution (58), approximate W by the logarithm,
and simplify the expression to

1 o2 L
B2 PO I =~ const. (60)
Tilx le=p* 2 TrlxD L (I/L)

This implies that, if the interfaces have time to relax at one
system size around £*, the relaxation condition (41) is fulfilled

%In particular

logx —loglogx < W(x) < logx.
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FIG. 8. Mean first-passage times of the maximum relative height at checkpoints ¢, t(¢) calculated from long equilibrium simulations of
(2+1)-dimensional EW interfaces of several sizes L [L increases from left to right in (a) and from top to bottom in (b) and (c)]. (a) The results
obtained using the direct method (solid lines), and using the Poisson method (dashed lines). (b) Same data scaled by /L and as a function of
the shifted values ¢ — Zo. (c) Same data as a function of (¢ — Zy)?. The dashed black lines represent Eq. (63) where 7, has been used to shift
the curve. The values of o, and Zo were taken from the fit shown in Fig. 7. The dotted lines show the exponential behavior of Eq. (64) where
the parameters 7y and o, were chosen by fitting to the data and the curve was subsequently shifted towards smaller t for clarity. As in the
(14+1)-dimensional case, Tgiecr approaches 7 /4 in the limit of large 7. Inset: t as a function of L at a fixed value of E =¢ —S(L)=1.25. See

Appendix E for the same plot at other values of .

for all system sizes, allowing us to extrapolate our results to
large system sizes.

In Sec. V we test these results using simulations of the two-
dimensional Ising model as an example. First, however, we
present a similar analysis of the (241)-dimensional interface.

D. The (2+1)-dimensional EW interface

Less is known about the properties of the (241)-
dimensional EW interface than the (1+1)-dimensional inter-
face. The equilibrium probability distribution P(¢ ) is expected
to be Gaussian for large values of ¢ [53-55] and in the limit
N = L/Ax — oo the distributions for different system sizes
(but the same value of By) can be collapsed by applying the
transformation [54]

E=c— [t (1) =< - s

as shown in Fig. 7. Here we have defined the shift S(L) =
/2/(mBy)log(L/Ax). Notice that this expression explicitly
references the discretization length Ax even in the contin-
uvous limit. This is a direct consequence of the fact that
the width of the (2+41)-dimensional interface diverges in the
same limit [39,46] and, therefore, one has to choose a fixed
discretization length in order to predict quantities related to
the width of the interface. Figure 7 shows the free energies
BF(¢) = —log P(¢) for a number of system sizes together

(61)

with a fit of

(€ —)*

,BFgauss(C) = 20_g2 (62)

to the large ¢ tail of BF. While the fact that the tail of
these distributions is Gaussian can be shown from first princi-
ples [54], no theoretical argument that determines the constant
Zo exists so far. We determined o, and Zo from the fit shown in
Fig. 7.

The functional form of t(¢) is not known analytically. As
was done in the (1+41)-dimensional case, also here one can
propose a Kramers-like form for the MFPT based on Eq. (62),
given by

= 50)2}.

63
02 (63)

T(0) = ToeXP[

Figure 8 shows the MFPTs calculated from simulations.
For the smallest system size of L = 10 excellent agreement
with Eq. (63) is found by fitting 7y, while using the parameters
o and o0, determined from the free energy landscape.

As L increases, however, two changes can be observed:
first, the ¢ ranges where direct and Poisson method yield
different results become larger and, second, as L becomes
larger the t(¢) is not well described by Eq. (63). Rather, the

062801-10



WEAK SCALING OF THE CONTACT DISTANCE BETWEEN ...

PHYSICAL REVIEW E 102, 062801 (2020)

MFPTs depend exponentially on ¢, like

f(§)=foeXP[§U§°} (64)
where 7y ~ const. We are not aware of any theoretical pre-
diction of this behavior, and in the following we will explore
the consequences of both the behavior of Eq. (63) and the
exponential behavior of Eq. (64) on the most likely contact
distance £*.

We start with the exponential rate function implied by
Eq. (64), which appears to hold for large L in the EW model:

k() = 7;0*1 exp [_ﬁ} (65)
Oe
Substituting into Eq. (39) and solving for £* yields
1602 -
0" = oo log [ —22 ) + S + &. (66)
9DT()

With the scalings o, ~ const., D ~ L2, and 79 ~ /L the
scaling of £* with system size becomes

£* ~log(cL), 67)

where ¢ gathers all L-independent factors. With the same
scalings the equilibrium condition (41) yields

2
(95} o const.
= —%_ ~ _—— ~ const., (68)
Trlx TrlxD LzL_z

indicating that, if the system fulfills the equilibrium condition
at one system size, it also fulfills it at larger system sizes and
that we can extrapolate our results to large L.

The above scaling is exactly what was expected based
on the simple derivation sketched in Sec. II. However, the
path that leads to this result is unexpected: it requires a careful
treatment of the contact distance distribution and is based on
the unexpected rate expression (64) that likely is the result of
strong correlations in the dynamics of the interface.

The Kramers rate expression (63), which was the basis of
the argument in Sec. I, leads to the slightly different result

(0* = S(L)— &) = 2AZW(8L’§) (69)
fo)" = oD )’

where, again, W (x) is the Lambert W function. Substituting
the above scalings then leads to

0* ~ J/log(cL 21 L ¢ 70
og(cL) + 2By Og(E>+§o, (70)

where ¢ is a constant with regard to L and we have approxi-
mated W (x) by log(x) [52] as before.
The equilibrium condition (41) reads as

p 1O gz const.
— == ~ ~ const., 71)
Trlx 2 DTrlx L2(1/L2)

once again indicating that, if the interface has time to equili-
brate at a given system size, it also has sufficient time to do
so at larger system sizes. The above result is somewhat more

involved since it involves the discretization length Ax. But
also here, the growth of £* with system size L is expected to
be slow.

Note that the first term of the result (70) resembles the first
term of the semiempirical expression for the average distance
between two static (241)-dimensional interfaces that are in
contact with each other at a single point,

Leont 0.5772
= J/4log(k,L) + —————, 72
Wy ogleul) + 4log(ky) (72)

proposed by Ponthus et al. [16] based on results from extreme
value theory by Preumont [59]. Here £,y is the average dis-
tance between two interfaces that are in contact in a single
location, wy is the root mean square width of the interfaces,
and «,, and «,, are factors derived from moments of the power
spectral density that describe the fluctuations of the interface
at hand.

In the next section we compare these predictions derived
using the EW model to simulations of more realistic systems:
the Ising model and a system that contains Lennard-Jones
liquid-vapor interfaces.

V. THE STABILITY OF SLABS IN SIMULATIONS

As an example for systems where the interactions of two
interfaces play an important role, we examine the stability of
slabs formed in molecular simulations of phase-separated sys-
tems where periodic boundary conditions are used (see Figs. 1
and 2 for examples). Here the slab shape is the thermodynam-
ically stable shape for clusters within a certain range of sizes,
because the overall surface is smaller than the surface that
would be formed by other geometries (spheres, cylinders, or
disks). The sizes where the slab is thermodynamically stable
can be determined by comparing the surface area of the slab
to the competing geometries—a disk in (14-1) dimensions and
a cylinder in (241) dimensions. Denoting with €2 the area or
volume of the system simulated and with €2, the area or vol-
ume of the critical cluster where the slab geometry becomes
stable with respect to the competing geometries, the result is
Q./Q = 1/m in both (141) and (2+1) dimensions. In other
words, the slab geometry becomes thermodynamically stable
when the cluster makes up more than a certain area/volume
fraction of the system. As the cluster becomes larger than half
the size of the system, the two phases switch their roles and
the sequence of geometries inverts; the phase that previously
formed the cluster now envelopes a cluster of the other phase
that takes on the different geometries.

In order for a slab to change its shape to another geometry,
the two interfaces have to come into contact first. Assuming
that this is the rate controlling step of the process, the width
of slabs that are observed immediately prior to their transition
to a disk or a spherical shape is therefore expected to scale ac-
cording to Eqgs. (59) and (66), in (141) and (2+1) dimensions,
respectively.

In the following we investigate these widths in simulations
of the ferromagnetic Ising model for zero field in (141) and
(24+1) dimensions as well as in simulations of a Lennard-
Jones liquid at coexistence with the gas phase. All quantities
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FIG. 9. Density of spins that belong to slabs that are observed
just prior to a hole forming in trajectories of the 2D-Ising model.
Prior to averaging, the slabs have been aligned with respect to their
centers-of-mass at x = 0. The distance x is measured in units of the
lattice spacing between spins. Different colors correspond to differ-
ent linear system sizes L. The widths indicated are the full-width at
half-maximum.

are presented in terms of reduced units of the respective
system.

A. Simulation details

Ising model simulations are performed on square and cu-
bic lattices with ferromagnetic nearest-neighbor interactions,
vanishing external field, and periodic boundary conditions in
all directions. We set up a simulation box that contains a slab
of spins pointing in the up direction, which includes 50% of
the available spins. Trajectories are run until the first hole
appears in the slab and the configuration observed just prior
is analyzed. The detection of holes in the slabs is detailed in
Appendix F. Roughly 500 trajectories have been generated for
each system size.

In order to find the average width of the slabs in these
configurations, the configurations are then aligned according
to each slab’s center-of-mass and the spin values are averaged
over the in-plane directions of the slab. From the resulting
distribution (see Fig. 9 for examples) we calculate the full-
width at half-maximum distance (FWHM) which is plotted as
I* in Figs. 10 and 11. Alternatively, the width of the slab can
be calculated from the magnetization of the configurations,
taking into account the bulk magnetization of the all-up and
the all-down phase at the given temperature (see Appendix H
for details). Both approaches yield similar results.

In the case of the three-dimensional LJ system, we first
calculate the vapor pressure of a system of 20 133 atoms in
a slab configuration (periodic boundary conditions applied
in all directions), in the canonical ensemble at 7 = 0.63,
using a simulation box of 35 x 35 x 35. After averaging over
500 000 time steps, sampling every 10 steps, we obtain a
reduced pressure of p = (5.9 £ 0.5) x 1073, which we use as
the reference pressure for the subsequent sets of NpT simu-
lations. All molecular dynamics simulations were performed
using the GROMACS simulation package [60] (version 5.1.2)
with an interaction cutoff of 2.05. We integrated the equations
of motion using the leap-frog integrator with a time step of
4.65 x 10~* which is equivalent to 1 fs using parameters for
argon. To simulate the NV T and N pT ensembles, we used the
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FIG. 10. I*(L) for the (141)-dimensional Ising model. The
widths ¢* are the average of the full-width at half-maximum
(FWHM) of the spatial distribution of spins that belong to a cluster
that is observed just prior to a hole forming. Error bars indicating
an error level of one standard deviation are smaller than the symbol
size. The blue line is a fit to C;/LW (C,L) in line with Eq. (58).
The resulting parameters are shown in Table I. The dotted black line
indicates the slab width below which a disk-shaped cluster becomes
the stable configuration in equilibrium.

Nosé-Hoover [61,62] thermostat and the Parrinello-Rahman
barostat [63], respectively.

Next, we prepare the systems for the N pT simulations with
different cross-sectional areas by cutting out boxes of 4.4 x
4.4, 8.8 x 8.8, 17 x 17, and 26 x 26 from the original one.
For each size, we run a short NVT relaxation and generate

=== Exponential k(£) [
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X Simulation
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: ﬁ—-&—s——fefi———n————*—-+
M + + ©
0 - T T T
0 20 40 60 80
L

FIG. 11. [*(L) for the (2+1)-dimensional Ising model obtained
by calculating the full-width at half-maximum (FWHM) of the spa-
tial distribution of spins that belong to a cluster that is observed just
prior to a hole forming. Error bars indicate an error level of one stan-
dard deviation. The lines are fits to o log(a,L) and B+/Tog(B;) +
S(L) + &, corresponding to choosing k(£) as an exponential function
and a Gaussian, respectively [see Eqs. (66) and (70)]. The resulting
parameters are shown in Table 1. The dotted black line indicates
the slab width below which a cylindrical cluster becomes the stable
configuration in equilibrium. The inset shows the deviations of the
fitted functions from the observed data for exponential k(£) (blue
crosses) and Gaussian k(£) (red circles).
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20 different initial states by choosing random initial velocities
taken from a Maxwell distribution at 7 = 0.63. We integrate
the equations of motion at constant temperature (7 = 0.63)
and normal pressure (p = 5.9) for 200 000 time steps for each
of the randomized starting configurations. For this particular
setup that sets only the pressure normal to the interfaces, we
use three uncoupled Parrinello-Rahman barostats, each in one
of the three spatial directions, but we vary the box length
only along the direction of the interface normal. In this way
we impose a constant length for the simulation box edges
along the two directions perpendicular to the surface normal.
Because the conditions chosen are close to coexistence, during
these runs some of the simulation boxes increase their volume,
while some others decrease it, bringing the two interfaces
eventually in contact.

Unlike in the Ising model, in an off-lattice system like
the Lennard-Jones fluid it is necessary to introduce an ad-
hoc characteristic distance d, to determine which molecules
belong to the vapor phase, and when two interfaces can
be considered to be in contact. We have chosen the value
d. = 1.32, roughly corresponding to the distance at which the
pair distribution function crosses 1.0 after the first maximum.
We used the distance d,. to perform a cluster analysis of the
frames, where we determined the liquid fraction of the system
to be the largest connected cluster in the system. Next, we
performed an analysis of the interfacial atoms using the ITIM
algorithm [64] in the pytim analysis package [65,66] using
a probe sphere radius of 0.5 [67]. In a last step we use an
additional clustering analysis with the same cutoff parameter
d., this time performed only on the set of interfacial atoms,
and consider the two interfaces to be in contact as soon as the
two interfacial layers become a single cluster.

Since the interfacial analysis is computationally expensive,
a bisection approach can be helpful in the analysis of tra-
jectories, where one checks only the frame in the middle of
the search interval, updating the search interval to the right
half if no contact is found. This strategy reduces the number
of frames to be analyzed from the order of the total number
O(N;) to O(log, N;), where N, is the number of frames ob-
tained from the simulation over time . Once the frame at
which the contact takes place is identified, we compute the
root mean square width of the slab as

(73)

where the sum extends over the N; surface atoms, z; is the
position along the surface normal of an interfacial atom, and
Z = > z;/N;. Figure 12 shows the averages of § over all tra-
jectories observed for a given linear system size L as [*(L).

B. Results

Figure 10 shows the data obtained using the (141)-
dimensional Ising model together with a fit to the predicted
scaling (58). The data is in excellent agreement with the
predicted scaling.

For (2+41)-dimensional interfaces two predictions have
been made in Sec. IV that are derived from assuming different
dynamics of the maximum relative height of the interface ex-

X Simulation — éxponential k()

5 7 Equilibrium == = Gaussian k(£)

4
« 37

2 -

{VA ———

!..
0 . T T T
0 10 20 30 40
L

FIG. 12. [I*(L) for the (241)-dimensional Lennard-Jones system
where a slab of liquid coexists with a slab of gas. The widths are
determined by averaging the values § in Eq. (73) over all observed
trajectories. The error bars indicate an error level of one standard de-
viation. The lines are fits to o log(a,L) and By+/Tog(B,) + S(B3L),
corresponding to choosing k(£) as an exponential function and a
Gaussian, respectively [see Eqgs. (66) and (70)]. The resulting pa-
rameters are shown in Table I. The dashed black line indicates
the slab width below which a cylindrical hole becomes the stable
configuration in equilibrium. The inset shows the deviations of the
fitted functions from the observed data for exponential k(¢) (large
blue circles) and for Gaussian k(£) (small red circles).

pressed by the rate function k(£). In Figs. 11 and 12 fits to both
predicted scalings are shown and the resulting parameters are
listed in Table I. Note that the second term in the scaling law
for the (2+1)-dimensional case, Eq. (70), requires knowledge
of the surface tension y. In case of the (2+1)-dimensional
Ising model we use a value of y = 1.15095 as obtained in
Ref. [68]. We use the surface tension extrapolated to L = 0o
here, since finite size effects are already included in the EW
model. In the case of the LJ liquid-vapor interface we use a
value of y = 1.97, which is obtained from a linear extrapola-
tion of the data provided in Ref. [69] to the temperature used
in the simulations presented here.

For the (2+41)-dimensional Ising model the best fit is
obtained by assuming a Gaussian form for k(£), while the
prediction for exponential k(£) shows systematic deviations.
The agreement between data and the prediction for a Gaussian
rate function is excellent, indicating that the fluctuations of
the interfaces in the system are, indeed, well described by
Gaussian rate functions.

TABLE 1. Parameters obtained by the fits shown in Figs. 10
through 12. All parameters are given in reduced units.

Ising (141)-dim. Ising (2+1)-dim. LJ (24+1)-dim.

C, =043 o =35 o =0.84
C, =2.6x10° o = 0.39 o =2.6
B =6.1 B =16
B =021 B =174

B3 = 0.49
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In the (2+1)-dimensional LJ system such a clear distinc-
tion cannot be made. Both assumptions for k(£) yield fits of
similar quality. Note that since the value of Ax is unknown
in the case of the LJ model, we have used its value as an
additional fit parameter. Nevertheless, the slow growth of the
contact distance is confirmed.

Figures 10 through 12 also show equilibrium expectations
for the stability of slabs. For values of the distance between
the two interfaces £ below the dashed black lines, slabs are
thermodynamically unstable with respect to other geometries.
From both theory and simulations we find that slabs persist
to much smaller interface separations. For large enough sys-
tem sizes, the transition from slab to the other geometries
is suppressed in all cases by the slow dynamics of extreme
interfacial fluctuations. Also, the discrepancy with equi-
librium expectations grows with increasing system size.
Conversely, for small system sizes, we see that slabs are unsta-
ble even though they are predicted to be stable based on their
volume alone, which is consistent with our fits and follows
from the modulation of the surfaces by capillary waves. Also
this regime is well described by the theory developed in this

paper.

VI. SUMMARY AND CONCLUSIONS

We have presented a general approach to calculate the
distribution of contact distances between two surfaces that are
modulated by fluctuations and at the same time diffuse freely
relative to each other. The corresponding stochastic PDE
[Eq. (6)], which can be understood as a generalized reaction-
diffusion equation, is solved approximately for different rate
functions k(£) using a path-integral method. This calculation
yields the distribution of contact distances as well as a condi-
tion for the most likely contact distance £* [Eq. (39)].

The rate function k(£), which represents the rate of form-
ing a closing fluctuation between two interfaces that are on
average ¢ apart, is in principle system specific. We have
presented simulations using a basic interface model—the
Edward-Wilkinson (EW) [39] model in both (141) and (2+1)
dimensions—where we calculated the rate functions k(¢) nu-
merically. Our results on the (1+1)-dimensional interface
confirmed previous results [43] that the rate function k(£)
is a Gaussian function of £. In the (241)-dimensional sys-
tem a more complex behavior was observed where k({£) for
small system sizes is a Gaussian, whose mean and variance
are consistent with expectations from the known free en-
ergy landscape. For larger system sizes, k(£) instead decays
exponentially.

Based on these functional forms of k(£), we calculated
expressions for the distribution of contact distances u(£) and
the most likely contact distance £*. A comparison to the
results of numerical calculations of u(£) shows an excellent
agreement with our theory in the limit of slow diffusion of the
interface, i.e., for small but finite D. Furthermore, a scaling
analysis based on the results achieved using the EW model,
yielded a scaling law for £* that shows remarkably slow
growth of the most likely contact distance with system size. In
particular, in the (1+41)-dimensional case the growth is given
by £* ~ /Llog(cL) and in the (2+1)-dimensional case £*
grows like €* ~ log(cL) if k(€) is exponential and like £* ~

JVIog (cL) + /2] By)log (L/Ax) + &y for Gaussian k(£).
Here By is the reduced interface tension, Ax is the chosen
discretization length, and g:o is a constant. In either case the
growth of £* is slow in the sense that the L dependence enters
into the fastest growing terms through log L only.

As an application of these results, we investigated the
stability of slabs of particles in molecular simulations, in
particular, the widths ¢ at which they are found to col-
lapse into more compact cluster shapes. The expectation from
equilibrium considerations alone, is that £* ~ L in all cases.
However, in order for this collapse to occur, the two interfaces
of a given slab have to come into contact with each other
first. Assuming that the dynamics of the interfaces formed
in these simulations are similar to the ones exhibited by the
EW model, it follows that the scaling laws derived above also
apply to the most likely collapse distance; a result that is in
stark contrast to equilibrium expectations. Indeed, our sim-
ulations of the (1+41)-dimensional Ising model show that £*
scales proportional to 4/L log(cL), as stated above. The results
obtained with the (2+1)-dimensional Ising model are best fit
by a model that assumes k(¢) to be Gaussian in shape and
also here the fit is excellent. Another set of simulations was
performed using a slab of a Lennard-Jones liquid that forms
two liquid-gas interfaces. In this case, based on our results we
cannot distinguish whether a better fit can be achieved using
a k(£) that is exponential or one that is Gaussian. However,
both theories fit well to the data obtained, once again con-
firming the extremely slow growth of contact distance with
system size. These results imply that, even in the macroscopic
limit, the most likely contact distance £* is microscopic, an
observation that has been made in experiments using colloidal
dispersions [11], where colloidal droplets coalesce under the
influence of gravity when there is a gap on the order of 1 um
between them.

An interesting consequence of our results is the depen-
dence of £* on log [02/(Dro)], where o is a length scale
related to the roughness of the interface,® 7, is a dynamical
factor related to the timescales of fluctuations of the interface,
and D is the diffusion coefficient that governs the evolution of
the center-of-mass distance of the two interfaces. A decrease
of D (while keeping all other coefficients constant) implies
an increase of £*, highlighting the importance of dynamical
fluctuations in scenarios of interfacial contact. The diffusivity
of two interfaces can thus be viewed as a control parameter
for tuning the distance at which they come into contact.

The results presented in this work have been achieved
by using results about the maximum relative height (MRH)
observed in the Edward-Wilkinson model and extending them
to other systems. This yielded an excellent match between
simulation results and theory for the systems that were investi-
gated. These results should be transferable to other interfacial
systems provided that the dynamics of the MRH are qual-
itatively similar to the EW model. An extension to other
situations can be made using the remarkably simple condi-
tion (39) that allows a prediction of the likely contact distance

3The length scale o is subtly different in the (14-1)- as opposed to
(2+1)-dimensional system. See Secs. IV C and IV D for details.
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under some general assumptions, should interfaces exhibit
different dynamics.
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APPENDIX A: GENERALIZATION TO ARBITRARY
DIMENSION

We discretize the Hamiltonian Eq. (44) on a d-dimensional
grid with grid spacing (Ax); in direction i. We arrive at

ni—1 ng-1—1

-t %

Ja—1

d—1 2
(hjl sJit e jam1 T hjl wees Jiseen jd—l)

O T seoes Jivees 7 Al

» { 3 T (A

i=1
where hjl ,,,,, Jao1 = h{j} = h[j](AX)l, ey jd_l(Ax)d_l] and
n; and (Ax); are the number of nodes and the discretization
step size in dimension i, respectively. Calculating the deriva-
tive with respect to Ay yields the force

d—1 d—1
h. j+1,..—2h . +h_j-1..
Fij = V[H(Ax)k] > (ij)2 —

k=1 i=1

(A2)
and the equation of motion
d-1
hijy = ByTIDy Y 87h(jy + /2Donj. (A3)
i=1
Here we have introduced the abbreviations
d—1
= []‘[(Ax)k} (A4)
k=1
and
‘Sizh{j} _ h. j+1,.—2h. . .. + h...,j,»—l,.“. (AS)

(Ax)?

APPENDIX B: CONTACT DISTANCE DENSITY
DISTRIBUTIONS

In Sec. III B we have derived an approximate solution for
the distribution of contact distances between two interfaces
u(l) given a rate function k(¢):

k(£)3/467§0(l)
ul) ~ ————-—.
2Dk (£y)V/4Z
In this section we explicitly calculate u(€) for exponential and

Gaussian rate functions and test our results by comparing u(/)
to distributions obtained from a simple Gaussian random walk

(BI)

0.4 T 2.0
— D =10! =—— D=10""
_ 0 — _ -2
0.3 - D_|10 D =10 L 15
\

S o J S
=t 0.2 \ 1.0 =
0.1 - 0.5
0.0 = - 0.0
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FIG. 13. Comparison of Eq. (B6) (lines) to results obtained from
random walk simulations (histograms) for an exponential rate func-
tion k(£) (dashed line) and different values of the diffusion coefficient
D. The other parameters are: v =1, A = 1, £, = 10, and Ar = 0.1.
The gray curve indicates the values of the rate function k(¢). D
decreases from left to right.

model. Random walkers are started at £y and their positions
are updated according to

Liz1 =4 + V2DALE,

where & is a random number chosen from a Gaussian distri-
bution with zero mean and unit variance. Each time step the
walker reacts with probability

(B2)

Po=1— ek, (B3)

If a reaction occurs the position is saved and added to a his-
togram. The results of these simulations are shown in Figs. 13
and 14.

1. Exponential rate functions

We first calculate u(l) for the exponential rate function

k(£) = ve t/", (B4)
1.5 15
D=5 x 1071 D=5 x10"°
D =5x 1072 === D =1x 1073
- 10
S
N =
- 5
T I~ O
4 6

FIG. 14. Comparison of Eq. (B11) (lines) to results obtained
from random walk simulations (histograms) for different values of
the diffusion coefficient D. The other parameters are: v = 10, w = 1,
£y = 10, and Ar = 0.1. The dashed gray curve indicates the values
of the rate function k(€). D decreases from left to right.
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where £y > €. Substituting the “action” Sy, given by

~ v ¢ ,
S0 = /= / At et/en
Lo
= /ﬁ[e—é/(m) _ e—Eg/(ZA)],
D

into Eq. (B1) yields the distribution

2
u(t) = %k(zf/“ exp [—\/ “T”e-f“w]. (B6)

This result becomes exact in the limit D — 0 and, indeed, it
is in excellent agreement with the data obtained from random
walk simulations as D becomes small. The results are shown
in Fig. 13. Note that the constants Z have been obtained by
numerically normalizing the distribution u(¥¢).

We can also predict the most likely contact distance ¢*
by setting the derivative of logu(¢) to zero and solving the
resulting equation, which yields

(BS)

N 16 A%v

2. Gaussian rate functions

The rate function k(£) is now given by a Gaussian

£2
k(€) = vexp |:_2_w2] (B3)

where we assume that £) > w > 0, v is a positive prefactor,
and £ < £y. Substituting this rate function into Eq. (35) yields

~ v ¢ 02
So=.=1[ dv —— |, B9
o=\ [ e s ] (89)
which can be expressed in terms of an error function:

~ v w? £ £
So = erfl] — | —erf{ — ) |.
D 2w 2w

Substituting into Eq. (B1) we arrive at

VW erf(iﬂ. (B11)
D 2w

The maximum of this u(£) can again be calculated, yielding

) = 2w*W 8w’y ,
9 D

(B10)

u(l) = %k(£)3/4 exp [

(B12)

where W is the Lambert-W function. In the limit of large L we
can approximate W (x) ~ log(x), yielding

¢ 2log (S (B13)
=w og| -———|.
\9D
Figure 14 shows a comparison of this solution to the simu-
lation results where the distribution u#(£) has been normalized
numerically. Also here the agreement between the two is
excellent in the limit D — 0.

TABLE II. Simulation parameters used to calculate MFPT data
for the (1+41)-dimensional EW interface. Shown are the length of
individual simulations 7, the extent of the equilibrium region £, and
the number trajectories used ng, as a function of linear system size L.
For {10 and {pigh the corresponding value of Z is given in parentheses.

£
L T {low ;high nr
10 1.5 x 107 1.298 (0.410) 1.614 (0.510) 16
20 1.5 x 107 2.000 (0.447) 2.447 (0.547) 16
50 1.5 x 107 3.423 (0.484) 4.130 (0.584) 12
100 1.5 x 107 5.209 (0.521) 6.209 (0.621) 12
150 1.5 x 107 6.380 (0.521) 7.605 (0.621) 12
200 1.5 x 107 7.367 (0.521) 8.781 (0.621) 12
400 15 x 107 11.155(0.558)  13.160 (0.658) 10
500 1.5 x 107 12.477 (0.558) 14.713 (0.658) 10
1000 1.5 x 107 17.646 (0.558) 20.808 (0.658) 8
2500 1.5 x 107 27.900 (0.558) 32.900 (0.658) 10
5000 1.5 x 107 39.457 (0.558) 46.528 (0.658) 9

APPENDIX C: MEAN FIRST-PASSAGE TIME
CALCULATION

In Sec. IVB we have outlined two different methods of
calculating the mean first-passage times (MFPTs): the direct
method and what we termed the Poisson method. In this
Appendix we provide the parameters used to carry out these
calculations as well as the algorithmic details of the direct
method.

Both methods require a choice of the equilibrium region £
which are gathered in Tables II and III. These regions were
chosen based on a previous calculation of the free energy
BF(¢) = —log P(¢), where P(¢) is the equilibrium probabil-
ity density as a function of the maximum relative height ¢. The
results of this calculation are shown in Fig. 15 together with
the chosen regions that are centered around the minimum of
the respective free energy.

In the direct method we average the waiting times between
configurations in £ and the system reaching a checkpoint ¢;

TABLE III. Simulation parameters used to calculate MFPT data
for the (241)-dimensional EW interface. Shown are the length of
individual simulations 7, the number of trajectories used ng, and
the extent of the equilibrium region £ as a function of linear system
size L. For {0y and Cyign the corresponding value of Z is given in
parentheses.

&
L T Clow Chigh nR
10 3 x 107 1.287 (—0.55) 2.388 (0.55) 11
20 3 x 107 1.840 (—0.55) 2.941 (0.55) 11
40 3 x 107 2.393 (—0.55) 3.494 (0.55) 11
80 3% 107 2.946(—055) 4047055 10
120 3 x 107 3.269 (—0.55) 4.371 (0.55) 9
200 2.14 x 107 3.677 (—0.55) 4.778 (0.55) 6
400 2.63 x 107 4230(—0.55)  5.331(0.55) 7
800 1.22 x 107 4.783 (—0.55) 5.884 (0.55) 4

062801-16



WEAK SCALING OF THE CONTACT DISTANCE BETWEEN ...

PHYSICAL REVIEW E 102, 062801 (2020)

=10 L = 150
=20 — [, = 200
=50 L = 400
= 100
T T
30 40

20‘(b)

16 /
e . =
Q = P

4 4 S z_] I — L = 40

| m— [, = 80

0 1 lr L =120

T T T T T
1 2 3 4

FIG. 15. Free energies BF(¢) = —log P(¢) as a function of the
maximum relative height ¢ for the (1+1)- (a) and (24 1)-dimensional
(b) Edward-Wilkinson interface. For clarity, the curves have been
shifted for different system sizes so that L increases from the bottom
line to the top. The dashed vertical lines indicate the equilibrium
regions £ that were used in the MFPT calculations. These results
have been obtained using umbrella sampling simulations with har-
monic biases that were subsequently matched using the WHAM
method [56-58]. For details on these simulations see Appendix G.

the next time (see Fig. 5). Here we write Tj(i) for the times a
crossing of checkpoint ¢; occurs and t;;;) for the times when the
system is found in region £ in between the hits at time Tj(i)l
and Tj(i), i.e., all the times where the next crossing occurs at

7O, N is the number of times t](.,? observed. The MFPT for
checkpoint ¢; is then given by

N(x)

(¢ = SN (,)ZZ —13), (C1)

j k=1

where the ) ; tuns over all checkpoint crossings j. This can
be rewritten in the computationally more convenient form of

N
1 o L
— Op@ _ (@)
T(fﬂ—wz NI =D il ] (©
i

k=1
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FIG. 16. (a) Ratios of mean first-passage times for (141)-
dimensional EW interfaces calculated using the direct method to
the ones obtained using the Poisson method ¢ = Tyirect/ TPoisson-
The dashed lines represent the expected values for large ¢ — S(0),
(T /4)/ Troisson» that come about due to the finite length of the trajec-
tories used to calculate tge. The dotted black lines are fits to the
function ¢ = 1 + Aexp(—Z/«). (b) g — 1 plotted on a logarithmic
scale. Inset: Fitted parameters « as a function of inverse system
size 1/L. The data suggests that lim; ., k(L) = const.. In both plots
system size increases from the bottom line to the top line.

Hence, to calculate the MFPTs directly, two sums have to be
kept and updated each time the interface ¢; is crossed: Z_,' N}’),

@) 0 (i) (l)
2 WNUT; Zk 1t

APPENDIX D: DIRECT VS POISSON METHOD IN THE
(14+1)-DIMENSIONAL EW MODEL

In Sec. IV B we present mean first-passage times (MFPTs)
calculated using two different methods: (i) a direct average of
waiting times between visiting the £ region (see Appendix C)
and crossing a given checkpoint ¢;, and (ii) an evaluation that
assumes that the statistics of these crossing are Poissonian
statistics. In this Appendix we present an analysis of the dif-
ferences between the results obtained using these two methods
and their dependence on system size L.

Figures 16 and 17 show the ratios of the MFPTs calculated
using direct and the Poisson method, ¢({) = Tdirect/ TPoissons
for the (141)- and the (2+41)-dimensional EW interface,
respectively.

As was noted in the main text, the direct method is lim-
ited by the length of trajectories used because the a priori

062801-17



CLEMENS MORITZ et al.

PHYSICAL REVIEW E 102, 062801 (2020)

L =10
L =20
L = 40
L = 80
c
2 L =120
5 L = 200
& L = 400
~ L = 800
>
8]
L
E
—
| 109 4
c E
[0 ] T
@ ]
© ] 1000
S i
g .
g 1077 3
© ]
1072 :
6

FIG. 17. Same analysis as in Fig. 16 for the (2+1)-dimensional
interface. Inset: k as a function of L. The dashed line indicates a
fit of k(L) = AL®, where A =~ 0.03 and B ~ 0.67. In contrast to the
(141)-dimensional system, ¥ grows with system size. System size
increases from the bottom to the top line.

probability of observing a given waiting time is not the same
for all waiting times t,,. We assume the distribution of wait-
ing times py, (fy) to be time-independent and that subsequent
checkpoint crossings are independent of each other. Consider
a set of simulation runs of length 7 over which we calculate
the average waiting time of such events.

We first calculate the waiting time for a single fixed starting
time of the waiting period 0 < ¢t < 7. The expected observed
average waiting time starting from ¢, (), is given by

1 T "o ”
(tw>t = %/t dr”(t _t)pw(t —1)

1 Tﬁt 1.7 !
= %fo dr't py(t)), (D1)

where in the second line we have substituted ' = (+” — ) and
Z(t) = OT_t dt' py(t") normalizes the distribution of events
observed in the limited time 7 — 7. Now we can average over
the starting points ¢ to arrive at the overall expectation value
for the observed waiting times:

1 T 1 T—t . )
(tw) = 7—_/0 dt%/o dt't' p(t)). (D2)

As an illustrative example, consider waiting times that are
distributed according to a Poisson distribution: py(ty) =

10°
=& ¢°/L =0.75 = ¢?/L =1.25
=€ (*/L =1.00 = (*/L =1.50
106_
. -
C /”’2
103- L2 2 ’/’ CX:L
(r{ PR A
X - ¢?/L =1.75
i
0 7y - =& ¢2/L = 2.00
10° +r—m——rrr——rrrr——rrry
10! 102 103 104

L

FIG. 18. Mean first-passage times 7 as a function of linear sys-
tem size L at fixed values of £ = ¢/L? for (14+1)-dimensional EW
interfaces. The dotted line indicates a value of t = 7 /4, where T
is the length of the simulations used to calculate the MFPTs. ¢2/L
increases from the bottom to the top line.

T~ le™™/T A calculation of (t,,), yields

T—t

e =7+ T— 75

(D3)
As expected, the second term vanishes in the limit 7 — oo to
recover the well-known result for Poisson distributions.

The result of the second integration in Eq. (D2) cannot be
expressed in terms of basic functions, however, in order to
assess the effect of limited simulation time we now consider
the regime where 7 — t < 7. Expanding (t,), to first order in
(T — 1)/t yields

(tw)e ~ 3(T —1). (D4)
With this approximation carrying out the second integral in
Eq. (D2) then gives

7—
(tW) ~N—,

7 (D5)

which is solely determined by the length of the trajectories.
The same result can be achieved by simply assuming that
pw(ty) is a constant over the range [0, 7]. This result is rep-
resented by dashed lines in Figs. 16 and 17 and is in excellent
agreement with the observed decline of g(¢) at large ¢.

For both dimensionalities we observe an exponential de-
cay of g(¢) with ¢ before the deviations due to finite 7
drop g to zero. The indicated fits of g(¢) = 1 + A exp[—( —
o) /k(L)] to the data reveal a qualitative difference between
the (141)- and the (241)-dimensional system: while the pa-
rameter « (L) approaches a constant value as L increases for
(1+1)-dimensional interfaces, in the (2+1)-dimensional case
k(L) grows with system size.

APPENDIX E: SCALING OF MFPTs WITH SYSTEM SIZE

In Figs. 6 and 8 in the main text we have shown examples
of the scaling behavior of T(L) at fixed values of ¢. Figures 18
and 19 show the functional form of (L) for a broader range
of ¢ values.
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FIG. 19. Mean first-passage times t as a function of linear sys-
tem size L at fixed values of Z = ¢ — S(L) for (2+1)-dimensional
EW interfaces. ¢ increases from the bottom to the top line.

APPENDIX F: DETECTION OF CLUSTER GEOMETRY IN
THE ISING MODEL

We present an algorithm that detects the geometry of a
given cluster in simulations of the two- and three-dimensional
Ising model with periodic boundary conditions. This includes
the detection of holes in slabs. As a first step, we identify
the largest cluster of neighboring spins that point in a par-
ticular direction within the system, the so called geometric
cluster [70,71]. The neighbors of a given spin are all spins
that can be reached by making a step of 1 in each direc-
tion separately. Diagonally displaced spins are not considered
neighbors.

The number of distinct geometries that are thermodynami-
cally stable states if one fixes the magnetization of the system,
depends on the number of dimensions. Consider clusters in
two dimensions that consist of spins that point up. There
are three stable geometries in order of increasing magnetiza-
tion [21]: a disk of spins pointing up, a slab that points up
next to a slab that points down, and a disk that points down
(see Fig. 20). In the following we will refer to these states
as disk, slab, and opp-disk, using the opp- prefix to identify
configurations in which the largest cluster of spins that point
in the opposite direction has the given geometry.

To distinguish between these geometries, we introduce an
algorithm that counts the directions in which a cluster is con-
nected to itself. Figure 20 shows a sketch of the principle used
to identify these geometries. We pick a random spin o from
our cluster and ask the question: how many periodic copies of
o, which are found in adjacent copies of the simulation box,
are connected to o via a path that does not leave the cluster?
Additionally, we require that these copies are distinct, in the
sense that they are not related to each other by an inversion
around o.

In the case of a disk, the answer is O; there is no path to
any periodic copy of a given spin. If the cluster is a slab the
answer is 1 since we can find a path along the y direction to a
spin offset one box-length up and another one, one box-length
down. However, these two spins are related to each other by
an inversion around o, and, hence, we discard one of them.
The last example is the opp-disk; here we can reach copies in
y direction and copies in x direction so the answer is 2.

/\L

FIG. 20. Sketch of five different states that are observed as a
function of increasing magnetization in the 2D-Ising model. In order
from top left to bottom right they are referred to as: homogeneous-
down, disk-up, slab, disk-down, and homogeneous-up. The red dots
are randomly chosen spins and the lines indicate paths that connect
those spins to one of their periodic images without leaving the cluster.
In the disk-down configuration two paths are found. One leading to a
copy of the spin that is offset by the s, box vector (red) and one that
leads to a spin that is offset by the s, vector (blue).

In order to also handle unusual cluster geometries like slabs
that are aligned along the diagonals of the simulation box
or clusters that span multiple periodic boxes before they are
connected to themselves, we can generalize this concept by
looking for the “closest” copies of our spin in terms of a
box-distance A. To define A we first note that the offset of
each periodic copy of o, can be written as

Ar = Z biS,’,
i

where the b; are integer coefficients and the vectors s; (i =
X, Y, ...) span the simulation box. The box-distance A is then

given by
A= >

By looking for the copies with smallest A, we make sure that
we start searching for copies in the neighboring boxes first.

The algorithm that distinguishes between different geome-
tries then proceeds as follows:

(1) Pick a random spin o from the largest cluster in the
system that points in the direction of interest.

(2) For d dimensions, up to 2d of the periodic images of o
that can be reached via a path that does not leave the cluster,
will have the minimum value of A, A;,. Find all periodic
images with Ap;p.

(3) Pairs of these images will be related by an inversion
around o. Keep only one copy of each of these pairs.

(4) Count the number of these periodic images found, 7.

(5) Repeat steps 1 to 4 for the largest cluster pointing in
the opposite direction. The resulting count is called 7.

(6) To determine the geometry refer to Tables IV and V
that summarize the possible geometries in two and three di-
mensions and the associated values of n. and 7c,.

(FI)

(F2)
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TABLE IV. Table of possible geometries in two dimensions, the
number of closest periodic images of a spin that can be reached
without leaving the cluster n., and the value for the largest cluster
in the opposite direction 7.

TABLE V. Table of possible geometries in three dimensions, the
number of closest periodic images of a spin that can be reached
without leaving the cluster n., and the value for the largest cluster
in the opposite direction 7.

ne 7le Geometry Ne 7le Geometry

0 2 Disk nonspanning 0 3 Sphere nonspanning

0 1 Disk* nonspanning 1 3 Cylinder spanning

0 0 Disk* nonspanning 2 2 Slab spanning

1 1 Slab spanning 2 3 Hole spanning

1 0 Opp-disk* spanning 3 3 Hole-opp-hole spanning

2 0 Opp-disk spanning 3 2 Opp-hole spanning

In these cases the disks are se d f hei iodic i b X ! Opp-cylinder spanning
parated from their periodic images by 3 0 Opp-sphere spanning

two spins that are offset by one diagonal step.

The additional geometries encountered in three dimen-
sions, shown in Table V, are cylinders, slabs with a hole
(i.e., slabs where there is a connected path through the slab
that consists of spins that point in the opposite direction),
and the corresponding opp geometries. Also, in small systems
configurations that contain an up-slab and a down-slab, both
with holes, can be found* (Hole-Opp-Hole).

APPENDIX G: MC SIMULATIONS

In the case of a (14-1)-dimensional interface the equations
of motion (43) are derived from the Hamiltonian

7/N—l Xirt — A2
=L A(L)
& 2; o Ax

The generalization to higher dimensions is straightforward
and given in Appendix A.

Free energy landscapes as a function of ¢, F(¢), are
obtained using Metropolis Monte Carlo [72] umbrella sam-
pling [73] simulations. Configurations are biased using a set
of harmonic spring potentials and the resulting histograms are

(G

“Think of two slabs next to each other. A hole is formed in one of
them by flipping a path of spins that connect the opposite cluster to
itself. Afterwards the same can be done for the opposite cluster as
well, since those two paths do not necessarily cross.

subsequently joined using the weighted-histogram-analysis-
method (WHAM) [56-58,74].

APPENDIX H: CALCULATION OF CLUSTER SIZE FROM
THE MAGNETIZATION

If a configuration from an Ising model simulation consists
of a single large cluster, the size of the cluster can be estimated
from the total magnetization. This estimate will be accurate if
the average magnetizations inside and outside of the cluster
are close to the bulk values my, = —mg = (m). This is ex-
pected to be true in the bulk of the cluster, if the cluster is
a large enough slab, so that the width of the interfaces is small
relative to the width of the cluster. Due to the symmetry of the
Ising model with respect to a flip of all the spins, effects that
stem from the surfaces of the cluster average out. Hence, we
can write

Nm ~ n(m) — (N — n)(m), (HD)

where m is the magnetization of configuration, N is the total
number of spins, and » is the number of spins in the cluster
of interest. The cluster size can then be estimated by simply
rearranging to

(H2)
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