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Dynamics of defects around anisotropic particles in nematic liquid crystals under shear
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Nematic multiparticle collision dynamics is used to simulate disclination ring defects around spherocylinders
suspended in a liquid crystal. A solvent-solute interaction potential is integrated over a short-time scale by an
auxiliary molecular dynamics procedure that updates the translational and angular coordinates of the sphero-
cylinders. For suspended particles with length in the range ∼(60, 160) nm and a fixed aspect ratio, this method is
able to simulate static defects reported previously in the literature. It also simulates orientation fluctuations of the
elongated colloids that exhibit a broad distribution and a slow relaxation rate. Finally, a nematic host driven from
equilibrium by shear flow is simulated, and the consequent dynamic behavior of the colloid-defect pair is studied.
Defects under shear present significant structural transformations from chairlike disclination rings to extended
defects that cover most of the cylindrical surface of the colloid. This effect results from the hydrodynamic torque
on the nematic field caused by the distorted flow around the spherocylinder, and it is present for small Reynolds
and Ericksen numbers of order unity.
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I. INTRODUCTION

Suspensions of colloids and nanoparticles in liquid crys-
tals are enormously interesting because of fundamental and
technological reasons [1]. The inclusion of micron-sized and
nanosized particles in a nematic medium creates topological
defects in the director field, with the average molecular align-
ment direction denoted by the unit vector n̂. Defects promote
long-range distortions and anisotropic forces that sustain self-
assembly and entanglement of colloidal chains or crystals
that could have applications for, e.g., photonic crystals and
optical cavities [2], and composite materials with new classes
of responses to external stimuli [3].

Defects are generated when the constraints imposed by
the shape and anchoring conditions of the guest particles
disagree with orientations in the bulk. Then, discontinuities
in n̂ are created that are accompanied by a pronounced local
reduction of order [4]. Strong distortions at the core relax
by aligning molecular orientations along the biaxial direction,
and the defect core itself can be identified as a region of strong
biaxiality [5,6].

Spherical colloids with homeotropic anchoring conditions,
for which solvent molecules prefer to be perpendicular to the
intruder surfaces, exhibit three types of defects in a nematic
in thermodynamic equilibrium: (i) the dipole configuration,
characterized by the formation of a hyperbolic hedgehog; (ii)
the quadrupolar configuration, where the colloid is surrounded
by a disclination ring (Saturn-ring); and (iii) the surface-ring
configuration, where the core of the disclination ring sits
directly at the surface of the colloid [7]. The occurrence of
these different defects is governed by the colloidal size and
the anchoring strength [7–9]. Anisotropic colloids create more
complex defects and assembly mechanisms in the nematic

*humberto.hijar@lasalle.mx

host. This has been demonstrated through the analysis of a
variety of structures including polygonal platelets [10], as well
as star, bullet, fractal, and peanut-shaped colloids [11–14].

Colloids with simpler but still nontrivial geometries, e.g.,
spherocylinders, ellipsoids, and bars, have been investigated
with the aim of exploring the torques and equilibrium ori-
entations that anisotropic particles encounter in a uniform
nematic, the defect structures that they produce, and the
resulting liquid-crystal-mediated interactions [4,15–24]. For
homeotropic conditions, the equilibrium state of elongated
particles with respect to the far director field, n̂0, has been
observed to depend on the aspect ratio, the length scale, the
anchoring strength, and the shape of the two particles’ ends
[4,18,20,22]. It is expected that infinitely long cylinders equi-
librate either parallel or perpendicular to n̂0 depending on
the ratio of the particle’s radius to the extrapolation length
of the solvent [15]. Micron-sized rods supplied with strong
homeotropic conditions create dipolar defects that are stable
when the long symmetry axis of the rod is parallel or slightly
tilted with respect to n̂0, whereas quadrupolar defects appear
and are stable over a large angular range around perpendicular
alignment [17]. Changes from microscopic to mesoscopic
and nanoscopic scales induce the appearance of additional
metastable defects around rodlike particles that are also highly
dependent on the spatial orientation. For mesoscopic rods
and parallel alignment, three structures—top-ring, chairlike,
and mid-ring-0—have been identified using a model of free-
energy minimization [22]. For perpendicular alignment, the
same model yields also three different defects, referred to as
chairlike, boatlike, and mid-ring-90. However, for nanosized
rods only one type of defect is found for perpendicular align-
ment consisting of a ring perpendicular to n̂0, whereas for the
parallel configuration the only defect is an extended ring or
“axially symmetric coat” that covers the entire lateral surface
of the rod [22]. Indeed, these latter structures turned out to
be very similar to those that were found earlier in studies
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of meso- and nanometric spherocylinders in nematic liquid
crystals modeled through a partial differential equation for
the evolution of the tensor order parameter, Q [4,18]. Thus,
defects around elongated particles with lengths ∼40–1000 nm
could be considered well explored for solvents in equilibrium.
In contrast, the influence of nonequilibrium conditions on
the structural properties of these topological defects has been
much less investigated.

Flow is a nonequilibrium agent that perturbs topological
defects. When colloids are placed in a flowing nematic, the
stream causes reorientation of n̂ and a consequential distortion
of the associated defects. Flow past a colloid with a Saturn
ring induces a displacement of the disclination along the
stream direction and leads to a quadrupole-dipole transfor-
mation as the ring shrinks in the wake [25–27]. Simulations
including solution of the equations for Q under an adaptive
mesh refinement [28], fluid particle dynamics [29], and ne-
matic multiparticle collision dynamics (N-MPCD) [30] have
been able to simulate this phenomenon. Downstream dis-
placement and deformation of quadrupole defects have been
also simulated for colloids in a nematic under Poiseuille
flow [31,32]. Defects and flow forces experienced by spher-
ical colloids in nematic microfluidic channels have also been
investigated [33,34]. Noticeably, the effects of flow on de-
fects around anisotropic particles in liquid crystals have been
rarely, if ever, studied. In this paper, N-MPCD simulations
are conducted to analyze the dynamics of defects around
mesoscopic elongated particles driven by a nematic solvent
under nonequilibrium flow conditions. More precisely, a ne-
matic performing tumbling motion by the action of a uniform
shear flow is considered to host a mesoscopic spherocylinder
that enforces strong homeotropic conditions. The dynamics
of the solvent is simulated under the coarse-grained rules of
N-MPCD that allow nematohydrodynamic effects to be incor-
porated while solid-fluid interactions are taken into account
through molecular dynamics (MD) of the translational and
rotational motion of the guest particle. First, it is shown that
defects simulated by MD-N-MPCD for static spherocylin-
drical colloids of length �(60, 160 nm) have the expected
structural and energetic properties previously reported for
systems of similar form, size, and aspect ratio [4,16,18,22].
Afterwards, it is found that the orientation of simulated sphe-
rocylinders moving freely in a quiescent nematic fluctuates
around configurations of low elastic energy over broad dis-
tributions which resemble those measured experimentally for
ensembles of anisotropic colloids of similar size and aspect
ratio but different shape [14,17,35]. Nonequilibrium simula-
tions are presented subsequently. Flow is restricted to small
Reynolds numbers and Ericksen numbers of order unity. It is
shown that shear promotes substantial changes of the elastic
energy and significant structural changes of the topological
defects. These effects are due to the relative rotation of the
solvent and the colloid that induces inhomogeneous hydrody-
namic torques on n̂.

II. SIMULATION METHOD

The algorithm is particle-based. Solvent particles, hereafter
referred to as pseudonematogens, are point particles of mass
m carrying a unit orientation vector, ûi, where i = 1, 2, . . . , N ,

and N is their total number. Their positions and velocities are
denoted as ri and vi, respectively. A spherocylindrical colloid
consisting of a cylinder of length L and hemispheric caps of
radius σ is immersed in the solvent. Its center-of-mass posi-
tion and velocity are R and V, respectively. R, V, ri, and vi are
defined with respect to a laboratory reference frame spanned
by the orthonormal base {ê1, ê2, ê3}. A moving coordinate
system attached to the colloid is spanned by the set {ê′

1, ê′
2, ê′

3},
where ê′

3 indicates the direction of the long symmetry axis.
The principal moments of inertia of the colloid in the moving
system are J3 and J1 = J2. Particles move in a box of sizes
L1, L2, and L3. The evolution of the system occurs over two
separated timescales: a short timescale that takes into account
direct solvent-colloid interactions and a mesoscopic timescale
where hydrodynamic modes of the solvent relax toward equi-
librium. To simulate the effects occurring in both scales, two
time intervals, �tMD and �t � �tMD, are introduced. Over
the former, the equations of motion are integrated under a
MD scheme, whereas over the latter, collective momentum
and orientation exchanges are simulated. Both processes are
described as follows.

A. Molecular dynamics integration of spherocylinder motion

Pseudonematogens interact with the colloid through the
repulsive potential [36]

�(ri − R) =
{

4ε
[(

σ
�i

)12p − (
σ
�i

)6p + 1
4

]
if �i � 21/6pσ,

0 otherwise,
(1)

where �i is the shortest distance from ri to the segment line
of length L running from cap to cap along ê ′

3, ε is the po-
tential strength (depth of the uncut unshifted Lennard-Jones
potential), and p is a positive integer that controls the stiffness
of the potential. Variables ri, vi, R, and V are updated over
�tMD using the velocity-Verlet integrator [37]. In this process,
forces on solvent and solute particles are fi = −∂�/∂ri and
F = −∑N

i=1 fi, respectively.
Spherocylinder rotation is treated by the method of

Omelyan [38], in which ê′
1, ê′

2, and ê′
3 are used as orientational

variables that are integrated within a velocity-Verlet scheme.
More precisely, let A be the rotation matrix that relates the
orientation of the spherocylinder with the laboratory fixed
coordinate system, i.e., Aαβ = ê′

α · êβ , where α, β = 1, 2, 3.
In addition, define the principal components of the angular ve-
locity of the spherocylinder, � = 
1ê′

1 + 
2ê′
2 + 
3ê′

3, and
the matrix W with components Wαβ = εαβγ 
γ , where εαβγ

is the Levi-Civita symbol. Then, the evolution of A can be
approximated as follows:

A(t + �tMD) = A(t ) + Ȧ(t )�tMD + 1
2 Ä(t )(�tMD)2, (2)

where Ȧ can be evaluated using the relation Ȧ = W · A, and
Ä = Ẇ · A + W · W · A can be evaluated using the Euler
equation


̇1(t ) = 1
J1

[κ1(t ) + (J2 − J3)
2(t )
3(t )], (3)

and those obtained from cyclic permutations for 
̇2(t ) and

̇3(t ). In Eq. (3) and those corresponding to 
̇2(t ) and 
̇3(t ),
κ1, κ2, and κ3 are the components of the torque exerted on the
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colloid with respect to its center of mass due to the interactions
with the pseudonematogens, κ = κ1ê′

1 + κ2ê′
2 + κ3ê′

3. They
can be calculated from the vector k = −∑N

i=1 (ri − R) × fi,
and the transformation κ = A · k.

Equation (2) is supplemented with the rule for updating W ,
i.e., �,

�(t + �tMD) = J−1 · A(t + �tMD) · l(t + �tMD), (4)

where the angular momentum of the solute in the laboratory
frame, l, is updated in a velocity-Verlet fashion, namely

l(t + �tMD) = l(t ) + 1
2 [k(t ) + k(t + �tMD)]�tMD. (5)

B. Anchoring conditions

Homeotropic anchoring on the surface of the colloid is
simulated by reorienting pseudonematogens along the normal
direction if �i � 21/6pσ . Accordingly, the colloid’s surface is
accompanied by a varying number of perpendicular pseudone-
matogens that interact periodically with those in the bulk
through the process that will be described in Sec. II C. This
causes reorientation of the nematic close to the colloid, and it
permits the formation of topological defects [30]. This mecha-
nism is reinforced by adding virtual pseudonematogens on the
surface of the spherocylinder. Virtual particles are initialized
at random positions satisfying �i = 21/6pσ . Their positions
relative to the frame {ê′

1, ê′
2, ê′

3} are fixed. They are kept
normal to the spherocylinder’s surface at all times, and they
are considered to be massless so that they do not modify the
equations of motion. However, they are allowed to contribute
to the local value of Q and thus to influence the orientation
field close to the colloid.

C. Nematic multiparticle collision dynamics

The dynamics at the mesoscopic scale is simulated using
the N-MPCD approach as proposed in Ref. [39]. At time
intervals of size �t , the simulation box is mentally divided
in cubic cells of volume a3, hereafter referred to as collision
cells. For every collision cell, the center-of-mass position
rc, velocity vc, and orbital inertia tensor J c are calculated.
Translation invariance of N-MPCD is obtained by shifting the
grid of collision cells by a random vector with components
arnd,1, arnd,2, arnd,3 ∈ (0, a], before particles are sorted into the
cells [40].

Finite differences of vc are used to estimate the velocity
gradient tensor whose symmetric and antisymmetric parts are
denoted as Cc and Dc, respectively.

The order parameter tensor at collision cell c is calculated
using

Qc = 1

2N c

∑
j∈c

∗(3û j û j − I), (6)

where I is the identity matrix and
∑∗ extends over solvent

particles, virtual pseudonematogens attached at the surface
of the spherocylinder, and possible virtual particles resulting
from the presence of confining walls, as will be described in
Sec. II D. Moreover, in Eq. (6), N c is the number of all these
types of particles contained in the collision cell.

The order parameter Sc is defined as the largest eigenvalue
of Qc [5,6,41]. The director n̂c is the corresponding eigenvec-
tor. The biaxiality Pc can be calculated as the absolute value
difference between the middle and largest eigenvalues of Qc

[16]. Solvent particles interact with those located within the
same collision cell through the mean-field potential

U (ûi; n̂c) = − 3
2USc

[
(ûi · n̂c)2 − 1

3

]
, (7)

where U is the interaction strength, a simulation specified
parameter that governs the tendency of solvent particles to
follow n̂c. New orientations û′

i are sampled from a canonical
distribution proportional to exp {−βU}, where β = 1/kBT , kB

is the Boltzmann constant, and T is the temperature. Flow
reorientation is simulated by a further transformation that
yields vectors û′′

i taken from the Jeffery’s equation for slender
rods under flow,

û′′
i = û′

i + χHI[C
c · û′

i + λ(Dc · û′
i − Dc : û′

iû
′
iû

′
i )]�t . (8)

In Eq. (8), χHI ∈ [0, 1] is a control parameter that tunes
the alignment relaxation time relative to �t [39], while λ is
related to the tumbling parameter, λ′, by [42]

λ′ = λ
15S + 48S4 + 42

105S
, (9)

where S and S4 are the second and fourth scalar order pa-
rameters of the solvent [43]. For λ′ < 1, ûi tumbles, while
for λ′ > 1, it is stabilized by shear at the so-called Leslie-
angle [44].

The Anderson thermostat [39,45] gives new velocities for
solvent particles,

v′
i = vc + ξi − ξc − [(J c)−1 · �Lc] × (ri − rc), (10)

where ξi is a random velocity sampled from the Maxwell
distribution at temperature T , ξc = ∑

j∈c ξi/Nc, and �Lc is
the angular momentum generated by random velocity sam-
pling, �Lc

ran, and reorientation of solvent particles, �Lc
ori. The

former reads

�Lc
ran =

∑
j∈c

(r j − rc) × (v j − ξ j ), (11)

whereas the latter is calculated under the assumption of over-
damped reorientation as

�Lc
ori = γR

∑
j∈c

û′′
j × û j, (12)

where γR is an heuristic viscous rotation coefficient that quan-
tifies the transferred angular momentum from orientation back
into linear momentum, i.e., backflow [39]. At this point, it is
mentioned that in alternative N-MPCD techniques, backflow
can be resolved directly from nematohydrodynamic theories
[46,47].

D. Boundary conditions

Throughout, periodic boundary conditions are applied
along ê1 and ê2 directions. To simulate confinement between
solid walls, bounce-back boundary conditions [48] are applied
during MD integration at planes x3 = 0 and x3 = L3. Confine-
ment causes partially empty collision cells that are commonly
treated by using virtual particles [49–51]. Here, two extra
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slices of width a − arnd,3 and arnd,3 are added at the bottom and
top of the simulation box, respectively, and filled with virtual
pseudonematogens at the same density as the solvent. Virtual
particles are uniformly distributed at random positions within
the extra slices. They participate in the momentum exchange
events having mass m, and velocities sampled from a zero-
average Maxwell-Boltzmann distribution at temperature T .
Furthermore, they are conveniently used to model anchoring
at the solid surface [39,47]. With this purpose, orientations of
virtual particles are chosen to coincide with the preferred vec-
tor ê3. This imposes strong homeotropic anchoring conditions
at the solid walls. Since virtual pseudonematogens are allowed
to influence the orientation exchange process through Eq. (6),
the bulk orientation in the vicinity of the walls is kept close
to ê3.

Uniform shear is simulated using Lees-Edwards boundary
conditions [52]. Flow is restricted to a point along ê1 and to
increase as a function of x3 with shear rate γ̇ . For γ̇ = 0,
periodic boundary conditions along the three Cartesian axes
are recovered.

E. System parameters

Simulations are conducted for solvents with U = 6.5 kBT
and N̄c = 20, 25, and 30, where N̄c is the average num-
ber of pseudonematogens per cell. Using the complete set
of simulation parameters specified in Appendix A, the av-
erage order parameters Sc = 0.697 ± 0.006, 0.712 ± 0.006,
and 0.726 ± 0.006 are obtained, respectively, for each one of
the aforementioned values of N̄c. Colloids with three differ-
ent sizes—L = 6a, 12a, and 16a—are simulated, all of them
having the same aspect ratio, ζ = L/(2σ ) = 2. Throughout,
a = 1, m = 1, and �t = 1 are taken as units of length, mass,
and time, respectively.

To visualize defects, isosurfaces of Sc and Pc are con-
structed. Pc vanishes far from the spherocylinder, but rings
of strong biaxiality are identified in its vicinity. These can be
associated with the core of the induced disclinations. As in
previous cases [30,39], the size of the defect core is found to
be rc � a. By considering the typical value for actual nemat-
ics, rc � 10 nm, L can be scaled to L ∈ (60 nm, 160 nm).

Spherocylinders distort n̂ and increase the elastic free en-
ergy, F . For the used N-MPCD implementation, F can be
calculated under the one-constant approximation [39,53]

F = K

2

∫
dr[(div n̂)2 + (rot n̂)2], (13)

where K is the elastic constant and dr is the volume element.
In simulations, F is estimated using finite spatial differences
of n̂c and a summation over the cells encompassed by the
simulation box. Strictly speaking, this method cannot be used
in the presence of defects because it could not deal with the
implicit singularities of n̂. Then, it represents an approxima-
tion under the assumption that at the coarse-grained scale of
N-MPCD, defect cores are not fully resolved and n̂c presents
no singularities. In addition, since n̂c fluctuates due to the
stochastic character of N-MPCD, F has a fluctuating contri-
bution whose average does not vanish because fluctuations
are squared in the integrand of Eq. (13). Consequently, the
average energy can be written as 〈F 〉 = F (0) + F (1), where

F (0) is the contribution of the colloid and F (1) is due to
fluctuations. The latter is estimated from simulations where
no particles are attached to the surface of the spherocylinder,
and bulk particles do not reorient when they come into contact
with it. In this case, spherocylinders are immersed in the
nematic solvent, but no defects are created. For simplicity, in
the following only F (0) will be reported, and the superscript
(0) will be omitted from the notation.

Coefficients K are estimated in Appendix B from cor-
relation functions of the order parameter tensor. They
have the magnitude expected from previous calculations in
N-MPCD [39].

III. RESULTS

A. Defects around spherocylinders with fixed orientation

Defects around anisotropic particles in liquid crystals de-
pend on their orientation and size [18,20,22]. Simulations are
conducted to observe this effect via N-MPCD. To focus atten-
tion on the defect structures, rotation of the spherocylinders
is suppressed during this stage. The colloid’s orientation is
specified by the angle between ê′

3 and ê3: θ . Spherocylinders
of length L = 6a, 12a, and 16a are confined in cubic boxes of
volume V = (32a)3, (40a)3, and (56a)3, respectively. Three
orientations are considered for each L value: θ = 0◦, 30◦,
and 90◦. Pseudonematogens are initially oriented along ê3.
The system thermalizes while defects start to appear. They
become stable after approximately 20, 200, and 500 N-MPCD
collision events for L = 6a, 12a, and 16a, respectively.

For ê′
3 ‖ ê3, three types of defects are identified that de-

pend on L. These are depicted in Fig. 1 as contour surfaces
for Sc = 0.5. Configurations in Fig. 1 are obtained from an
average over 1.5 × 105 MD-N-MPCD steps taken after a ther-
malization stage of the same duration. Results are illustrated
solely for N̄c = 25, being very similar for N̄c = 20 and 30.

For L = 6a, the defect surrounds completely the cylindri-
cal section of the colloid, Fig. 1(a). This “coat-type” structure
agrees with those found in Refs. [4,16], and it is the expected
defect around elongated particles with L � 100 nm [22]. In
Fig. 1(a), n̂c shows a very slight axial asymmetry. Although
this asymmetry was reported by Andrienko and co-workers
[16], it disagrees with the results of Hung et al. [4], who ob-
served an axially symmetric field. These discrepancies could
be given by the difference in size of the particles simulated
in Ref. [4], L = 24.8 nm, and here L ∼ 60 nm. This could be
further explored by simulating smaller colloids, i.e., L < 6a
and σ < 1.5a. However, such cases are not considered here
since N-MPCD does not resolve properties at scales smaller
than the cell size.

In the case L = 12a, defects adopt one of the two possible
forms shown in Fig. 1(b). The first one [Fig. 1(b), left] is
a ring perpendicular to ê3 located with equal probability at
the top or bottom edge of the cylindrical part of the colloid.
The second one [Fig. 1(b), right] is formed by two symmet-
ric circular portions located at the opposite extremes of the
colloid and connected by two line segments. Hereafter, these
defects will be referred to as top-ring and chairlike structures,
respectively, following Hashemi and Ejtehadi, who observed
similar defects around cylindrical colloids with flat ends [22].
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FIG. 1. Defects around spherocylindrical colloids of aspect ratio
2 in N-MPCD solvents. (a) L = 6a, (b) L = 12a, (c) L = 16a. The
director field on the ê1-ê3 plane, n̂c, is represented by the small line
segments. In case (b) two types of defects are possible: “top-ring”
(left) or “chairlike” (right).

Top-ring and chairlike defects appear stochastically from an
initial unstable ring located close to the mid position of the
spherocylinder. This structure either moves toward the top or
bottom of the particle (top-ring) or is symmetrically stretched
(chairlike). The latter has a higher energy cost. It corresponds
to a local minimum state produced kinetically and is observed
with a relative frequency close to 20%. For simulations lasting
3 × 105 MD-N-MPCD steps, no transitions between chairlike
and top-ring defects are observed.

The only stable structure resulting after thermalization of
the largest spherocylinders, L = 16a, is the top-ring illustrated
in Fig. 1(c). The large associated energy cost prevents the
occurrence of chairlike defects. Top-ring defects evolve from
initial coatlike rings of high elastic energy. These unstable
structures shrink close to the symmetry plane of the sphero-
cylinder perpendicular to ê3. At this position rings are still
unstable, and during a transient period they move up or down
with equal probability, as shown in Fig. 2, where F (t ) is
plotted and snapshots of defects at representative times are
presented. The displacement of the ring toward the end of the
spherocylinder resembles observations of quadrupolar defects
around microrods in which, using optical tweezers, defects
are forced to sit at an energetically unfavorable position from
which they slide slowly to the end of the rod when tweezers
are turned off [17].

FIG. 2. Thermalization process of defects around spherocylin-
ders with L = 16a. Initial extended defects of high elastic energy
contract and move to the end of the colloid.

Defects for spherocylinders with θ = 30◦ and 90◦ are il-
lustrated in Figs. 3(a)–3(f). Independently of L, only two
stable structures are observed: chairlike defects for θ = 30◦,
and Saturn rings encircling spherocylinders along their longer
dimension for θ = 90◦. Measurements of F for the combi-
nations of parameters θ and L considered up to now are
presented in Table I. Perpendicular Saturn rings (θ = 90◦)
have the lowest energies. Therefore, the spherocylinder is ex-
pected to be stable for ê ′

3 ⊥ ê3. In addition, the relative energy
difference between top-ring and chairlike defects in the case
L = 12a and N̄c = 25 is close to 8%. In cases N̄c = 20 and
30, the difference is found to be 13% and 10%, respectively.
For defects around cylinders of flat ends, radius 160 nm, and
aspect ratio 1 : 1, this difference is 3.8% [22], which should
be considered for reference only due to the significant dissim-
ilarities between the systems simulated here and in Ref. [22].

Defects in systems with N̄c = 20 and 30 have the same
structural properties as those discussed here for N̄c = 25. The
only difference is their associated elastic energy. For N̄c = 20
(30), F is found to be around 7% smaller (13% larger) than
in the case N̄c = 25. Some results for colloids with ζ = 1 and
3 are given in Appendix C. No differences in the structure of
defects were observed. This suggests that the defects reported
here are representative of those that can be found when ζ is
order unity.

B. Orientation distribution of immersed particles

Orientations of anisotropic particles in nematic solvents
exhibit broad distributions [14,17,35]. The orientation of glass
rods of micrometer diameter is distributed in a large interval,
60◦–90◦, with respect to n̂0 [17], though smaller tilt angles
down to 40◦ seem to have a nonvanishing probability to occur.
Glass rods having 10–20 μm length and 1.5 μm diameter,
confined in cells with planar anchoring, exhibit configurations
of parallel, perpendicular, and diagonal alignment to the rub-
bing direction. When microrods favor homeotropic anchoring
on their surface, the angular distribution has a peak around
a tilt angle θ = 60◦ [35]. Peanut-shaped particles, 3.2 μm
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FIG. 3. Defects for colloids inclined with respect to ê3. (a) L = 6a, θ = 30◦. (b) L = 6a, θ = 90◦. (c) L = 12a, θ = 30◦. (d) L = 12a,
θ = 90◦. (e) L = 16a, θ = 30◦. (f) L = 16a, θ = 90◦.

long and 1.54 μm wide, orient themselves with their long
axis at all possible angles with respect to n̂0. In this case, the
probabilities for perpendicular and parallel orientations are
35% and 13%, respectively [14].

When MD-N-MPCD operates under Eqs. (2)–(4), sphero-
cylinders are able to rotate and explore configurations with
different energies. In simulations starting at θ = 0◦, sphero-
cylinders rotate toward states of lower energy. They seem to
tend gradually to θ = 90◦, following erratic trajectories. After
some time, they fluctuate around perpendicular alignment.
This is illustrated in Fig. 4(a) using time series, θ (t ), from
simulations of spherocylinders of size L = 12a, in solvents
with N̄c = 20, 25, and 30, contained in simulation boxes with
lengths L1 = L2 = 56a and L3 = 40a. Figures 4(b)–4(f) are
snapshots of the system with density N̄c = 30, taken at the
selected times indicated in the graph of Fig. 4(a).

All series in Fig. 4(a) encompass 2 × 106 MD-N-MPCD
steps. By coincidence, the last state of the case, N̄c = 30, cor-
responds almost exactly to perpendicular alignment, Fig. 4(f).
However, deviations from θ = 90◦ can actually be consider-

ably large, as in, e.g., the last states for N̄c = 20 and 25 in
Fig. 4(a). To estimate the variability of θ , simulations with
initial condition θ (0) = 90◦ are conducted also over 2 × 106

steps. Then, distributions of the inclination angle, freq(θ ),
are computed from time averages using the last 106 steps
of the series with initial condition θ (0) = 0◦, and the last
1.5 × 106 steps of the series with θ (0) = 90◦. Results for
freq(θ ) are shown in Fig. 5 for each N̄c value. Though small
values of θ can be observed, large tilt angles are preferred.
Averages of distributions in Fig. 5 are 62.45◦, 57.68◦, and
59.89◦ for N̄c = 20, 25, and 30, respectively. These results
are in good qualitative agreement with the aforementioned
analyses of elongated particles of diverse shapes immersed
in nematic phases [14,17,35]. Nonetheless, the differences in
scale and morphology of the particles studied here and in
Refs. [14,17,35] prevent a direct quantitative comparison of
their orientation distributions.

It is important to notice that large deviations from θ = 90◦
can be produced, although according to the results in Table I,
they imply very large increments of F . Apart from changes in

TABLE I. Average elastic energy of defects of different sizes, L, inclined at angles θ with respect to the global director. Energies are given
in kBT units.

Length

Inclination L = 6a L = 12a L = 16a

θ = 0◦ 16859 ± 27 Top-ring: 43969 ± 80 Chairlike: 47805 ± 86 70868 ± 118
θ = 30◦ 11806 ± 26 39697 ± 67 65494 ± 112
θ = 90◦ 7638 ± 19 30180 ± 56 51272 ± 93
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FIG. 4. Spherocylinder relaxation in a quiescent nematic. (a) Time-dependent tilt angle for densities N̄ c = 20, 25, and 30. (b)–(f) Snapshots
of the process for N̄ c = 30; labels correspond to the points indicated along the curve in (a). Small lines indicate the instantaneous director field.

F , reorientation also modifies the surface anchoring energy.
However, calculations of the angular distribution of pseudone-
matogens with respect to the normal direction on the colloidal
surface indicate that relative changes of the anchoring energy
are smaller than 6% in favor of θ = 90◦. Consequently, they
are not responsible for small tilt angles. On the other hand, it
is known that elongated colloids experience depletion-induced
torques close to planar walls, as has been shown analytically
and numerically in models of spherocylinders in solvents of
hard spheres [54]. These torques depend on both x3 and θ ,
and they rotate the spherocylinder normal to the wall, i.e.,
they are contrary to the elastic mechanism. Results in this
paper suggest that depletion torques in N-MPCD systems are
strong enough to compete with elastic torques. This could be
due to the presence of two confining walls and to solvent-
solvent correlations [54]. To get a better insight into these

FIG. 5. Relative frequency for the occurrence of tilt angles
for spherocylinders immersed in N-MPCD systems with densities:
(a) N̄ c = 20; (b) N̄ c = 25; (c) N̄ c = 30. Histograms are constructed
using bins of 2◦ width.

mechanisms, an exhaustive numerical analysis could be con-
ducted separately.

Spherocylinders oscillate around potential minima and dis-
sipate energy. This dynamics can be analyzed in terms of the
orientation correlation function [55]

χ (t ) = 〈cos α(t ) cos α(0)〉 − 〈cos α〉2

〈cos2 α〉 − 〈cos α〉2
, (14)

where α = θ − 90◦, and brackets, 〈· · · 〉, indicate average over
thermal fluctuations. In Appendix D, χ (t ) is calculated from
a simplified model that considers α as a stochastic variable in
a potential well of strength �V , which yields

χ (t ) = cosh
( kBT

2�V e−2�Vt/ηR
) − 1

cosh
( kBT

2�V
) − 1

, (15)

where ηR is a rotational friction.
A comparison between the model and simulations ap-

pears in Fig. 6. Details of the calculations are also given in
Appendix D. For N̄c = 25 and 30, χ (t ) shows the exponential
decay expected from Eq. (15). In these cases, statistical noise
is noticeable from t � 2000�t . For N̄c = 20, the decay of
χ (t ) is more erratic due to the prevalence of statistical noise,
even for short times. Longer simulations would reduce the ef-
fects of noise and improve the comparison. More importantly,
Eq. (15) is obtained from a simple linear model, Eq. (D1), and
its agreement with simulations suggests that in complex sit-
uations where nonlinear forces on anisotropic colloids could
be relevant [56], more sophisticated and well-established the-
ories of statistical mechanics [55] could be used for studying
their fluctuating behavior.

C. Dynamics of defects under shear

Spherocylindrical colloids carrying topological defects in
sheared nematics are analyzed in this section. For concrete-
ness, the solvent’s density is fixed at N̄c = 25, and only
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FIG. 6. Autocorrelations of alignment fluctuations of sphero-
cylinders in nematic solvents with densities: (a) N̄ c = 20; (b) N̄ c =
25; (c) N̄ c = 30. Symbols correspond to simulation results. Continu-
ous curves are estimations from a simplified linear model of libration
around a potential minimum leading to Eq. (15).

tumbling behavior of the solvent is considered by restricting
λ to the values 0.25, 0.50, and 0.75. Respectively, Eq. (9)
and measurements of S and S4 yield λ′ = 0.234, 0.469, and
0.715. The simulation box is cubic with V = (40a)3, and the
solvent is initially oriented along ê3. Lees-Edwards boundary
conditions are applied considering three different shear rates
γ̇ = 0.005, 0.010, and 0.020 (�t )−1. These conditions induce
tumbling of the nematic fluid in the ê1-ê3 plane. Single sphero-
cylinders with L = 12a are immersed in these nonequilibrium
environments. They are initialized parallel to ê3 and in the
center of the simulation box. Spherocylinders are driven by
shear and also perform tumbling motion because their tum-
bling parameter is approximately λcol � 0.6 < 1, as can be

estimated from the expression valid for ellipsoidal particles
[42], λcol = (ζ 2 − 1)/(ζ 2 + 1).

Spherocylinders exhibit fluctuations that take them out of
the ê1-ê3 plane. Due to their interaction with n̂ and the finite
size of the system, this causes a systematic deviation of the
global orientation of the solvent, n̂0(t ), from that plane. To
address this problem, pseudonematogens are rotated globally
to keep n̂0(t ) within the tumbling plane. This global rotation
is applied after every N-MPCD collision step.

After a short time, a chairlike defect is formed around
the colloid. Angle θr(t ) = cos−1 [ê′

3(t ) · n̂0(t )] can be used
to describe the dynamics of the colloid-defect pair, and de-
fect changes are identified by inspecting the elastic energy
F (θr(t )). Time series of F are recorded for simulations lasting
2 × 106 MD-N-MPCD steps. As expected, F is minimum
when θr = 90◦. Hereafter, results are discussed in terms of the
normalized energy �F̄ = [F − F (θr = 90◦)]/F (θr = 90◦).
Figure 7 presents the results for �F̄ (t ) and θr(t )/180◦. No-
tice that as the colloid rotates, shear maintains oscillations
of θr. Consequently, �F̄ has oscillatory changes of different
intensity. Most of these changes are small and correspond to
an energy increment caused by the deviation of θr from 90◦.
However, large gains occur when θr = 0◦, 180◦. These are
more frequent and intense for larger γ̇ .

High �F̄ peaks are associated with a morphological trans-
formation of the defects. This is observed in Fig. 8, which
shows a series of defects for λ = 0.25 and γ̇ = 0.02 (�t )−1

during t ∈ [17 400, 17 950]�t . When the system crosses the
state ê′

3 ‖ n̂0, the defect changes from chairlike to an asym-
metric coat and then to chairlike again. The large energy cost
for the transformation is paid by the applied shear. For the
used parameters, the energy increase could be as large as

FIG. 7. Elastic energy for spherocylindrical colloids in sheared nematics (continuous curves). Normalized orientation angle of the
spherocylinders with respect to n̂0, θ̄r = θr/180◦ (dotted curves). Parts (a), (b), and (c) correspond to λ = 0.25 and γ̇ = 0.005, 0.010, and
0.020 (�t )−1, respectively; (d), (e), and (f) correspond to λ = 0.50 and the same order for γ̇ ; and (g), (h), and (i) correspond to λ = 0.75 also
with the same order for γ̇ .
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FIG. 8. Morphological changes of the defect around a rotating
spherocylinder in a tumbling nematic. The free energy graph is an
inset of Fig. 7 for the case λ = 0.25, and γ̇ = 0.02 (�t )−1.

twice the energy of the equilibrium configuration. The initial
and final states in the insets of Fig. 8 are minimum energy
structure defects connected by a transition pathway of high-
energy nonequilibrium states. The state of maximum energy,
as mentioned, resembles a coat-type defect that in equilibrium
conditions is energetically prohibitive for colloids of the size
simulated in this section. Then, it can be interpreted as an
unstable dynamic state induced by shear. For confined nematic
systems [57], a systematic analysis of the energy landscape
shows that minimum free-energy states can be connected by
multiple transition pathways with different energy cost. Here,
the main result is to show that similar transitions can be
promoted by nonequilibrium agents, although no attempt was
made to explore the space of all the possible pathways.

Defect changes are due to a hydrodynamic torque on n̂
exerted by the distorted flow around the spherocylinder, � =
λn̂ × (Dc · n̂) [58]. To calculate � in cases in which defect
modifications are stronger, configuration ê′

3 ‖ n̂0 is considered
as depicted in Fig. 9(a), where n̂0 is signaled and arrows
representing the flow field, vc, are pictured on the plane per-
pendicular to ê3. Notice that in Fig. 9(a), θ represents the
tilt angle of the spherocylinder with respect to the laboratory
frame. For simplicity, the calculation is restricted to regions
close to the perpendicular symmetry plane of the sphero-
cylinder. There, vc surrounds the colloid and has ê1 and ê2

components that change with x1, x2, and x3. Thus,

Dc = 1

2

⎛
⎜⎜⎝

2 ∂vc
1

∂x1

∂vc
1

∂x2
+ ∂vc

2
∂x1

γ̇

∂vc
1

∂x2
+ ∂vc

2
∂x1

2 ∂vc
2

∂x2

∂vc
2

∂x3

γ̇
∂vc

2
∂x3

0

⎞
⎟⎟⎠. (16)

In addition, it is assumed that the ê′
3 axis remains on the

ê1-ê3 plane. The director field is explored for regions inter-
mediately far from the colloid’s surface where deviations of
n̂ from n̂0 are small. Then, by using Eq. (16) to calculate �,
transforming the result to the {ê′

1, ê′
3} system, and retaining

FIG. 9. Changes of the orientation field induced by flow around
the spherocylinder. (a) Analyzed model with ê′

3 ‖ n̂0. (b) Simulation
configuration showing an extended defect and two cutting planes.
(c),(d) Director field in the plane ê′

1-ê′
3, for equilibrium and nonequi-

librium situations, respectively. Streamlines in (d) are indicated
through the central portion of the spherocylinder. (e),(f) Same as in
(c) and (d), respectively, for the cutting plane ê′

2-ê′
3.

only leading contributions in n̂ · ê′
3 � n̂ · ê′

1, it is found that

� = 1

2
λ

[
γ̇ cos 2θ + ∂vc

1

∂x1
sin 2θ

]
ê′

2

+ 1

2
λ

[(
∂vc

1

∂x2
+ ∂vc

2

∂x1

)
sin θ − ∂vc

2

∂x3
cos θ

]
ê′

1. (17)

In Eq. (17) the term proportional to γ̇ is the torque on n̂
exerted by the uniform shear, whereas all other terms arise
from the distortion of the flow due to the colloidal obsta-
cle. Accordingly, the angular dynamics of n̂ in the bulk and
close to the spherocylinder is different. The size of the de-
fect is increased since at close distances from the colloid
n̂ does not tumble as n̂0. Figure 9(b) presents an actual
configuration taken from simulation with λ = 0.50 and γ̇ =
0.20 (�t )−1 that satisfies the condition leading to Eq. (17),
namely ê′

3 � n̂0. Configuration in Fig. 9(b) occurred for θ �
19.17◦ at t = 12 870 �t . Two symmetry planes in the ref-
erence frame of the immersed particle, ê′

1-ê′
3 and ê′

2-ê′
3, are

used to analyze distortions by comparing the director field
under shear, Figs. 9(d) and 9(f), and in chairlike equilibrium
defects, Figs. 9(c) and 9(e). In the nonequilibrium case, the
far flow field is parallel to the ê′

1-ê′
3 plane, as suggested by

the streamlines in Fig. 9(d). By contrasting Figs. 9(c) and
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FIG. 10. Energy increments for rotating spherocylinders in ne-
matic fluids sheared at a rate γ̇ = 0.020(�t )−1 for (a),(b) λ = 0.25;
(d),(e) λ = 0.50; and (g),(h) λ = 0.75. Parts (a), (d), and (g) are ob-
tained from the approximated model of increments activated close to
the state θr = 0, π . Parts (b), (e), and (h) are simulation results. Parts
(c), (f), and (i) represent the trajectories of the long spherocylindrical
axis for λ = 0.25, 0.50, and 0.75, respectively.

9(d), a retardation between n̂ and n̂0 can be observed in the
nonequilibrium situation along the stream lines. This can be
attributable to the gradient ∂vc

1/∂x1 in Eq. (17) that opposes
the effect of γ̇ when vc faces an obstacle along the main
stream. The specific contribution of this gradient depends on
the slip conditions on the spherocylinder’s surface. For the
MD-N-MPCD method applied in this work, slip boundary
conditions and flow extending behind the colloid are expected
[30]. Then, the difference between the orientation patterns
in equilibrium and nonequilibrium could be anticipated to
reach relatively far distances from the spherocylinder. In
turn, flow effects on the ê′

2-ê′
3 plane have a shorter range,

as observed when equilibrium and nonequilibrium states are
compared; see Figs. 9(e) and 9(f), respectively. In this case,
flow reorients n̂ toward ê′

3 mainly in regions near the col-
loid’s surface. This reorientation increases the width of the
defect as indicated by the color map for Sc in Figs. 9(c)–9(f).
According to Eq. (17), this is due to deviations of flow from
simple shear that make ∂vc

1/∂x2, ∂vc
2/∂x1, ∂vc

2/∂x3 = 0.
The behavior of �F̄ under shear can be mimicked by

assuming that the solute and solvent tumble independently
and that, during tumbling, �F̄ follows the equilibrium value
at θr(t ) exhibiting sudden increments within a narrow range,
±�θr, around θr = 0◦ and 180◦. This model is elaborated on
in Appendix E, and its results are summarized in Fig. 10,
where they are compared with simulations for the cases with
highest shear rate, γ̇ = 0.020 (�t )−1.

Despite the many assumptions, a good qualitative agree-
ment can be observed between the simplified model
[Figs. 10(a), 10(d) and 10(g)] and simulations [Figs. 10(b),
10(e) and 10(h)]. Such agreement is good in the sense that
energy peaks are predicted to be more frequent for λ = 0.25
and 0.75 [Figs. 10(a), 10(b) 10(g), and 10(h)] than for λ =
0.50 [Figs. 10(d) and 10(e)]. In addition, for the two former
cases, the magnitude of the modeled energy increments is
very similar to those observed in simulations. In particular,
for λ = 0.75, all the energy peaks predicted by the model
seem to be reproduced by simulations [Figs. 10(g) and 10(h)].
In contrast, in cases λ = 0.25 and 0.50, some energy peaks
are missed or are smaller than expected. This is explained
by observing the trajectories of ê′

3 over the unit sphere and
noticing that it abandons the ê1-ê3 plane [Figs. 10(c), 10(f) and
10(i)]. By doing this, the system avoids the formation of large
defects, and F remains small. This is more notorious in the
case λ = 0.50 [Fig. 10(e)], where λ and λcol are more similar.
It could be expected that in this situation, the spherocylinder
has more time to relax toward equilibrium configurations,
and deviations of ê′

3 from the ê1-ê3 plane could be larger. In
simulations, for t ∈ (4000, 10 000) �t , one energy peak could
be expected that does not appear because the component of ê′

3
along ê2 is large. In Fig. 10(e), two energy states within this
range have been signaled by small circles at times t1 and t2.
The corresponding orientations are shown in Fig. 10(f), and
they clearly deviate from the shear plane. When these devia-
tions are smaller, large energy changes are more frequent.

To characterize the flow at which the discussed effects
could be observed, two dimensionless quantities are con-
sidered: (i) the rotational Reynolds number [59], Re(r) =
(ρωsl2

s )/η, where ρ is the mass density of the solvent, ωs is the
angular velocity, and ls is a characteristic length; and (ii) the
Ericksen number, Er = (γ1vsls)/K , where γ1 is a rotational
viscosity and vs is a typical velocity of the problem. Re(r)

is estimated using ls = L and ωs = 2π/Pcol, where Pcol is
the colloidal tumbling period. Measurements yield Re(r) =
0.14, 0.35, and 0.88 for γ̇ = 0.005, 0.01, and 0.02 (�t )−1,
respectively. Since Re(r) < 1, rotation of the spherocylinder is
considered to be consistent with linear hydrodynamics [59]. In
estimating Er, ls = L and vs = γ̇ L are considered. The ratio
K/γ1 can be calculated from the decay of the director cor-
relation functions [53,60]. This yields K/γ1 � 0.62 a2(�t )−1

for nematic fluids simulated with the same parameters as
those used throughout this section. Therefore, simulations
with γ̇ = 0.005, 0.01, and 0.02 �t have Er = 1.16, 2.32, and
4.65, respectively, indicating that the effects discussed here
could be observed when forces induced by flow are similar to
or stronger than elastic forces.

It must be remarked that Er depends on the chosen char-
acteristic scales. For instance, in studying defects under
Poiseuille flow around spherical colloids [31], instead of us-
ing the particle size, ls was chosen to be the size of the
confinement cell.

IV. CONCLUSIONS

Defects created by individual spherocylindrical colloids in
a nematic solvent were studied using the mesoscopic approach
of MPCD. The method is based on a MD integrator that takes

062705-10



DYNAMICS OF DEFECTS AROUND ANISOTROPIC … PHYSICAL REVIEW E 102, 062705 (2020)

into account the solvent-colloid interaction and multiparti-
cle collisions that generate nematohydrodynamic behavior at
large time and length scales. It was adapted to diverse special
cases, namely spherocylinders with fixed orientation in an
equilibrium host, colloids performing Brownian motion in
a nematic in thermal equilibrium, and colloids that tumble
in a nematic driven from equilibrium by a uniform shear.
Defects around colloids with fixed orientation were found to
be size-dependent. Small spherocylinders (length ∼ 60 nm)
are surrounded by coat-type defects when their orientation
coincides with the bulk director field, and by Saturn rings
along their largest diameter when orientation is perpendicular.
In the parallel setup, defects for spherocylinders of interme-
diate size (length ∼ 120 nm) adopt the form of a Saturn ring
located close to one of their ends or, alternatively, a metastable
chairlike shape extending from one end to the other. This
latter is not observed in the parallel arrangement for larger
particles (length ∼ 160 nm). These results are in good agree-
ment with previous studies of similar systems [4,16,18] and
indicate that MPCD could be convenient for simulating de-
fects in liquid crystals created by colloids with complex
geometry.

When spherocylinders are affected by thermal noise or
flow, MD-N-MPCD dealt effectively with their moving
boundaries due to its particle-based character. In equilibrium,
spherocylinders with intermediate size described a distribu-
tion centered in configurations of low elastic energy, although
for the used simulation parameters, rather large orientation
fluctuations were observed. This coincided qualitatively with
observations of ensemble distributions of particles with a
similar size and aspect ratio but a different shape [14,17,35].
The information provided by orientation distributions is useful
in the problem of tuning interactions between anisotropic
colloids leading to novel complex self-assembled structures
[18]. More precisely, interactions and defect structures formed
around systems of two or more elongated particles in a ne-
matic solvent are functions of the relative orientation and
the interparticle distance [4]. Therefore, knowledge of the
orientational distribution and its dependence on the system’s
elasticity could be used to control the probability of occur-
rence of different orientations and entangled structures. These
structures have potential applications such as in displays,
materials processing, and fabrication of magnetic responsive
materials [12,14].

A linearized model was proposed to describe the relaxation
of colloidal orientation fluctuations. Results suggest that this
relaxation process could be very slow and that much longer
simulations than those conducted here are required to make
an exhaustive analysis of this phenomenon. This is a compu-
tationally demanding task that goes beyond the scope of the
present study.

Nonequilibrium dynamics due to a shearing solvent was
analyzed. Simulations were restricted to tumbling nematic
phases. Because of the nonuniform flow, the spherocylinder
also tumbled with a period dictated by its aspect ratio. This
mutual flow-sustained rotation of solvent and solute produced
significant changes in the defects that varied from chairlike
to a form resembling the coat-type structures that had ap-
peared only for colloids of smaller size. A calculation of the
hydrodynamic torque on the director field showed that the

aforementioned transformations are produced by the distor-
tion of the streamlines caused by the colloid obstacle. This
relation was only indicated generally, Eq. (17), since the pre-
cise coefficients will depend on the detailed form of the flow
around the spherocylinder, which in turn will change with
the slip conditions on its surface. Nevertheless, inspection of
director patterns in nonequilibrium states exhibited the effects
of torques acting in the direction indicated by the general
model. Distortions caused by shear flow have a noticeable
increment of elastic energy that could be as large as twice
the minimum elastic equilibrium energy. Maximum changes
are produced when the rotating director field and the sphero-
cylinder’s axis become parallel. When the tumbling periods
of the solvent and solute are similar, large energy changes
can be evaded by a torsion of the spherocylinder that takes
it out from the rotating plane of the director field. However,
large energy increments were observed in every simulation
of the numerical setup, which was restricted to the regime of
small rotational Reynolds numbers, Re(r) ∼ 10−1, and Erick-
sen numbers, Er ∼ 1. This suggests that the nonequilibrium
dynamic interplay of flow and structure of topological defects
presented here could be observable. Besides, dynamical states
can be promisingly reproduced on the basis of MD-N-MPCD.
This allows us to conjecture that probability distributions of
nonequilibrium states could be explored and that the most
probable nonequilibrium states and paths toward equilibrium
could be identified.

Although to the best of my knowledge there is not an exper-
imental counterpart of the nonequilibrium situation discussed
here, in some recent experiments anisotropic colloids with
companion defects are moved along controlled paths in liquid
crystals close to boundary walls [56]. Further development of
the MD-N-MPCD algorithm could be useful in modeling the
dynamics of a similar nonequilibrium process that involves
colloids under external forces in relative motion with respect
to the nematic background.

The numerical method presented here has general advan-
tages and limitations with respect to the existing methods
for simulating nematic colloids that are similar to the advan-
tages and limitations that MPCD has in simulating colloids
in simple fluids. This problem is interesting in the context
of developing algorithms with multiscale character. N-MPCD
incorporates hydrodynamics, which is prohibitive for MD
methods. It also incorporates fluctuations, which are hard to
include in methods based on the continuum formalism. In
addition, N-MPCD is simple and very efficient since cell-
based operations are very well suited for parallel computing
environments. However, further efforts must be conducted
to establish a more precise correspondence of multiparti-
cle collision parameters with physical parameters of actual
systems.
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FIG. 11. Estimation of the surface extrapolation length as a func-
tion of the surface density of virtual particles on the spherocylindrical
colloids.

APPENDIX A: COMPLETE SET OF
SIMULATION PARAMETERS

Throughout this paper, results were obtained using �tMD =
10−2�t , χHI = 1, and γR = 0.01 kBT �t . The solvent-solute
interaction was mediated by parameters ε = 2.5 kBT and
p = 4, which are similar to those in MPCD simulations of
colloids in isotropic solvents [61]. Results in Secs. III A and
III B are obtained with λ = 0.5. Anchoring conditions on
the spherocylinders are controlled by the number density of
virtual pseudonematogens on their surfaces, σsurf. For small
σsurf, defects are located close to the spherocylinder and have
a diffuse appearance. For large σsurf, homeotropic orientation
is stronger, defects separate from the colloids, and they can
be identified more clearly. This latter case is observed when
σsurf � 10a−2. All results corresponded to σsurf = 20a−2. To
estimate the anchoring strength, spherocylinders with L =
16a and ê ′

3 ‖ ê3 are simulated using σsurf = 0, 10, and 20a−2.
Top-ring defects are generated around the colloids. The dis-
tortion angle, φ, is defined as the angle between n̂c and
the normal direction to the spherocylinder’s surface. This is
measured over the radial direction along the ê1 axis on the
perpendicular symmetry plane of the spherocylinder. Results
are shown in Fig. 11, where r represents the distance to the
colloid’s surface. At r = 0, φ is 12◦, 4◦, and 2.5◦ for σsurf = 0,
10, and 20a−2, respectively. From these values, φ increases
gradually to φ = 90◦ at far distances. The surface extrapo-
lation length, ξ = K/W , where W is the anchoring energy
coefficient, is estimated by a linear fit of the results that per-
mits us to find the distance at which φ reaches the undistorted
value behind the colloid [1]. In the calculation, only the region
far from the colloid is considered, where φ approximates a
linear behavior. For σsurf = 0, 10, and 20a−2, respectively,
we can obtain ξ � 54.8, 45.9, and 44.7a. The latter can be
scaled to ξ � 450 nm, which is of the order of magnitude
expected for strong anchoring conditions (ξ � 100 nm and
W � 10−3 J/m2) [1].

FIG. 12. Defects for spherocylinders with (a)–(c) ζ = 1 and
(d),(e) ζ = 3.

APPENDIX B: CALCULATION OF ELASTIC CONSTANTS

The spatial Fourier transform of Q is defined by

Q̂(q) = V

2N

N∑
j=1

(3u ju j − I) exp {i q · r j}, (B1)

where q is the wave vector, V is the volume, and i2 = −1. For
global orientation along ê3 and q = q1ê1 + q3ê3, one has [62]

Kjq
2
j + K3q2

3 = 9

4

S2V kBT

〈Q̂ j3(q)Q̂ j3(−q)〉 , (B2)

where j = 1, 2; and K1, K2, and K3 are the splay, twist, and
bend coefficients, respectively. Correlations in Eq. (B2) are
calculated in N-MPCD with V = (40a)3, neglecting reorien-
tation by flow [39], and using series of 2 × 105 data recorded
after thermalization. They are adjusted using K1, K2, and
K3 as fitting coefficients. For U = 6.5 kBT and N̄c = 20, 25,
and 30, estimations are K1 � K2 � K3 = 150.9 ± 0.3 kBT/a,
187.7 ± 0.5 kBT/a, and 222.9 ± 1.3 kBT/a, respectively.

APPENDIX C: DEFECTS FOR COLLOIDS OF DIFFERENT
ASPECT RATIO

Additional simulations of static spherocylindrical colloids
with σ = 3a and ζ = L/2σ = 1, 3 are conducted to show
that defect structures reported in Sec. III A are representative
for particles with ζ ∼ 1. Results are obtained for N̄c = 25.
They are shown in Fig. 12. Notice that for parallel alignment
and ζ = 1, two structures are found: top-ring [Fig. 12(a)] and
chairlike [Fig. 12(b)].

APPENDIX D: ORIENTATION CORRELATION FUNCTION

Systems simulated in Sec. III B do not exhibit jumps
between configurations of minimum energy, α = 0◦, 180◦,
during the reported simulation periods. Therefore, a model
for libration inside a single potential well can be used. In the
simplest case, α follows a two-dimensional linear overdamped
dynamics, namely

dα

dt
= −2�V

ηR
α + 1

ηR
τ (t ), (D1)
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where τ (t ) is a zero-average fluctuating torque satisfying
〈τ (t )τ (0)〉 = 2ηRkBT δ(t ), with δ denoting the Dirac delta
function [63]. This property and Eq. (D1) permit us to cal-
culate the probability of occurrence of α at time t given that
α = α0 at time t = 0,

W (α, t ; α0) = 1√
π kBT

�V (1 − e−4�Vt/ηR )

× exp

{
− (α − α0e−2�Vt/ηR )

2

kBT
�V (1 − e−4�Vt/ηR )

}
, (D2)

from which averages on the right-hand side of Eq. (14) can be
found yielding Eq. (15).

To compare Eq. (15) with simulations, �V is esti-
mated from fitting histograms in Fig. 5 with canonical
distributions ∝ exp(β�V sin2 θ ) cos θ . ηR is estimated as
ηR = bπη(L + 2σ )3/[4 + 3 ln(1 + L/2σ )], where b is an
adjustable parameter and the remaining factor gives the ro-
tational friction of a cylindrical colloid, with η the viscosity
of the solvent [63]. For N-MPCD, an analytical expression
for η in terms of the simulation parameters is given in, e.g.,
Eq. (58) in Ref. [60]. Simulation correlations are measured
from the two independent time series used in calculating
freq(θ ) in Fig. 5. Resulting correlations are cut and averaged.
Parameter b is adjusted using data for N̄c = 25 only, obtaining
b = 0.56 ± 0.2 when fitting is restricted to t ∈ [0, 4000�t].
The small deviation b = 1 could be attributable to the differ-
ences in slip conditions and geometric features of the model
with respect to those in Ref. [63].

APPENDIX E: MODEL FOR ELASTIC ENERGY
UNDER SHEAR

�F̄ (t ) is modeled under the assumptions described
in Sec. III C. Here, let θcol(t ) ≡ θ (t ) and θnem(t ) =

cos−1 (n̂0 · ê3). Tumbling angles for colloid and solvent are
approximated by independent Jeffery’s orbits [64],

θcol,nem(t ) = arctan

[
Pcol,nem tan

(
γ̇ t

Pcol,nem + 1
Pcol,nem

)]
, (E1)

where Pcol = 2π/[γ̇
√

1 − λ2
col] and Pnem = 2π/[γ̇

√
1 − λ′ 2]

denote the respective tumbling periods. The equilibrium
energy of the system is taken as A cos2 θr, where A ∝
F (θr = 90◦) − F (θr = 0◦) [15]. Here, A is permitted to be
time-dependent and to follow a dissipative process toward
equilibrium, Aeq, plus an increasing contribution toward a
maximum value associated with the coat-type defect, Acoat,
specifically

dA

dt
= −κ0(A − Aeq) − κ1ξ (θr(t ))(A − Acoat ), (E2)

where ξ (θr(t )) is selected to be significant only when
θr(t ) � 0, namely

ξ (θr ) = exp[cos2 θr/(�θr )2] − 1

exp[1/(�θr )2] − 1
. (E3)

Equations (E2) and (E3) are solved numerically using
θr = θ − θnem and Eq. (E1). For plots in Fig. 10, Aeq = 0.58,
Acoat = 3.42, and κ0 = 0.01 (�t )−1 are estimated from relax-
ation of coat-type to chairlike defects; λ′ values specified in
Sec. III C are used; and κ1 = 5κ0 and �θr = 2.5◦ are found to
adjust the model with simulations.
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(2008).
[18] F. R. Hung, Phys. Rev. E 79, 021705 (2009).
[19] Q. Liu, B. Senyuk, J. Tang, T. Lee, J. Qian, S. He, and I. I.

Smalyukh, Phys. Rev. Lett. 109, 088301 (2012).
[20] M. Tasinkevych, F. Mondiot, O. Mondain-Monval, and J.-C.

Loudet, Soft Matter 10, 2047 (2014).
[21] M. Nikkhou, M. Škarabot, S. Čopar, M. Ravnik, S. Žumer, and
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