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Transient flow-driven distortion of a nematic liquid crystal in channel flow with dissipative weak
planar anchoring
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Motivated by the one-drop-filling (ODF) method for the industrial manufacturing of liquid crystal displays,
we analyze the pressure-driven flow of a nematic in a channel with dissipative weak planar anchoring at the
boundaries of the channel. We obtain quasisteady asymptotic solutions for the director angle and the velocity in
the limit of small Leslie angle, in which case the key parameters are the Ericksen number and the anchoring
strength parameter. In the limit of large Ericksen number, the solution for the director angle has narrow
reorientational boundary layers and a narrow reorientational internal layer separated by two outer regions in
which the director is aligned at the positive Leslie angle in the lower half of the channel and the negative Leslie
angle in the upper half of the channel. On the other hand, in the limit of small Ericksen number, the solution
for the director angle is dominated by splay elastic effects with viscous effects appearing at first order. As the
Ericksen number varies, there is a continuous transition between these asymptotic behaviors, and in fact the two
asymptotic solutions capture the behavior rather well for all values of the Ericksen number. The steady-state
value of the director angle at the boundaries and the timescale of the evolution toward this steady-state value in
the asymptotic limits of large and small Ericksen number are determined. In particular, using estimated parameter
values for the ODF method, it is found that the boundary director rotation timescale is substantially shorter than
the timescale of the ODF method, suggesting that there is sufficient time for significant transient flow-driven
distortion of the nematic molecules at the substrates from their required orientation to occur.

DOI: 10.1103/PhysRevE.102.062703

I. INTRODUCTION

A. Industrial manufacturing of liquid crystal displays

The industrial manufacturing of liquid crystal displays
(LCDs) involves the creation of a thin layer of nematic liquid
crystal (hereafter simply referred to as “nematic”) encapsu-
lated between two solid substrates with the appropriate optical
properties required for the correct functioning of the final
device. The substrates typically consist of glass or plastic
plates patterned with electrodes of indium tin oxide (ITO) and
coated with thin alignment layers, whose purpose is to ensure
that the nematic molecules have the required orientation at
the substrates in the final device. The manufacturing of LCDs
was previously carried out using the capillary-filling method
[1], but, due to its superior scale and speed, this has now
been almost entirely replaced by the one-drop-filling (ODF)
method [1–3]. In capillary filling, the substrates are positioned
parallel to each other with a typical gap size of around 5
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μm [2]. The nematic is then introduced into this gap from
one side of the device and allowed to fill the space between
the substrates by capillary action, often aided by an applied
pressure difference (an enhancement sometimes referred to
as “vacuum filling”). Even with an applied pressure gradient,
the nematic flow is still slow, and as such, capillary filling
was a bottleneck in the manufacturing process, leading to
manufacturing times of the order of a day [2,4]. In ODF, the
liquid crystal material in its nematic phase is dispensed onto
the lower substrate in the form of droplets. These droplets
are allowed to equilibrate and then the upper substrate is
lowered toward the droplet-laden lower substrate, squeezing
the droplets together to form the nematic layer. The introduc-
tion of the ODF method significantly improved manufacturing
speeds so that manufacturing times were reduced from of the
order of a day to of the order of an hour [2,4], and they are now
even shorter than this. However, since ODF is significantly
faster than capillary filling, it involves significantly higher
nematic flow speeds, which may cause transient flow-driven
distortion of the nematic molecules at the substrates from
their required orientation. This may lead to permanent or
semipermanent flow-driven misalignment of the orientation
of the molecules in the alignment layers, which may in turn
degrade the optical properties of the final device. In particular,
flow-driven misalignment of the orientation of the molecules
in the alignment layers may be the cause of spurious optical
effects known as “ODF mura” [5–7]. We have previously
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proposed a simple model for the formation of ODF mura due
to coalescing droplets of a nematic [7], and we investigated
how they might arise in the context of squeeze-film flow of
a nematic [8]. In the present work, we investigate a rather
different fundamental aspect of the ODF method that may
bring new insight into the formation of ODF mura, namely
the possibility that significant transient flow-driven distortion
of the nematic molecules at the substrates from their required
orientation may occur during this method.

B. Alignment layers

In industrial manufacturing of LCDs, the precision to
which the required orientation of the nematic molecules at the
substrates must be maintained is often extremely high. For in-
stance, in vertically aligned nematic (VAN) devices, in which
the required nematic orientation is close to 90◦, deviations in
the orientation as small as 1◦ can lead to unacceptably large
changes of an order of magnitude in the LCD contrast ratio
[9]. The alignment layers are therefore crucial components
of any LCD device. In particular, they are, in large part,
responsible for determining its optical characteristics [10].

There are a number of methods for fabricating alignment
layers. A widely used method for creating a preferred orienta-
tion at the substrates is the polymer stabilized (PS) method.
This method involves adding an ultraviolet (UV) curable
monomer to the nematic and then applying a voltage dif-
ference across the device while exposing it to UV light in
order to achieve the desired orientation at the polymer layers
that form on both plates due to phase separation [11–13].
Another method for creating a preferred orientation at the
substrates involves coating the plates with a layer of poly-
imide, and then mechanically rubbing these layers to create
nanogrooves in their surfaces with which the nematic tends
to align [10]. Other devices use photoactivated alignment in
which the plates are coated in a polymer layer whose surface
orientational properties are changed when they are exposed
to polarized light [14]. All of the methods for creating an
alignment layer rely on some form of adhesion between the
molecules of the alignment layer and those of the nematic,
which leads to an energetically preferred nematic orientation
at the substrates. Depending on the alignment material used,
the physical mechanism for this adhesion can be either me-
chanical or electrostatic [10]. The degree of preference for
the preferred nematic orientation is related to the depth of the
energy well in the interaction potential between the alignment
layer and the nematic, and it is measured by an appropriate
anchoring strength.

C. Dissipative weak anchoring

The aim of the present work is to investigate the possibility
that significant transient flow-driven distortion of the nematic
molecules at the substrates from their required orientation
may occur during the manufacture of LCDs using the ODF
method. To do this, we use the standard continuum model
for the flow of a nematic, namely Ericksen-Leslie theory
[15–17]. Many other theories have been used to describe
nematics, including Q-tensor theory [18], Berris-Edwards the-
ory [19], and statistical theories [20], but Ericksen-Leslie

theory is appropriate for the lengthscales present in device
manufacturing. The Ericksen-Leslie equations describe the
coupling of the average orientation of the nematic molecules,
known as the director n, the velocity u, and the pressure p
through laws of conservation of mass, linear momentum, and
angular momentum [17]. To accurately model the behavior of
the director at the substrates, we consider both the interaction
energy between molecules of the alignment layers and those
of the nematic, and, importantly, the dissipation of energy that
occurs close to the substrates. The competition between the
preferred orientation and the orientation in the bulk of the
nematic layer, which may be affected by forces due to flow or
electric fields, means that the orientation of the director at the
substrates may differ from the preferred orientation, albeit at
an energy cost. Such a situation is usually referred to as “weak
anchoring” [17,21]. In particular, we use the so-called Rapini-
Papoular anchoring energy [22], which models the preference
of the director at the substrates to be at the preferred ori-
entation. The Rapini-Papoular anchoring energy ω [22] is
of the form ω = γ − A (n0 · n)2, where n0 is the preferred
orientation, γ is the isotropic interface tension, and A (� 0)
is the anchoring strength. The Rapini-Papoular anchoring en-
ergy ensures that the surface energy is at a minimum when n
and n0 are parallel. In particular, “planar anchoring” is when
n0 is parallel to the substrates, and “homeotropic anchoring”
is when it is perpendicular to the substrates. The anchoring
strength A (i.e., the binding energy per square meter) is a
material parameter that measures the strength of the adhesion
between the alignment layer and the nematic. It has units
of N m−1 (i.e., J m−2), and its values are typically found
experimentally to lie in the range A = 10−5–10−3 N m−1

[23,24]. The anchoring strength depends on both the nematic
and the alignment material used [25]. Two important limits
of weak anchoring are zero (or no) anchoring, corresponding
to the limit A → 0, in which the director has no preferred
orientation at the substrates, and strong (or infinite) anchoring,
corresponding to the limit A → ∞, in which the director at
the substrates is always aligned at the preferred orientation.
While the anchoring energy describes the preference of the
director for the preferred orientation, it does not capture the
dynamical processes that take place close to the substrates. To
include these, we need to include surface dissipation, which
models the dissipation of energy close to the substrates. We
assume that the only such dissipation of energy occurs due to
the rotation of the director. The surface dissipation is therefore
proportional to γS(∂n/∂t )2, where γS (� 0) is the surface ro-
tational viscosity. The surface rotational viscosity γS has units
of Pa s m, and its values are typically found experimentally to
lie in the range γS = 10−8–10−6 Pa s m [26–28]. We use the
term “dissipative weak anchoring” for the combined effects of
weak anchoring and surface dissipation studied in the present
work.

A dissipative weak anchoring condition has been used to
study problems related to device switching, such as relaxation
of director profiles and back flow (see, for example, [26,29–
35]), while Kléman and Pikin [36] formulated a dissipative
weak anchoring condition in the context of Couette flow but
only considered steady solutions. However, to the best of
the authors’ knowledge, surprisingly little research has thus
far been carried out on the influence of dissipative weak
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FIG. 1. Unidirectional pressure-driven flow of a nematic within a
two-dimensional channel with fixed boundaries located at z = 0 and
z = h. The flow is driven by a prescribed constant pressure gradient
in the x-direction, G = −d p/dx (> 0), and is indicated by black
solid arrows. The director n with director angle φ is indicated by
gray lines. The Cartesian coordinates (x, z) are also indicated.

anchoring on the problem treated in the present work, namely
channel flow. There has, however, been previous work on
channel flow of a nematic without surface dissipation (for a
summary of some of the early work on this problem, see,
for example, Quintans Carou et al. [37,38] and the references
therein). In particular, Quintans Carou et al. [37,38] consid-
ered steady flow of a nematic in a slowly varying channel in
the special case of strong planar anchoring (i.e., in the special
case in which the director at the boundaries of the channel is
always aligned parallel to the boundaries). Specifically, Quin-
tans Carou et al. [37,38] used a combination of asymptotic
and numerical methods to analyze the problem in the limit of
small Leslie angle (defined in Sec. II C). Also relevant here
is the more recent work on the transitions that occur in chan-
nel flow of a nematic with homeotropic anchoring observed
experimentally by Sengupta et al. [39], and subsequently in-
vestigated theoretically by Anderson et al. [40] and Crespo
et al. [41] for weak homeotropic anchoring, and numerically
by Batista et al. [42] for weak homeotropic, planar, and hybrid
(i.e., homeotropic at one boundary and planar at the other
boundary) anchoring.

II. MODEL FORMULATION

A. Governing equations and boundary conditions

Consider unidirectional flow of a nematic with velocity in
the x-direction within a two-dimensional channel with fixed
boundaries located at z = 0 and z = h, as shown in Fig. 1,
where (x, z) are Cartesian coordinates and t denotes time. The
flow is driven by a prescribed constant pressure gradient in the
x-direction, denoted by G = −d p/dx (> 0), where p = p(x)
is the fluid pressure, and we assume that the director remains
in the (x, z) plane. We therefore seek solutions for the director
n = n(z, t ) and the velocity u = u(z, t ) in the channel in the
forms

n = (cos (φ(z, t )), 0, sin (φ(z, t ))), (1)

u = (u(z, t ), 0, 0), (2)

where φ = φ(z, t ) is the angle between the director and x-axis,
hereafter referred to as the director angle, as shown in Fig. 1.

For this situation, the Ericksen-Leslie equations [15–17] for
the director angle φ and the velocity u are given by

γ1
∂φ

∂t
= f (φ)

∂2φ

∂z2
+ 1

2
f ′(φ)

(
∂φ

∂z

)2

− m(φ)
∂u

∂z
, (3)

ρ
∂u

∂t
= G + ∂

∂z

(
g(φ)

∂u

∂z
+ m(φ)

∂φ

∂t

)
, (4)

where the constants ρ and γ1 are the density and the bulk
rotational viscosity, respectively. For a full derivation of the
Ericksen-Leslie equations for rectilinear flow, see, for exam-
ple, Appendix A of Crespo et al. [41]. The elasticity function
f (φ) and viscosity functions m(φ) and g(φ) appearing in (3)
and (4) are defined by

f (φ) = K1 cos2 φ + K3 sin2 φ, (5)

m(φ) = α3 cos2 φ − α2 sin2 φ, (6)

g(φ) = 1
2 (α4 + α3 + α6) cos2 φ + 1

2 (α4 − α2 + α5) sin2 φ

+ α1 sin2 φ cos2 φ, (7)

respectively, where the constants K1 and K3 are the splay
and bend elastic constants, and α1, . . . , α6 are the Leslie
viscosities (of which α4/2 is the isotropic viscosity) [17].
The elasticity function f (φ) is the effective elastic constant
that the nematic exhibits in a simple shear flow with a fixed
director angle φ. The viscosity function m(φ) describes the
director-dependent coupling between the rotation of the direc-
tor, ∂φ/∂t , and the shear rate, ∂u/∂z. The viscosity function
g(φ) is the effective viscosity that the nematic exhibits in a
simple shear flow with a fixed director angle φ.

As described in Sec. I C, we take the boundary conditions
for the director angle to be the so-called dissipative weak
anchoring conditions (see, for example, [26,29–36]) given by

γS
∂φ

∂t
= + f (φ)

∂φ

∂z
− A sin 2φ at z = 0, (8)

γS
∂φ

∂t
= − f (φ)

∂φ

∂z
− A sin 2φ at z = h, (9)

where the constants γS (� 0) and A (� 0) are the surface
rotational viscosity and the anchoring strength, respectively.
For anchoring conditions of this form, the preferred director
orientation at the channel boundary is φ ≡ qπ , where q is
an integer. The present analysis is relevant to devices with
planar anchoring for which the preferred director orientations
at the substrates are parallel, such as in-plane switching (IPS)
devices [43]. While the present analysis is not directly relevant
to devices with homeotropic anchoring, such as VAN devices
[12], or to devices in which the director does not remain in the
(x, z) plane, such as twisted nematic (TN) or super-twisted
nematic (STN) devices [44], we anticipate that many of the
qualitative features of the present results will also occur in
these devices.

For the velocity we impose standard no-slip boundary con-
ditions given by

u = 0 at z = 0, (10)

u = 0 at z = h. (11)
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Appropriate initial conditions on φ and u will be described in
Sec. II D.

B. Nondimensionalization

The governing equations (3) and (4) with (5)–(7) subject to
(8)–(11) are nondimensionalized according to

t = τ t̃, z = hz̃, u = Gh2

α4
ũ, f = K1 f̃ ,

m = α4m̃, g = α4g̃, K3 = K1K̃3,

αi = α4α̃i for i = 1, . . . , 6,

γi = α4γ̃i for i = 1, 2, (12)

where τ is an appropriate timescale, which will be dis-
cussed in detail in Sec. II D, and nondimensional variables
are denoted by a superimposed tilde. Note that the veloc-
ity is nondimensionalized using the characteristic velocity
of pressure-driven channel flow of a Newtonian fluid, which
depends on G, h, and α4, the elastic function f and the bend
elastic constant K3 are nondimensionalized with the splay
elastic constant K1, while the viscosity functions m and g,
the Leslie viscosities αi for i = 1, . . . , 6, the bulk rotational
viscosity γ1, and the torsional viscosity γ2 are all nondimen-
sionalized with α4.

The nondimensional Ericksen-Leslie equations (3) and (4)
are given by

γ1h2

K1τ

∂φ

∂ t̃
= f̃ (φ)

∂2φ

∂ z̃2
+ 1

2
f̃ ′(φ)

(
∂φ

∂ z̃

)2

− Er m̃(φ)
∂ ũ

∂ z̃
,

(13)

Re
α4

Ghτ

∂ ũ

∂ t̃
= 1 + ∂

∂ z̃

(
g̃(φ)

∂ ũ

∂ z̃
+ α4

Ghτ
m̃(φ)

∂φ

∂ t̃

)
, (14)

where the nondimensional elasticity and viscosity functions
(5)–(7) are given by

f̃ (φ) = cos2 φ + K̃3 sin2 φ, (15)

m̃(φ) = α̃3 cos2 φ − α̃2 sin2 φ, (16)

g̃(φ) = 1
2 (1 + α̃3 + α̃6) cos2 φ + 1

2 (1 − α̃2 + α̃5) sin2 φ

+ α̃1 sin2 φ cos2 φ, (17)

the nondimensional dissipative weak anchoring conditions (8)
and (9) are

γSh

K1τ

∂φ

∂ t̃
= + f̃ (φ)

∂φ

∂ z̃
− A sin 2φ at z̃ = 0, (18)

γSh

K1τ

∂φ

∂ t̃
= − f̃ (φ)

∂φ

∂ z̃
− A sin 2φ at z̃ = 1, (19)

and the nondimensional no-slip conditions (10) and (11) are

ũ = 0 at z̃ = 0, (20)

ũ = 0 at z̃ = 1. (21)

Equations (13)–(21) involve three key nondimensional
groups, namely the Ericksen number Er defined by

Er = Gh3

K1
, (22)

the Reynolds number Re defined by

Re = ρGh3

α2
4

, (23)

and the anchoring strength parameter A defined by

A = Ah

K1
. (24)

The Ericksen number Er is a nondimensional measure of the
relative strength of viscous effects and splay elastic effects.
The limit of zero Ericksen number (Er → 0) corresponds to
a regime in which there are no viscous effects, while the
limit of infinite Ericksen number (Er → ∞) corresponds to
a regime in which there are no elastic effects. The familiar
Reynolds number Re is a nondimensional measure of the
relative strength of inertial effects and viscous effects. The
limit of zero Reynolds number (Re → 0) corresponds to a
regime in which there are no inertial effects (i.e., Stokes
flow), while the limit of infinite Reynolds number (Re → ∞)
corresponds to a regime in which there are no viscous effects
(i.e., inviscid flow). The anchoring strength parameter A is a
nondimensional measure of the relative strength of anchoring
and splay elastic effects at the boundaries. As described in
Sec. I C, the limit of zero anchoring strength parameter (A →
0) corresponds to a regime in which there is zero anchoring at
the boundaries, while the limit of infinite anchoring strength
parameter (A → ∞) corresponds to a regime in which there
is strong anchoring at the boundaries.

Solving the governing equations and boundary conditions
(13)–(21) must, in general, be done numerically. However,
in the present work we follow an approach similar to that
of Quintans Carou et al. [37,38] and use a combination of
asymptotic and numerical methods to analyze the problem in
the limit of small Leslie angle.

C. Leslie angle

When the director field is static and uniformly orientated,
i.e., when φ = constant, from (13) a uniform shear flow leads
to the condition m̃(φ) = 0. For flow-aligning nematics, i.e.,
for nematics whose viscosities satisfy α̃3/α̃2 � 0, the direc-
tor angle then takes the value φ = qπ ± φL, where φL (0 �
φL � π/2) is the Leslie angle (sometimes also called the flow
alignment angle) [17], and is defined by

φL = tan−1

√
α̃3

α̃2
. (25)

A stability analysis of the system shows that in a region
of positive shear rate (∂u/∂z > 0) or negative shear rate
(∂u/∂z < 0), the director remains in the (x, z) plane and the
director angle rotates toward the “positive” Leslie angle φ =
qπ + φL or the “negative” Leslie angle φ = qπ − φL, respec-
tively [17,45,46]. In particular, for a flow-aligning nematic,
the director angle approaches φ = qπ ± φL when viscous
effects dominate splay elastic effects (i.e., when Er � 1), in
which case reorientational boundary and/or internal layers
may occur between the uniformly orientated bulk and/or the
orientation dictated by the boundaries [17,37–42]. On the
other hand, for non-flow-aligning nematics, i.e., for nematics
whose viscosities satisfy α̃3/α̃2 < 0, the Leslie angle does not
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exist and the director exhibits unsteady behavior known as
tumbling [17,47].

In the present work, we will consider only flow-aligning
nematics and introduce a nondimensional viscosity ratio de-
noted by ε (� 0) and defined by

ε =
√

α̃3

α̃2
, (26)

so that the Leslie angle defined by (25) can be written in
terms of ε as φL = tan−1 ε. The viscosity ratio ε can also
be expressed in terms of the more commonly measured bulk
rotational viscosity γ̃1 and torsional viscosity γ̃2 [17] as

ε =
√

γ̃1 + γ̃2

γ̃2 − γ̃1
. (27)

For nematic materials that are commonly used in industrial
manufacturing of LCDs, typically ε is small. For exam-
ple, ε � 0.210 for 4-Cyano-4′-pentylbiphenyl (5CB) [17],
ε � 0.143 for 4-Cyano-4′-heptylbihenyl (7CB) [48], and ε �
0.001 for 4-Cyano-4′-octyloxybiphenyl (8OCB) [49]. In fact,
most modern LCDs use mixtures of nematics with physical
properties similar to E7, which contains 51% 5CB, 25% 7CB,
16% 8OCB, and 8% of other similar biphenyl compounds
[50], and so typically ε is also small for these mixtures. In
Sec. III we will exploit the smallness of ε to seek asymptotic
solutions in the limit ε → 0.

For future reference, we note that the nondimensional vis-
cosity functions m̃(φ) and g̃(φ) given by (16) and (17) can be
written without explicitly mentioning α̃3 = ε2α̃2 as

m̃(φ) = α̃2(− sin2 φ + ε2 cos2 φ), (28)

g̃(φ) = 1
2 (1 + ε2α̃2 + α̃6) cos2 φ + 1

2 (1 − α̃2 + α̃5) sin2 φ

+ α̃1 sin2 φ cos2 φ. (29)

D. Timescales

We now discuss four timescales occurring in (13)–(21),
namely

τ1 = γ1h2

K1
, τ2 = ρh2

α4
, τ3 = α2

Gh
, τ4 = γSh

K1
,

(30)
over which different physical effects occur.

Using the definitions (28) and (30) in (13), (14), (18), and
(19) yields the governing equations

τ1

τ

∂φ

∂ t̃
= f̃ (φ)

∂2φ

∂ z̃2
+ 1

2
f̃ ′(φ)

(
∂φ

∂ z̃

)2

− α̃2Er(ε2 cos2 φ − sin2 φ)
∂ ũ

∂ z̃
, (31)

τ2

τ

∂ ũ

∂ t̃
= 1 + ∂

∂ z̃

[
g̃(φ)

∂ ũ

∂ z̃
+ τ3

τ
(ε2 cos2 φ − sin2 φ)

∂φ

∂ t̃

]
,

(32)

and the dissipative weak anchoring conditions

τ4

τ

∂φ

∂ t̃
= + f̃ (φ)

∂φ

∂ z̃
− A sin 2φ at z̃ = 0, (33)

τ4

τ

∂φ

∂ t̃
= − f̃ (φ)

∂φ

∂ z̃
− A sin 2φ at z̃ = 1. (34)

The bulk director rotation timescale τ1 appears in the angu-
lar momentum equation (31) and is the timescale of rotation
of the director within the bulk of the channel induced by the
splay elastic reorientation toward a uniform director. The fluid
inertia timescale τ2 appears in the linear momentum equation
(32) and is the familiar inertial timescale for a Newtonian
fluid. The director-flow coupling timescale τ3 also appears in
the linear momentum equation (32) and is the timescale on
which changes in the velocity affect the director orientation
and vice versa. The boundary director rotation timescale τ4

appears in the dissipative weak anchoring conditions (33)
and (34) and is the timescale of rotation of the director at
the boundaries of the channel driven by splay elastic effects.
In contrast to the bulk rotation timescale τ1, the boundary
director rotation timescale τ4 depends on the surface rotational
viscosity γS rather than the bulk rotational viscosity γ1. The
timescales τ1 and τ4 depend on splay elastic reorientation, for
a discussion of the timescales depending on twist elastic re-
orientation (i.e., those depending on K2), the reader is referred
to the work of Rey [29].

To obtain order-of-magnitude estimates of the timescales
τ1, τ2, τ3, and τ4 in the ODF method, we used estimated
parameter values for a typical nematic mixture used in in-
dustrial manufacturing of LCDs, namely a nematic density
ρ = 103 kg m−3 [17], surface rotational viscosity γS = 10−8–
10−6 Pa s m [26,27], Leslie viscosities α2 = 10−2 Pa s and
α4 = 10−1 Pa s [17,49], bulk rotational viscosity γ1 = 10−2

Pa s [17], viscosity ratio ε = 10−1, splay elastic constant
K1 = 10−11 N [17], and cell gap h = 10−6 m [7]. To esti-
mate the timescale τ3, we require an estimate of the pressure
gradient G. The flow of the nematic in the ODF method is
driven by the squeezing together of the substrates, and so
the pressure gradient can be estimated by using the pressure
gradient of squeeze-film flow of a Newtonian fluid, namely
G = α4Lwp/h3, where L is the horizontal lengthscale of the
flow and wp is the speed at which the substrates are squeezed
together [51]. The timescale of the ODF method, denoted by
τODF, is the timescale over which the substrates are squeezed
together. We take the horizontal lengthscale to be the typi-
cal diameter of a nematic droplet used in the ODF method,
namely L = 10−2 m [7,8], the typical ODF timescale τODF =
10−1 s [7], and the speed at which the substrates are squeezed
together to be wp = 10−3 m s−1 [7,8], which yields an esti-
mate of the pressure gradient in the ODF method of G = 1012

Pa m−1.
Table I shows order-of-magnitude estimates of the

timescales τ1, τ2, τ3, and τ4 in the ODF method using the
estimated parameter values given above. In particular, Table I
shows that the fluid inertia timescale and director flow cou-
pling timescale, τ2 and τ3, are much shorter than the two
director rotation timescales, τ1 and τ4, and so these effects can
safely be treated as instantaneous on the timescale of the ODF
method, and henceforth we set τ2 = 0 and τ3 = 0. The two
director rotation timescales are comparable when γS = 10−8

Pa s m, suggesting that the regime in which τ = τ1 � τ4 is
worthy of study, but since τ1 is 100 times shorter than τ4 when
γS = 10−6 Pa s m, in the present work we also set τ1 = 0.
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TABLE I. Order-of-magnitude estimates of the timescales τ1, τ2,
τ3, and τ4 in the ODF method using the estimated parameter values
given in the text.

Timescale Definition Physical meaning Value

τ1
γ1h2

K1
bulk director rotation 10−3 s

τ2
ρh2

α4
fluid inertia 10−8 s

τ3
α2

Gh
director-flow coupling 10−8 s

τ4
γSh

K1
boundary director rotation 10−3–10−1 s

Since all of the timescales except the boundary director rota-
tion timescale τ4 have been set to zero, we can now, without
loss of generality, set τ = τ4, so that the governing equations
(31) and (32) become

f̃ (φ)
∂2φ

∂ z̃2
+1

2
f̃ ′(φ)

(
∂φ

∂ z̃

)2

= α̃2Er(ε2 cos2 φ− sin2 φ)
∂ ũ

∂ z̃
,

(35)

0 = 1 + ∂

∂ z̃

(
g(φ)

∂ ũ

∂ z̃

)
, (36)

subject to the dissipative weak anchoring conditions (18) and
(19),

∂φ

∂ t̃
= + f̃ (φ)

∂φ

∂ z̃
− A sin 2φ at z̃ = 0, (37)

∂φ

∂ t̃
= − f̃ (φ)

∂φ

∂ z̃
− A sin 2φ at z̃ = 1, (38)

and the no-slip conditions (20) and (21), where the tilde nota-
tion on nondimensional variables has been dropped for clarity.

Given that the time derivatives have been removed from the
governing equations (35) and (36), leaving only time deriva-
tives of the director angle in the dissipative weak anchoring
conditions (37) and (38), we no longer require initial condi-
tions on the director angle and the velocity [i.e., φ(z, 0) and
u(z, 0)] within the bulk of the channel. Instead we only require
initial conditions on the director angle at the boundaries [i.e.,
φ(0, 0) and φ(1, 0)]. Specifically, we impose initial conditions
on the director angle at the boundaries in the form

φ = + φLθ at z = 0 and t = 0, (39)

φ = − φLθ at z = 1 and t = 0, (40)

where θ (� 0) is the magnitude of the initial director angle at
the boundaries scaled with φL.

At this point, it is useful to consider typical values of
the important nondimensional groups Er and A in the ODF
method. Using the values in Table I, the Ericksen number
is found to be Er = 105, indicating that the flow is usually
dominated by viscous effects. However, this large value is
slightly misleading because, as we will show in Sec. III, the
effective Ericksen number, denoted by Ēr, takes the somewhat
smaller value Ēr = 1.7 × 102, and so, for completeness, we
will consider all values of Ēr in what follows.

As mentioned in Sec. I C, anchoring strengths are typically
found experimentally to lie in the range of A = 10−5–10−3

N m−1 [26,27], and so, using (24) and the values in Table I,
this corresponds to values of the anchoring strength parameter
in the range A = 1–102.

III. ASYMPTOTIC SOLUTIONS IN THE LIMIT OF SMALL
LESLIE ANGLE

As described in Sec. II C, typically the viscosity ratio ε

for commonly used nematics and mixtures of nematics is
small, and so henceforth we obtain asymptotic solutions in
the limit ε → 0. In particular, in this limit the Leslie angle
φL = tan−1 ε ∼ ε 
 1 is small.

In the limit ε → 0, we seek asymptotic solutions for φ and
u in powers of ε in the forms

φ(z, t ) = φ0(z, t ) + εφ1(z, t ) + ε2φ2(z, t ) + O(ε3), (41)

u(z, t ) = u0(z, t ) + εu1(z, t ) + ε2u2(z, t ) + O(ε3). (42)

Substituting the expansions (41) and (42) into the angular mo-
mentum equation (35), the linear momentum equation (36),
the dissipative weak anchoring conditions (37) and (38), the
initial conditions (39) and (40), and the no-slip conditions
(20) and (21), and defining an appropriately rescaled effective
Ericksen number Ēr [37,38] (hereafter simply referred to as
the Ericksen number) given by

Ēr = − εα2

1 + α6
Er, (43)

yields the leading-order equations

0 = sin2 φ0
∂u0

∂z
, (44)

0 = 1 + ∂

∂z

(
g(φ0)

∂u0

∂z

)
, (45)

subject to the leading-order dissipative weak anchoring
conditions

∂φ0

∂t
= + f (φ0)

∂φ0

∂z
− 2Aφ0 at z = 0, (46)

∂φ0

∂t
= − f (φ0)

∂φ0

∂z
− 2Aφ0 at z = 1. (47)

[Note that the definition of Ēr given in (43) incorporates the
O(1) factor of −α2/(1 + α6) in order to simplify some of the
subsequent expressions.]

The leading-order director angle is obtained by solving
(44) and (45) subject to (46) and (47) to yield the trivial
solution φ0 ≡ 0, i.e., the leading-order director angle is planar
throughout the channel, and so at leading order the functions
f (φ) and g(φ) appearing in (35)–(38) are given by f (φ) = 1
and g(φ) = (1 + α6)/2.

The leading-order velocity is determined by integrating
(45) with φ0 ≡ 0 subject to the no-slip conditions (20) and
(21) to obtain the classical Poiseuille flow profile

u0 = z(1 − z)

1 + α6
. (48)
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The first-order angular momentum equation is identically
satisfied, and the first-order linear momentum equation has
the trivial solution u1 ≡ 0.

The first-order director angle then satisfies the second-
order angular momentum equation

∂2φ1

∂z2
= Ēr(2z − 1)

(
1 − φ2

1

)
, (49)

subject to the first-order dissipative weak anchoring
conditions

∂φ1

∂t
= + ∂φ1

∂z
− 2Aφ1 at z = 0, (50)

∂φ1

∂t
= − ∂φ1

∂z
− 2Aφ1 at z = 1, (51)

and the first-order initial conditions

φ1 = +θ at z = 0 and t = 0, (52)

φ1 = −θ at z = 1 and t = 0. (53)

The second-order velocity satisfies the second-order linear
momentum equation

0 = ∂

∂z

[
α2

∂u0

∂z
+ (2α1 − α2 + α5 − α6)φ2

1
∂u0

∂z

+ (1 + α6)
∂u2

∂z

]
, (54)

which can be integrated subject to the no-slip conditions (20)
and (21) to obtain

u2 = 2α1 − α2 + α5 − α6

(1 + α6)2

[ ∫ z

0
(2Z − 1)φ2

1 dZ

− z
∫ 1

0
(2z − 1)φ2

1 dz

]
+ α2

(1 + α6)2
z(z − 1). (55)

In the remainder of the present work, we shall discuss
the quasisteady solutions for the first-order director angle φ1

(hereafter simply referred to as “the director angle”) of (49)
(hereafter simply referred to as “the director angle equation”)
subject to the dissipative weak anchoring conditions (50) and
(51), and the initial conditions (52) and (53). In particular, we
will obtain asymptotic solutions in the limit of large Ericksen
number Ēr → ∞ in Sec. IV and in the limit of small Ericksen
number Ēr → 0 in Sec. V, as well as numerical solutions for
general values of the Ericksen number in Sec. VI. Since we are
particularly interested in the transient flow-driven distortion of
the director from its required orientation at the boundaries of
the channel, we write �(t ) = φ1(0, t ) for the director angle
at z = 0 (hereafter simply referred to as “the director angle at
the boundaries”), and note that since φ1 is symmetric about
z = 1/2, the director angle at z = 1 is given by φ1(1, t ) =
−�(t ). As we shall show, in the limit t → ∞ the director
angle approaches a steady-state solution that we denote by
φ1 = φ1SS(z) and � = �SS, i.e., φ1 → φ1SS and � → �SS as
t → ∞. Once the director angle φ1 has been determined, the
second-order velocity u2 can be calculated using (55), but we
do not undertake this calculation in the present work.

FIG. 2. The structure of the leading-order director angle φ1,0 in
the limit of large Ericksen number, Ēr → ∞.

IV. ASYMPTOTIC SOLUTION IN THE LIMIT OF LARGE
ERICKSEN NUMBER

In the limit of large Ericksen number Ēr → ∞, the solution
for the director angle φ1 has narrow reorientational boundary
layers near z = 0 and 1 and a narrow reorientational internal
layer near z = 1/2 separated by two outer regions, as shown
in Fig. 2.

A. Outer solution

The outer solution valid in the outer regions away from
the boundary and internal layers can be obtained by seek-
ing an asymptotic solution for φ1 in powers of Ēr−1 when
ε 
 Ēr−1 
 1 in the form φ1 = φ1,0 + O(Ēr−1), where φ1,0

denotes the term that is first order in ε and leading order
in Ēr−1. Substituting this expansion into the director angle
equation (49) yields the simple solution φ1,0 = ±1, which
corresponds to the director angle being equal to either the
positive or the negative Leslie angle at leading order. The
leading-order velocity u0 given by (48) satisfies ∂u0/∂z > 0
for 0 < z < 1/2 and ∂u0/∂z < 0 for 1/2 < z < 1, and so, as
described in Sec. II C, the appropriate uniformly orientated
leading-order outer solution is φ1,0 = 1 for 0 < z < 1/2 and
φ1,0 = −1 for 1/2 < z < 1, as shown in Fig. 2.

B. Inner solutions in the boundary layers

Inspection of (49) suggests that the boundary layer near
z = 0 is of width O(Ēr−1/2) 
 1 in which the director angle
adjusts from its uniform value in the outer region to its value
at the boundary, and so we introduce an appropriately rescaled
inner coordinate Z defined by z = Ēr−1/2Z to yield

∂2φ1

∂Z2
= (2 Ēr−1/2Z − 1)

(
1 − φ2

1

)
. (56)

Seeking an asymptotic solution of (56) in the form φ1 =
φ1,0 + O(Ēr−1/2) yields the leading-order equation

∂2φ1,0

∂Z2
= φ1,0

2 − 1. (57)

The appropriate exact solution of (57) subject to the matching
conditions φ1,0 → 1 and ∂φ1,0/∂Z → 0 as Z → ∞ is

φ1,0 = 3 tanh2

(
Z√
2

+ tanh−1

√
2 + �0

3

)
− 2, (58)
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FIG. 3. The leading-order director angle in the internal layer
φinner obtained by solving (60) numerically using the matching con-
ditions φinner → −1 as Z → ∞ and φinner → 1 as Z → −∞ plotted
as a function of the inner variable Z .

where �0(t ) = φ1,0(0, t ) is the leading-order director angle at
the boundaries. Note that setting �0 ≡ 0 in (58) recovers the
steady solution obtained by Quintans Carou et al. [37,38] in
the limit of strong planar anchoring, A → ∞. However, in
the present problem �0 is, of course, not constant, and the
singular ordinary differential equation for the evolution of �0

can be obtained by substituting φ1,0 given by (58) into the
dissipative weak anchoring condition (50) to yield

Ēr−1/2 d�0

dt
=

√
2

3
(1 − �0)

√
2 + �0 − 2k�0,

where k = A
Ēr1/2

(� 0). (59)

In Sec. IV E we will consider the solution to (59) subject to the
initial condition �0(0) = θ . The corresponding inner solution
valid in the boundary layer near z = 1 follows immediately
from the symmetry of φ1 about z = 1/2 mentioned earlier.

C. Inner solution in the internal layer

Inspection of (49) also suggests that the internal layer
near z = 1/2 is of width O(Ēr−1/3) 
 1 (i.e., much wider
than the boundary layers but still much narrower than the
channel) in which the director angle adjusts between its uni-
form values in the outer regions, and so we introduce an
appropriately rescaled inner coordinate Z defined by z =
1/2 + Ēr−1/3Z . Seeking an asymptotic solution in the form
φ1 = φ1,0 + O(Ēr−1/3) yields the leading-order equation

∂2φ1,0

∂Z2
= 2Z (1 − φ1,0

2) (60)

subject to the matching conditions φ1,0 → −1 as Z → ∞
and φ1,0 → 1 as Z → −∞. Equation (60) cannot be solved
analytically, but, since it contains no parameters, it only needs
to be solved once numerically. This numerical solution is
denoted by φinner (Z ) = φ1,0(Z ) and is plotted as a function of
Z in Fig. 3.

D. Composite solution

Combining the inner and outer solutions for φ1 yields the
composite solution

φ1 = 3 tanh2

⎛
⎝

√
Ēr

2
z + tanh−1

√
2 + �0

3

⎞
⎠

− 3 tanh2

⎛
⎝

√
Ēr

2
(1 − z) + tanh−1

√
2 − �0

3

⎞
⎠

+ φinner

[
Ēr1/3

(
z − 1

2

)]
+ O(Ēr−1), (61)

where �0 satisfies (59) subject to the initial condition
�0(0) = θ .

E. Director angle at the boundaries

As we have already seen, the leading-order director angle
at the boundaries �0 satisfies the singular ordinary differen-
tial equation (59) subject to the initial condition �0(0) = θ .
Inspection of (59) reveals that �0 rapidly evolves toward its
constant steady-state value of �0SS given by

�0 = �0SS = 2

3

[
k − |χ |1/3cos

(
1

3
arg(χ )

)]2

− 2 + O
(
Ēr−1

)
(62)

over a short timescale of O(Ēr−1/2) 
 1. Rescaling t ap-
propriately according to t = Ēr−1/2t̂ shows that this rapid
evolution is described by the implicit solution

−
√

2

3
t̂ = a ln

(√
2 + �0 − v1√
2 + θ − v1

)
+ b ln

(√
2 + �0 − v2√
2 + θ − v2

)

+ c ln

(√
2 + �0 − v3√
2 + θ − v3

)
, (63)

where

a = 2v1

(v1 − v2)(v1 − v3)
, b = 2v2

(v2 − v1)(v2 − v3)
,

c = 2v3

(v3 − v1)(v3 − v2)
. (64)

The constants v1, v2, and v3 are the roots of the cubic polyno-
mial

F (v) = v3 +
√

6kv2 − 3v − 2
√

6k, (65)

which can be written explicitly as

v1 = −
√

2

3

[
k − |χ |1/3 cos

(
1

3
arg(χ )

)]
, (66)

v2 = −
√

2

3

[
k + |χ |1/3 cos

(
1

3
arg(χ ) − π

3

)]
, (67)

v3 = −
√

2

3

[
k + |χ |1/3 cos

(
1

3
arg(χ ) + π

3

)]
, (68)
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where |χ | and arg(χ ) are the modulus and argument, respec-
tively, of the complex number χ , defined by

χ = 18k − 8k3 + 6i
√

6 + 3k2 + 16k4. (69)

It is informative to consider three cases for the size of the
parameter k (and hence for the relative size of the nondimen-
sional groups Ēr and A) in which further analytical progress
can be made. Specifically, we consider the cases k � 1 (A �
Ēr1/2 � 1), k 
 1 (either Ēr1/2 � A � 1 or Ēr1/2 � 1 �
A), and k = O(1) (Ēr1/2 = O(A) � 1).

1. The case k � 1

In the case k � 1 (A � Ēr1/2 � 1), the implicit solution
(63) reduces to the simple explicit solution

�0 = θe−2kt̂ , i.e., �0 = θe−2At , (70)

which approaches its steady-state value �0SS = 0 as t → ∞,
i.e., the director at the boundaries becomes planar as t → ∞.
This case represents a regime in which the anchoring is suf-
ficiently strong that the effects of flow are negligible at the
boundaries, and the (nondimensional) timescale of the evolu-
tion of the director at the boundaries toward its steady-state
value, denoted by σ , is given by

σ = 1

2A 
 1. (71)

2. The case k � 1

In the case k 
 1 (either Ēr1/2 � A � 1 or Ēr1/2 � 1 �
A) the implicit solution (63) reduces to the appropriate ex-
plicit solution

�0 = −2 + 3 tanh

(√
1

2
t̂ + tanh−1

√
2 + θ

3

)2

, (72)

which approaches its steady-state value �0SS = 1 as t → ∞,
i.e., the director angle at the boundaries approaches the Leslie
angle as t → ∞, according to

�0 = 1 − 12 exp

[
−2 tanh

√
2 + θ

3
−

√
2 Ēr1/2t

]

+ O
(
exp[−2 Ēr1/2t]

)
. (73)

This case represents a regime in which the flow is sufficiently
strong that the effects of anchoring are negligible at the bound-
aries, and the timescale σ is given by

σ = 1√
2 Ēr1/2


 1. (74)

3. The case k = O(1)

In the case k = O(1) (Ēr1/2 = O(A) � 1), the implicit
solution (63) approaches its steady-state value �0SS (0 <

�0SS < 1) given by (62) as t → ∞. Unfortunately, (63) does
not yield an explicit expression for the timescale σ . However,
as we shall show in Sec. VI B, σ is always less than both
(71) and (74), and so (71) and (74) provide an upper bound

on σ for all values of k. This case represents a regime in
which the effects of anchoring and flow are comparable at
the boundaries, and hence the behavior of the director at the
boundaries depends on a combination of these two effects.

V. ASYMPTOTIC SOLUTION IN THE LIMIT OF SMALL
ERICKSEN NUMBER

In the limit of small Ericksen number Ēr → 0 we seek an
asymptotic solution for φ1 in powers of Ēr when ε 
 Ēr 
 1
in the form φ1 = φ1,0 + Ēr φ1,1 + O(Ēr2), where φ1,0 denotes
the term that is first order in ε and leading order in Ēr, and φ1,1

denotes the term that is first order in ε and first order in Ēr.
At leading order in Ēr the director angle equation (49)

reduces to simply

∂2φ1,0

∂z2
= 0, (75)

subject to the dissipative weak anchoring conditions (50) and
(51),

∂φ1,0

∂t
= + ∂φ1,0

∂z
− 2Aφ1,0 at z = 0, (76)

∂φ1,0

∂t
= − ∂φ1,0

∂z
− 2Aφ1,0 at z = 1, (77)

and the initial conditions (52) and (53), φ1,0(0, 0) = +θ and
φ1,0(1, 0) = −θ . Integrating (75) twice with respect to z, us-
ing (76) and (77) and the initial conditions on φ1,0, yields the
solution for φ1,0, namely

φ1,0 = θ (1 − 2z) e−2(1+A)t . (78)

At first order in Ēr the director angle equation (49) reduces
to

∂2φ1,1

∂z2
= (2z − 1)

(
1 − φ2

1,0

)
, (79)

subject to the dissipative weak anchoring conditions (50) and
(51),

∂φ1,1

∂t
= + ∂φ1,1

∂z
− 2Aφ1,1 at z = 0, (80)

∂φ1,1

∂t
= − ∂φ1,1

∂z
− 2Aφ1,1 at z = 1, (81)

and the initial conditions (52) and (53), φ1,1(0, 0) = 0 and
φ1,1(1, 0) = 0. Integrating (79) twice with respect to z, using
(78), (80), and (81) and the initial conditions on φ1,1, yields
the solution for φ1,1, namely

φ1,1 = 2z − 1

60

[
5

(
2z2 − 2z − 1

1 + A

)
+ 5 + 3θ2

1 + A e−2(1+A)t

+ 3θ2

(
4z4 − 8z3 + 6z2 − 2z + 1

1 + A

)
e−4(1+A)t

]
.

(82)

Using (78) and (82), the asymptotic solution for φ1 is
therefore
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(a) (b)

FIG. 4. (a) The initial director angle φ1(z, 0) and (b) the steady-state solution for the director angle φ1SS(z) plotted as functions of z for
A = 1 and θ = 0.5 according to the numerical solution (solid lines) when Ēr = 10−1, 10, 102, and 104, the large Ēr asymptotic solution (dashed
lines) given by (61) when Ēr = 102 and 104, and the small Ēr asymptotic solution (dotted lines) given by (83) when Ēr = 10−1 and 10. In both
(a) and (b) the insets show the corresponding results when Ēr = 50. The arrows show the direction of increasing Ēr.

φ1 = θ (1 − 2z)e−2(1+A)t + 2z − 1

60

[
5

(
2z2 − 2z − 1

1 + A

)
+ 5 + 3θ2

1 + A e−2(1+A)t

+3θ2

(
4z4 − 8z3 + 6z2 − 2z + 1

1 + A

)
e−4(1+A)t

]
Ēr + O(Ēr2), (83)

and hence the asymptotic solution for the director angle at the
boundaries � is

� = θ e−2(1+A)t + 1

60(1 + A)
[5 − (5 + 3θ2) e−2(1+A)t

− 3θ2 e−4(1+A)t ]Ēr + O(Ēr2). (84)

In particular, from (83) the steady-state solution φ1SS is given
by

φ1SS = 2z − 1

12

[
2z2 − 2z − 1

1 + A

]
Ēr + O(Ēr2), (85)

and from either (84) or (85) the steady-state value �SS is given
by

�SS = Ēr

12(1 + A)
+ O(Ēr2). (86)

In particular, the solution for the director angle given by (83)
and (84) is dominated by splay elastic effects with viscous
effects appearing at O(Ēr) 
 1. In addition, from (84) the
timescale σ is given by

σ = 1

2(1 + A)
. (87)

Note that even in the special case A = 0 in which case
there is no anchoring force in (50) and (51), there is still
an elastic restoring force due to the ∂φ1/∂z term, and hence
the director angle at the boundaries still rotates such that
� → �SS = Ēr/12 + O(Ēr2) as t → ∞.

VI. SOLUTIONS FOR GENERAL VALUES OF THE
ERICKSEN NUMBER

In this section, we obtain numerical solutions of the di-
rector angle equation (49) subject to (50)–(53) for general
values of the Ericksen number, and, in particular, we compare
them with the quasisteady asymptotic solutions in the limits of
large and small Ēr described in Secs. IV and V, respectively.
The numerical approach we adopt uses the MATLAB bound-
ary value problem solver bvp4c [52] with an implicit Euler
method for approximating the time derivatives in (50) and
(51). In all of our numerical calculations, the simulation time
is chosen to be six times longer than the appropriate timescale
given by (71), (74), or (87) in order to allow sufficient time for
convergence to the steady-state solution. In all of the numer-
ical calculations reported here, we use the value θ = 0.5 for
the initial value of the director angle at the boundaries.

A. Director angle

Figure 4(a) shows the initial director angle φ1(z, 0) and
Fig. 4(b) shows the steady-state solution for the director angle
φ1SS(z), both plotted as functions of z according to the numer-
ical solution (solid lines) when Ēr = 10−1, 10, 102, and 104,
the large Ēr asymptotic solution (dashed lines) given by (61)
when Ēr = 102 and 104, and the small Ēr asymptotic solution
(dotted lines) given by (83) when Ēr = 10−1 and 10. The
insets in Fig. 4 show the corresponding results for an interme-
diate value of Ēr, namely Ēr = 50. In particular, Fig. 4 shows
how the leading-order velocity in the channel u0 given by
(48) affects both the initial director angle and the steady-state
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director angle. Specifically, as described in Sec. II C, in the
lower half of the channel the positive shear rate (∂u0/∂z > 0)
rotates the director angle toward the positive Leslie angle
φ1 = +1, while in the upper half of the channel the negative
shear rate (∂u0/∂z < 0) rotates it toward the negative Leslie
angle φ1 = −1. When Ēr is large (e.g., when Ēr = 104), the
behavior of the director is dominated by viscous effects, with
flow alignment at either the positive or the negative Leslie
angle except for within the narrow reorientational boundary
and internal layers at leading order in the limit of large Ēr,
as described in Sec. IV. When Ēr is small (e.g., when Ēr =
10−1), the behavior of the director is dominated by splay elas-
tic effects, with viscous effects appearing at first order in the
limit of small Ēr, as described in Sec. V. Figure 4 also shows
that as Ēr varies there is a continuous transition between the
asymptotic behavior for large Ēr and that for small Ēr and that,
in fact, the two asymptotic solutions capture the behavior of
φ1 rather well for all values of Ēr. This continuous transition
is rather different from the discontinuous transitions observed
in channel flow of a nematic with homeotropic anchoring by
Sengupta et al. [39], Anderson et al. [40], Crespo et al. [41],
and Batista et al. [42].

Figure 5 shows the director angle φ1(z, t ) plotted as a
function of z for various times t according to (a) the numerical
solution (solid lines) and the large Ēr asymptotic solution
(dashed lines) when Ēr = 104, (b) the numerical solution
(solid lines) when Ēr = 50, and (c) the numerical solution
(solid lines) and the small Ēr asymptotic solution (dotted
lines) when Ēr = 10−1. In each part of Fig. 5, the final time
plotted is chosen so that the solution is close to its steady-
state solution φ1SS shown in Fig. 4(b). In particular, Fig. 5
illustrates that φ1 always approaches its steady-state solution
φ1SS monotonically as t → ∞.

Figure 6 shows the director angle at the boundaries �

plotted as a function of time t according to the numerical
solution (solid lines) when Ēr = 10−1, 10, 50, 102, and 104,
the large Ēr asymptotic solution (dashed lines) when Ēr = 102

and 104, and the small Ēr asymptotic solution (dotted lines)
when Ēr = 10−1 and 10. In particular, Fig. 6 illustrates that �

always approaches its steady-state value �SS monotonically
from above when �SS < θ and from below when �SS > θ as
t → ∞, and that �SS is a monotonically increasing function
of Ēr.

Figures 5 and 6 also illustrate that the approach to the
steady-state solution gets monotonically faster as Ēr is in-
creased. This behavior will be analyzed in more detail in
Sec. VI B.

Figure 7 shows the steady-state value of the director angle
at the boundaries �SS plotted as a function of the Ericksen
number Ēr according to the numerical solution (solid lines),
the large Ēr asymptotic solution given by (62) (dashed lines),
and the small Ēr asymptotic solution (dotted lines) given by
(86) for various values of A. In particular, Fig. 7 illustrates
that �SS is a monotonically decreasing function of A. Figure 7
also confirms that the numerical solutions for �SS for large
and small values of Ēr are in excellent agreement with the
asymptotic solutions in the limits Ēr → ∞ and Ēr → 0 given
in Secs. IV and V, respectively. Moreover, as we have already
seen, in the former limit the leading-order expression for the
value of �SS depends on Ēr and A only in the combination

(a)

(b)

(c)

FIG. 5. The director angle φ1(z, t ) plotted as a function of z for
A = 1 and θ = 0.5 according to (a) the numerical solution (solid
lines) and the (barely visible) large Ēr asymptotic solution (dashed
lines) given by (61) when Ēr = 104 for t = 0.0, 0.006, 0.012, and
0.06; (b) the numerical solution (solid lines) when Ēr = 50 for t =
0.0, 0.15, 0.3, and 3.0; and (c) the numerical solution (solid lines)
and the (barely visible) small Ēr asymptotic solution (dotted lines)
given by (83) when Ēr = 10−1 for t = 0.0, 0.15, 0.3, and 3.0. The
arrows show the direction of increasing t .

k = A/Ēr1/2, and hence the curves for �SS for large values
of Ēr are simply appropriately horizontally stretched versions
of each other, and as Fig. 7 illustrates, the range of validity of
this expression widens as A increases.
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FIG. 6. The director angle at the boundaries � plotted as a func-
tion of time t for A = 1 and θ = 0.5 according to the numerical
solution (solid lines) when Ēr = 10−1, 10, 50, 102, and 104, the large
Ēr asymptotic solution (dashed lines) given by (63) when Ēr = 102

and 104, and the small Ēr asymptotic solution (dotted lines) given by
(84) when Ēr = 10−1 and 10.

B. Timescale σ

To extract the timescale σ introduced in Sec. VI A from the
numerical solutions, we fitted the numerical solutions for �SS

with a function of t of the form

ln |�SS − �| = C − t

σ
, (88)

where C = C(θ ) is a function of the initial director angle at
the boundaries only. In particular, this procedure recovers the
asymptotic expressions for σ derived in Secs. IV E and V,
namely (71), (74), and (87).

Figure 8 shows σ plotted as a function of Ēr extracted from
the numerical solution using (88) and according to the large Ēr
asymptotic solution when k 
 1 given by (74) and the small
Ēr asymptotic solution given by (87). (Note that, for clarity,
the timescale according to the large Ēr asymptotic solution
when k � 1, namely σ = 1/(2A), is omitted from Fig. 8 as
it is virtually indistinguishable from σ = 1/[2(1 + A)].) In
particular, Fig. 8 shows that σ is a monotonically decreasing
function of Ēr, and that as Ēr varies there is a continuous tran-
sition between σ = 1/(

√
2 Ēr1/2) = O(Ēr−1/2) 
 1 for large

values of Ēr and σ = 1/[2(1 + A)] = O(1) for small val-
ues of Ēr. Moreover, Fig. 8 also shows, as mentioned in
Sec. IV E 3, that σ is always less than both (71) and (74), and
so (71) and (74) provide an upper bound on σ for all values of
Ēr.

VII. CONCLUSIONS

Motivated by the ODF method for the industrial man-
ufacturing of LCDs, in the present work we analyzed
pressure-driven flow of a nematic in a channel with dissipa-
tive weak planar anchoring at the boundaries of the channel.
We obtained quasisteady asymptotic solutions for the director
angle φ and the velocity u in the limit of small Leslie angle,
in which case the key parameters are the Ericksen number
Ēr and the anchoring strength parameter A. In the limit of
large Ericksen number Ēr → ∞, the solution for the director

TABLE II. The steady-state value for the director angle at the
boundaries �SS and the timescale σ in the asymptotic limit of large
Ēr in the cases k � 1, k = O(1), and k 
 1, where k = A/Ēr1/2, and
in the asymptotic limit of small Ēr. The star (�) denotes that, while
there is no explicit expression for σ in this case, the expressions for
k � 1 and k 
 1 provide an upper bound on σ for all values of k.

Ēr → ∞ Ēr → 0

k � 1 k = O(1) k 
 1

�SS 0 Eq. (62) 1
Ēr

12(A + 1)

 1

σ
1

2A 
 1 (�)
1√

2 Ēr1/2

 1

1

2(A + 1)

angle has narrow reorientational boundary layers of width
O(Ēr−1/2) 
 1 near z = 0 and 1 and a narrow reorientational
internal layer of width O(Ēr−1/3) 
 1 near z = 1/2 separated
by two outer regions in which the director is aligned at the
positive Leslie angle in the lower half of the channel and
the negative Leslie angle in the upper half of the channel.
On the other hand, in the limit of small Ericksen number
Ēr → 0 the solution for the director angle given by (83) and
(84) is dominated by splay elastic effects with viscous effects
appearing at O(Ēr) 
 1. As Ēr varies, there is a continuous
transition between these asymptotic behaviors, and in fact the
two asymptotic solutions capture the behavior rather well for
all values of Ēr. The steady-state value of the director angle at
the boundaries �SS and the timescale of the evolution toward
this steady-state value σ in the asymptotic limits of large and
small Ēr are summarized in Table II. In particular, the values
of σ in Table II correspond to the dimensional boundary
director rotation timescale στ4 given by

στ4 ∼ γS

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2A
for Ēr � 1 and k � 1,√ −(α4 + α6)

2(α2α3)1/2GhK1
for Ēr � 1 and k 
 1,

h

2(K1 + Ah)
for Ēr 
 1.

(89)

Using the estimated parameter values for the ODF method
given Sec. II D gives Ēr = 1.7 × 102, A = 1–102, and hence
k = 0.08–8, suggesting that the regimes in which Ēr � 1
and k 
 1 or k = O(1) are probably the most relevant to
the ODF method. Hence (89) yields a dimensional boundary
director rotation timescale of στ4 � 5 × 10−3 s or less,
which is substantially shorter than the dimensional timescale
of the ODF method of τODF = 10−1 s, suggesting that
there is sufficient time for significant transient flow-driven
distortion of the nematic molecules at the substrates from
their required orientation to occur, which could lead to the
formation of ODF mura. An obvious conclusion is that this
distortion could, in theory, be reduced by decreasing Ēr
and/or increasing A by, for example, reducing the speed at
which the substrates are squeezed together and/or increasing
the strength of the adhesion between the alignment layer and
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(a) (b)

(c) (d)

FIG. 7. The steady-state value of the director angle at the boundaries �SS plotted as a function of the Ericksen number Ēr according to the
numerical solution (solid lines), the large Ēr asymptotic solution (dashed lines) given by (62), and the small Ēr asymptotic solution (dotted
lines) given by (86) for (a) A = 10−1, (b) A = 1, (c) A = 10, and (d) A = 102.

the nematic, however the extent to which either of these are
realistic options in practice is not clear. It should, however, be
noted that once the squeezing stops, and hence the flow of the

FIG. 8. The timescale σ plotted as a function of the Ericksen
number Ēr extracted from the numerical solution using (88) (solid
line) and according to the large Ēr asymptotic solution when k 
 1
(dashed line) given by (74) and the small Ēr asymptotic solution
(dotted line) given by (87) for A = 10 and θ = 0.5.

nematic virtually ceases (so that Ēr becomes very small), then
(89) yields a dimensional boundary director rotation timescale
of approximately στ4 � 2.5 × 10−2 s or less, which means
that the flow-driven distortion of the nematic molecules
relaxes almost immediately. The remaining issue is, therefore,
whether the significant transient flow-driven distortion of
the nematic molecules described in the present work causes
permanent or semipermanent flow-driven misalignment of
the orientation of the molecules in the alignment layers.
Answering this question could lead to further understanding
of ODF mura but requires more detailed modeling of the
molecules in the alignment layers, and thus it is beyond the
scope of the present work.

Finally, as mentioned in Sec. II A, the present analysis of
dissipative weak planar anchoring is not directly relevant to
devices with homeotropic anchoring, such as VAN devices,
or to devices in which the director does not remain in the
(x, z) plane, such as TN or STN devices. However, in such
devices, flow alignment toward the (typically small) Leslie
angle involves a much larger rotation of the director than that
described in the present work, and thus we suspect that such
devices are even more susceptible to flow-driven misalign-
ment of the director at the boundaries during filling than those
studied in the present work.
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