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A general theory of liquid crystals is presented, starting from the group-theory symmetry analysis of the
constituting molecules. A particular attention is paid to the type of elastic free-energies and their relationships
with the molecular symmetries. The orientational order-parameter tensors are identified for each molecular
symmetry, in a consideration of consistently keeping the leading, characteristic elastic free energies in a model.
The order parameters are expressed in terms of symmetric traceless tensors, some of high orders, for all major
molecular symmetries, including seven groups of axial symmetries and seven groups of polyhedral symmetries.
For spatially inhomogeneous liquid crystals, the couplings of these tensors in the elastic energies are derived
by expanding the interaction energies between these molecules. The aim is to provide a general view of the
molecular symmetries of individual molecules, orientational order parameters characterizing the orientational
distribution functions, and the elastic free energies, all under one single group-theory approach.
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I. INTRODUCTION

To order or not to order, this is an essential question in a
complex fluid composed of molecules that have anisotropic
shapes and interact with each other by potential energies
depending on the orientations of the molecules. Under the ap-
propriate physical condition, a liquid-crystal phase can form,
which accompanies global or local orientational correlations
and could also display coupled spatial ordering. One of the
most common examples is a liquid crystal consisting of rod-
like rigid molecules, which displays a nematic state where a
global orientational ordering can be identified [1].

At the molecular level, the symmetry of the constituting
molecules has a direct impact on the orientational and spa-
tial symmetries of the resulting liquid-crystal phases. The
self-assembled structures of these molecules spontaneously
exhibit various types of local orientational ordering and spatial
modulation, which are sensitive to the unique characteristics
of the original molecular architecture. At a macroscopic level,
on the other hand, it is sometimes difficult to immediately
trace the formed states back to the molecular-level symmetry
of an observed liquid-crystal phase. The link between the
symmetries at these two levels is dictated by identifying order
parameters allowed by the molecular-level symmetries and
the invariant transformation of the system’s free energy as a
function of these order parameters. The Landau–de Gennes
(LdG) expansion, for example, is a free-energy expansion
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on the order parameters; typically, the polynomial expansion
is up to terms (usually of degree four) that can be used to
completely maintain the stability of the resulting phases.

To most of us, the familiar example is a system composed
of rodlike linear molecules [Fig. 1(a)], which has the possi-
bility of displaying a variety of disordered and ordered phases
(isotropic, nematic, smectic-A, and smectic-C) depending on
the physical conditions. The physical properties of the free
energy is often described in terms of a second-order, 3 × 3
order-parameter tensor, and the basic structure of the LdG
expansion is now well-known. Such a free energy is expressed
in terms of nonspatial derivative terms (the so-called bulk
terms) and quadratic products of spatial derivatives of the
order parameter tensor (the so-called elastic terms).

Here, when we say “molecule,” we refer to a basic unit
in the liquid. It can be a real molecule in the usual sense
or it can also be a rigid colloid particle that is described by
a unique shape. Beyond rodlike shapes, the architectures of
liquid-crystal molecules can be more exotic (see, e.g., Fig. 1).
For example, much recent interest has been placed on the
bent-core molecules [2,3]; one of the liquid-crystal phases
that these molecules show is the twist-bend phase [4–6], a
modulated nematic phase where the orientation of the nematic
director has a spatial modulation. Other molecules, such as
crosslike molecules [7–9], have also come into sight; the
main order parameter requires the embedding the fourfold
rotational symmetry of a single molecule.

A short-cut to study the orientationally ordered state is
the use of a model similar to the original Oseen-Frank
theory [1,10]. Typically, the orientational properties are over-
simplified by using a main-axis director field only, which
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FIG. 1. Common examples of rigid molecules: (a) Rodlike (point group D∞h), (b) Polar rodlike (C∞v), (c) Disklike (D∞h), (d) Polar
disklike (C∞v), (e) Rectangular (D2h), (f) Cross (D4h), (g) Bent-core (C2v), (h) Kitelike (C2v), and (i) Chiral (Dn where n = 10).

is a unit vector field depending on the spatial location r;
the free energy is then proposed in terms of spatial deriva-
tives of the vector field, where, at this stage, some of the
anticipated orientational-ordering properties are taken into
account [11–15]. This has been one of the popular ap-
proaches to describe mechanical distortions (bending, splay,
twist, etc.) of the director field in response to the external
force. Recent progress has been made in proposing extended
Oseen-Frank models to study particular phases of systems
composed of nontraditionally shaped molecules [16–18]. For
example, Ref. [19] is an attempt to propose extensions of
the Oseen–Frank theory systematically. However, it is widely
appreciated that the Oseen-Frank-type models suffer from a
number of difficulties: Its lack of transparency to the symme-
try of the constituting molecules, its incapability in describing
orientational properties beyond the single main axis (e.g.,
biaxiality), and its singularity catastrophe at the orientational
defect points. These can all be overcome by a LdG model. The
concept of the director field is not used in LdG originally and,
instead, is produced as a result of the model.

The LdG theory for a system composed of rodlike
molecules (straight-line shaped) calls for the identification
of a second-order, 3 × 3 tensor order parameter, in which
elements are functions of r. As it turns out, to build a LdG-type
theory for systems beyond rodlike molecules is not simple.
The consideration is already nontrivial for spatially homo-
geneous phases (i.e., the so-called bulk phases). For some
systems, high-order and even more-than-one order parameter
tensors are required in order to form a complete description.
For example, to describe molecules with a twofold sym-
metry, two second-order tensors were suggested [20–24]; to
describe the tetrahedral phase, a third-order order parameter
tensor was introduced [25–30]; to describe the cubic phase,
a fourth-order tensor was introduced [31]; to describe the
phases formed by bent-core molecules [32], four order param-
eter tensors, one first-order, two second-order, and one-third
order, were proposed [33]; to explore additional phases of
molecules of twofold, threefold, and tetrahedral symmetries,
effects of the third-order tensors were examined [34,35]. In
order to describe experimentally observed structures in non-
rodlike systems, extensions to include the spatial distortion
and modulation of the liquid-crystal structures were also pro-
posed [26,36,37].

Hence, we face two fundamental problems: One is to find
suitable order parameters used in a free-energy model for
molecules having a certain symmetry and the other is to find
the useful terms in a generalized free-energy expansion on
these order parameters. A correctly built free-energy model
forms the basic step towards understanding of the stability
of resulting phases, which can have coupled orientational
ordering and spatial modulations. Here we take a top-down
approach, going through all major classes of molecular sym-
metries according to their group-theory classification. Our aim
is to provide a complete guide to the types of symmetric
traceless order parameters for all major classes of molecules
and their elastic free-energy terms.

An individual molecule has built-in symmetries. With the
appropriate definition of the symmetric axes, its symmetries
can be classified according to symmetry operations in the
O(3) point group [38]. Molecules with different architec-
tures may have the same symmetry. Illustrated in Fig. 1 are
a few typical liquid-crystal molecules that have been stud-
ied in recent years by experiments, computer simulations,
and free-energy models. Rodlike and disklike molecules both
have axisymmetry and head-to-tail reflection symmetry; they
are common examples in traditional liquid-crystal theories
[1]. Rodlike and disklike molecules that do not have the
head-to-tail reflection symmetry are sometimes referred to as
polar molecules, although electric or magnetic dipoles are
not necessarily involved. Square-shaped (a special case of
cuboid-shaped) [20] and cross-shaped molecules [7,8] are
planar molecules that allow fourfold rotation about the plane-
normal; the plane itself is a mirror plane. Rectangular platelets
naturally have embedded biaxiality at the molecular level [39].
Bent-core [2,3] and kite-shaped [9] molecules are also planar
molecules containing an in-plane reflection mirror, now with
a twofold rotation axis in the plane. The molecular symmetry
are generated not only by its intrinsic chemical bonds but also
other types of physical quantities, such as electric or magnetic
moments.

The identification of a high-order symmetric traceless ten-
sor as an order parameter for a molecule is not a trivial task. It
starts with the formation of the moment tensors, consisting
of characteristic tensor products of the main orientational
vectors of molecules. Then, to form a symmetric and trace-
less tensor, one seeks the linear combination of the moment
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TABLE I. Summary of the main results. The first column categorizes molecules into classes according the SO(3) group symmetry. The
identified order parameters are listed in the second column, where the discussion of the properties of the symmetric traceless tensors can be
found in Sec. III A, and the mathematical definition of these tensors can be found in Appendix B. The molecular groups, categorized by further
improper rotational operations in the O(3) group (listed in the third column), can share the same orientational order parameter tensors within a
class. The basic forms of the bulk free energy for each group as a function of the order parameters are listed in the fourth column. Depending
on the symmetries of the systems, the elastic energies are listed in the fifth (I, linear spatial derivatives of the order parameters) and sixth
columns (II, quadratic spatial derivatives of the order parameters). The numbers in these three columns refer to the equations in Sec. IV.

Molecular Orientational Molecular Bulk-energy Elastic energy Elastic energy
class order parameters group terms (I) (II)

C∞ Sec. IV C 1 (27) (28) (29)
C∞ Q[0], Q[1], Q[2] C∞h Sec. IV C 2 (27) 0 (29)

C∞v Sec. IV C 3 (30) (31) (32)
D∞ Q[0], Q[2] D∞ Sec. IV D 1 (33) (34) (35)

D∞h Sec. IV D 2 (33) 0 (35)
Cn Sec. IV E 1 (36) (37) (38)
Cnv Sec. IV E 2 (39) (40) (41)

Cn Q[0], Q[1], . . . , Q[n], Cnh, n even Sec. IV E 3 (36) 0 (38)
M[n]

1 , M[n]
2 Cnh, n odd Sec. IV E 4 (42) (43) (44)

S2n, n even Sec. IV E 4 (42) (43) (44)
S2n, n odd Sec. IV E 3 (36) 0 (38)

n even: Dn, n odd Sec. IV F 1 (45) (46) (47)
Q[0], Q[2], . . . , Dn, n even Sec. IV F 1 (48) (49) (50)

Q[n], M[n]
1 ; Dnh, n odd Sec. IV F 2 (51) (52) (53)

Dn n odd: Dnh, n even Sec. IV F 3 (48) 0 (50)
Q[0], Q[2], . . . , Dnd , n odd Sec. IV F 4 (45) 0 (47)

Q[n−1], M[n]
1 Dnd , n even Sec. IV F 5 (54) (55) (56)

T Sec. IV G 1 (57) (58) (59)
T Q[0], T, O Td Sec. IV G 2 (60) (61) (62)

Th Sec. IV G 3 (57) 0 (59)
O Sec. IV H 1 (63) (64) (65)

O Q[0], O Oh Sec. IV H 2 (63) 0 (65)
I Sec. IV I 1 (66) (67) (68)

I Q[0], H Ih Sec. IV I 2 (66) 0 (68)

tensors. A number of existing literatures discuss various ap-
proaches for tensor algebra [40–43]. The exact tensor algebra
needed for the current problem is documented in Ref. [44],
in which the explicit expression of linearly independent,
nonvanishing symmetric traceless tensors allowed by each
molecular symmetry is examined. These tensors are expressed
in terms of, e.g., the Legendre polynomials and the Chebyshev
polynomials.

This paper contains the following main sections.
(1) The O(3) symmetry operations contain two basic

types: proper rotations (direct rotations of the axes) and
improper rotations (mirror and inverse symmetry opera-
tions). Among these, the proper rotations form the SO(3)
group, which by itself represents the physical rotation of
a molecule-mounted frame. With these SO(3) rotations, the
molecule-mounted frame is rotated to new positions but
the molecule configurations are identical to the old one.
Molecules that have common SO(3) rotations are identified
as a class (described in the first column of Table I). The
additional mirror and inverse symmetry operations, allowed
by the O(3) group, are further used to identify molecules into
groups (the third column of Table I). The symmetry properties
of molecules are discussed in Sec. II.

(2) The values of the probability distribution function of
all rotated orientations of a particular class of molecules are

identical due to the symmetry. This has a direct consequence
on the moment tensors of the distribution function itself. Some
moment tensors (symmetrized and made traceless) hence van-
ish. At the molecular level, the orientational properties are
completely described by the SO(3) operations of a class,
which enable us to identify the type of orientational moment
tensors of each class. This is discussed in Sec. III.

(3) The symmetry properties of the moment tensors are
different among different classes of molecules. The ques-
tion, then, becomes how many nonvanishing ones should be
kept to characterize a specific class. A simple answer would
be: One keeps the leading nonvanishing symmetric traceless
tensors and neglects all higher order ones. However, this is
not complete. The improper rotations have an important con-
sequence on the free-energy expansion, which render some
elastic-energy terms to zero. Here the principle of selecting
the orientational order parameters is: Keeping as many order
parameters as possible but keeping the number of order pa-
rameters at minimum, to differentiate the various molecular
groups, at the free-energy level. Such a top-down approach
oversees the symmetry properties from the group-theory per-
spective, covering all molecular types in general. Section IV
discusses these procedures, and the third column of Table I
lists the minimal number of orientational order parameters
required under such a principle.
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(4) What are the profound consequences of the group-
theory exercise carried out in this study? Using a top-down
approach, we can examine the possible liquid-crystal states
and their relationship to the free-energy terms determined in
Sec. IV. From a theoretical analysis, in Sec. V we demonstrate
a number of examples where the experimentally observed
structures of different groups of molecules, some of which are
illustrated in Fig. 1, can be accounted for within the scope of
the group theory.

The current study involves a number of concepts in math-
ematics and the processes of reaching the conclusions are
cumbersome. The intermediate mathematical derivations are
minimized in the current paper; interested readers can refer
to Refs. [44,45] for the original derivations. The main results
of the current work are summarized in Table I. This table can
be compared with previous results where the order parameters
can be over-simplified, and the couplings of different order pa-
rameters are hence incomplete (see Sec. III J for discussion).
Readers who are not interested in the detailed discussion can
directly refer to this table, which could be used in number of
ways.

If the starting point of a theoretical study is a particular
molecular potential energy, one can follow the recipe given in
Sec. IV and produce the coefficients of the bulk and elastic
terms listed in the table. Following that there are at least two
approaches that can be taken. The first is to completely expand
the entropy term as well, to the typical forth-order, as the
polynomials of the identified order parameters, to form a LdG-
type free energy. The second is to keep the entropy term in a
closed form but the interaction energy expanded; to this end,
replacing it with a closed expression such as the the Bingham
closure [32,46–48] is a useful approach. These approximated
models can then be used for analyzing the properties of the
ordered phases.

Beyond facilitating the free-energy expansion, the identi-
fication of the order parameters for each type of molecules
can already aid other theoretical studies. For example, the
molecular dynamics or Monte Carlo computer simulations are
particle-based and produce an overall mesoscopic structure
on the entire system. Our identified orientational order pa-
rameters in Table I can be used as the guide to identify the
signature of a particular state in a computer simulation study,
to relate the molecular based configurations themselves to an
ordered state. Another level of theoretical approach would be
the direct study of the density distribution functions, such as
those based on a molecular theory (Onsager theory and other
density functional theories); the results of these are expressed
by the multidimensional variables, for which the identified or-
der parameters hold the key to extracting the basic symmetry
properties of the produced states [49–57].

It is possible that Table I can be used in inverse design of
a particular liquid-crystal state. One takes the free-energy ex-
pressions in the last two columns of the table and identifies the
desired liquid-crystal state through an analysis of the coupling
terms. Then one can trace back to the first and third columns
and design the molecules which have the required symmetries.

Given the vast body of the literature on the topic, what
are the new materials in the current paper? First, we highlight
the group symmetry taken in identifying the order parameter
tensors. A broad issue is that what takes to form an order

parameter. As carefully addressed in Sec. III A, our central
view is that an order parameter tensor is defined through the
(proper) rotational symmetries of a molecule-mounted frame,
i.e., dictated by the SO(3) group. These are real-space rota-
tional operations that characterize the symmetry of a molecule
and disallow the mutual switching between a right-hand frame
to and from a left-hand frame. The consideration of other (im-
proper) symmetries is then taken in forming the free-energy
expansion, due to the symmetry properties of the interaction
energy, which is invariant under operations of O(3), explained
in Sec. IV. Note that SO(3) is a subgroup of O(3). This
can be contrasted with most previous theoretical studies in
which O(3) is taken to form the order parameters, either in
a general study [25,58–62] or for specific systems [33]. More
discussions can be found in Secs. III J and V D.

Then we highlight another main result of the current study,
i.e., the identification of the elastic energy terms for all
molecular groups. These terms form the basic backbone of
a theoretical study on spatially inhomogeneous bulk states,
shape distortion, confinement, and defect evolution of liquid
crystals. It is at this level, O(3) group symmetries are uti-
lized (see Sec. IV). Although the elastic energies of a limited
number of molecular groups have been proposed previously
[26,32,36,37], as far as we know, the current work represents
the first time where the elastic energies are examined system-
atically for all molecular symmetries.

II. MOLECULAR SYMMETRY

At the molecular level, the molecular symmetry is inherited
from how a molecule is built from atoms, where the position
of chemical bonds and the difference in chemical composition
are the determinant factors. Here we construct our theory
for molecules which can be approximated as a rigid body.
We do not consider, for example, flexible polymers which
contain other internal degrees of freedom. Regardless of the
detailed molecular structures, we assume that the orientational
and symmetry of a molecule can be represented by a rigid
orthonormal coordinate frame (i.e., a body-fixed frame) “per-
manently” mounted on it, where the axes are denoted by three
unit vectors (m1, m2, m3) and the origin could be, but not
necessarily is, the center of mass of the molecule. The molec-
ular symmetry can then be identified within such a body-fixed
coordinate frame, measured by three-dimensional orthogonal
transformations, including proper and improper rotations that
leave the state of a molecule unchanged. In the language
of group theory, each symmetry operation is described by a
subgroup of the general orthogonal group O(3), as presented
below. Throughout the paper, we adopt the Schönflies notation
that can be found in, e.g., Refs. [38,63].

A. Axisymmetric molecules, class C∞

Three O(3) subgroups fall into this class, all containing
a central rotational axis (here for demonstration purposes,
assumed to be m1), about which the rotation of an arbitrary
angle can take place. The common ground of the symmetry
groups C∞, C∞v , and C∞h is that they all contain a SO(3)
axisymmetry that allows for rotation about m1. In addition,
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FIG. 2. The five basic groups of axisymmetric molecules. The
shapes and arrows are representative objects that indicate the basic
symmetries listed in the text.

they have the following properties according to their O(3)
group:

(1) C∞: No further symmetry transformations is allowed.
(2) C∞v: A vertical mirror plane divides the molecule into

two parts that are mirror images of each other.
(3) C∞h: A horizontal mirror plane perpendicular to m1

divides the molecule into upper and lower halves that are
mirror images to each other.

Figures 2(a)–2(c) illustrate the basic symmetry structures
of these molecules.

B. Axisymmetric molecules, class D∞

The O(3) subgroups D∞ and D∞h both contain the SO(3)
axisymmetry that allows for rotation of an arbitrary angle
about m1 and a twofold rotation symmetry about an axis
perpendicular to m1. In addition, they have the following
properties according to the O(3) group:

(1) D∞: No further symmetry transformation is allowed.
(2) D∞h: An additional horizontal mirror plane perpendic-

ular to m1 divides the molecules into upper and lower halves
that are mirror images to each other.

Figures 2(d) and 2(e) illustrate the basic symmetry struc-
tures of these molecules.

C. Finite axial-symmetric molecules, class Cn

Common to these molecules is the existence of a main rota-
tional axis, assumed to be m1 here, as illustrated in Fig. 3. An
n-fold rotational symmetry implies that a rotation about m1 of
an angle 2π/n brings the molecule to the same configuration
after the rotation. In addition, Cn, Cnv , Cnh, and S2n are further
distinguished by other improper rotational properties in O(3).

(1) Cn: No other symmetry in the molecule.
(2) Cnv: A vertical mirror plane containing both m1 and m2

axes divides the molecule to two halves located in the positive
and negative m3 domains [Fig. 3(b)]; these halves are mirror
images to each other.

(3) Cnh: A horizontal mirror plane containing both m2 and
m3 axes divides the two halves located in positive and negative
m1 domains [Fig. 3(c)]; these halves are mirror images to each
other.

(4) S2n: The additional symmetry is represented by rotat-
ing the molecule with an angle π/n about m1 followed by
the mirror plane reflection of the molecule against the plane
containing both m2 and m3 axes [Fig. 3(d)].

FIG. 3. The basic symmetries of the seven groups of molecules
with an n-fold rotational symmetry about the principal m1 axis. For
illustration purpose, n = 3 (left panel) and 4 (right panel) are used,
represented by the symmetry formed by the dark arms. These arms
have distinct decorations at the end, which further characterize other
symmetry properties. The horizontal planes in plots (c) and (f) are
shaded to indicate the mirror reflection symmetry against the m2-m3

plane.
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D. Finite axial-symmetric molecules, class Dn

Two main rotational axes exist in these molecules. One
is the n-fold rotational symmetry about m1 with an angle
2π/n; the other is the twofold rotation about the m2 axis
which brings the molecule to the original structure [dihedral
symmetry, Figs. 3(e)–3(g)]. The two O(3) subgroups further
distinguish Dnh and Dnd by an improper rotation (here a mirror
symmetry).

(1) Dn: No other symmetry in the molecule.
(2) Dnh: This class contains all symmetry operations al-

lowed by Dn. In addition, a horizontal mirror plane that
contains both m2 and m3 axes yields the same configuration
through the mirror reflection [Fig. 3(f)].

(3) Dnd : The main rotational symmetry is the rotation of
an angle π/n about m1 followed by the mirror plane reflection
of the molecule against the plane containing both m2 and m3

axes (same as in S2n). An additional rotation symmetry exists:
about a dihedral axis [m2 in Fig. 3(g)], a π rotation brings the
molecule to the same state. The combination of the symmetry
in S2n and the dihedral rotation effectively defines another
mirror-plane operation, where the mirror contains m1 and one
of the dark arms in the illustration.

E. Molecules of tetrahedral symmetries, Class T

These are molecules where more-than-one rotational axes
can be identified with multiple-fold (n � 3) rotational sym-
metries. The molecular shapes are generally less anisotropic
and more symmetric. Because of this reason, their tendency of
forming a liquid-crystal phase is less explored in the literature.
However, theoretically, a liquid composed of molecules of
any anisotropic shape can form a macroscopically observable,
ordered structures. The main symmetry properties are summa-
rized in Fig. 4.

The characteristic rotational symmetries of class T are as-
sociated with a regular tetrahedron, shown in Fig. 4(a). These
include three proper twofold rotations about m1, m2, and m3,
and four proper threefold rotations about four center-to-corner
axes, in SO(3). These four axes can be defined through

nT
1 = (m1 + m2 + m3)/

√
3,

nT
2 = (m1 − m2 − m3)/

√
3,

(1)
nT

3 = (−m1 + m2 − m3)/
√

3,

nT
4 = (−m1 − m2 + m3)/

√
3,

where the superscript T indicates tetrahedral symmetry. For
example, the consecutive rotations about one of the three-
fold axes transforms (m1, m2, m3) to (m2, m3, m1), and then
(m3, m1, m2). In class T , the three groups T , Td and Th are fur-
ther distinguished by improper rotational properties of O(3).

(1) T : No further symmetry is allowed. Red triangles have
been placed at the center of four tetrahedral surfaces, shown
in Fig. 4(a), to differentiate T from Td .

(2) Td : The symmetry of Td is exactly the symmetry of a
regular tetrahedron. In addition to those rotational symmetries
in T , the Td group also has mirror-reflection symmetries,
where the mirrors are those planes that contains two of the
threefold axes nT

i given in (1).

FIG. 4. Polyhedral groups that have the symmetry of regular
tetrahedron (a, b), cube (c), and regular icosahedron (d). Some of the
regularly shaped surfaces have been decorated by red shapes to show
the lack of the inversion or mirror symmetries; upon these symmetry
operations, the red shapes do not recover its original orientations.

(3) Th: Here, in addition to all rotational symmetries in
T , three mirror planes, each containing two of the mi axes,
exist. To illustrate this particular type of symmetries, we have
decorated the mi axes in Fig. 4(b) by small rod segments.

F. Molecules of cubic symmetries, Class O

The basic symmetry of this class of molecules follow the
SO(3) rotational symmetry operations of a cube, shown in
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Fig. 4(c). The frame (m1, m2, m3) in a cube is defined by the
three center to face center directions. Each of the mi axes is
a fourfold rotational axis. In addition, the cube also allows
threefold rotations about the axes defined in (1). Additional
improper rotation symmetry of the O(3) group further distin-
guishes O and Oh.

(1) O: No further symmetry is allowed. The decoration on
the six surfaces of the cube illustrates this fact [see Fig. 4(c)].

(2) Oh: The group Oh exactly contains the symmetry
operations of a cube, including the inversion symmetry. Ef-
fectively, the combination of the inversion and rotational
symmetries can create a mirror symmetry—in this case, three
mirror planes, each containing two of mi, and six mirror
planes, each containing two of nT

i . Thus, the group Oh include
the symmetry operations of both Td and Th groups.

G. Molecules of icosahedral symmetries, Class I

Molecules belonging to this class have the same SO(3)
rotational symmetries of a regular icosahedron, as illustrated
in Fig. 4(d). From the icosahedron center to vertices are
six rotational axes, about which fivefold rotations can take
place. From the icosahedron center to the face centers are
10 rotational axes, about which threefold rotation can take
place. Finally, about the three mi axes and the icosahedron
center to edge centers, 15 twofold rotational symmetries exist.
The O(3) improper rotation symmetries further distinguish I
and Ih.

(1) I: No further symmetry is allowed. To illustrate this
fact, the faces of the 20 regular triangles that make up the
icosahedron are decorated with red triangles in Fig. 4(d).

(2) Ih: The symmetries in group Ih is exactly those
of a regular icosahedron. An inversion symmetry about
the icosahedron center is allowed. Combining with the
twofold rotational axes, it effectively produces other mirror
symmetries.

H. Discussion

In the above, we group molecules according to their O(3)
point-group symmetries. Note that the molecules here can be
real molecules, large colloid particles, or even Janus nano-
particles synthesized to have anisotropic physicochemical
properties. As such, our classification has a larger scope than
the molecular symmetries typically described in a standard
molecular-symmetry reference for small molecules.

The axisymmetric groups in Sec. II A are related to the
groups described in Sec. II C by taking n → ∞. The basic
rotational angle for symmetry operation is now infinitesimally
small. One can see the relationship,

Cn → C∞, Dn → D∞, Cnv → C∞v,

Cnh, S2n → C∞h, Dnh, Dnd → D∞h. (2)

In practice, a C∞ molecule could be an approximation for a
Cn molecule with a rather large n. As we discuss below, the
order parameter tensor for C∞ molecules has a lower tensor
order than that of Cn and is easier to handle. Hence, there is a
physical reason to keep the C∞, C∞h, and D∞ classes in our
general theory, whereas they are usually ignored in molecular

symmetry classification of small molecules where n rarely
becomes large.

III. ORIENTATIONAL ORDER PARAMETERS

A. Symmetric traceless tensor moment

The last section describes the molecular symmetry in a
body-fixed coordinate frame m1, m2, and m3 mounted on a
molecule. Their orientation in reference to a right-handed lab-
oratory frame can be defined by, e.g., the three Euler angles, α,
β, and γ [64,65]. As the result, m1, m2, and m3 are expressed
by column vectors in terms of these angles (see the explicit
expressions in Appendix A). Below we denote the three axes
by a matrix u = (m1, m2, m3), and a solid angle element by
d� = sin βdβdαdγ .

In the most general case, the statistical physics of a liquid
crystal that has spatial and orientational orderings is described
by a distribution function f (r, u), which is a function of six
variables: Three for r and three for u. It is assumed here that
the distribution function is normalized by∫

dr
∫

d� f (r, u) = V, (3)

where V is the volume occupied by the fluid. The isotropic
phase, for example, has a uniform distribution in the ori-
entational space hence the normalized distribution function
fiso = 1/8π2.

In a liquid-crystal state, the most important characteristics
of the distribution function f (r, u) are usually assessed by the
tensor moments of this function,

〈mi1 ⊗ · · · ⊗ mik 〉 =
∫

mi1 ⊗ · · · ⊗ mik f (r, u) d�, (4)

where the integration covers the entire domain of the Euler
angles, and i j = 1, 2, 3 for j = 1, 2, . . . , k. The symbol 〈· · · 〉
represents an average taken by using f (r, u) as the weight
and ⊗ the tensor product between two vectors. On the right-
hand side, the integrand mi1 ⊗ · · · ⊗ mik contains k factors of
vectors, hence it is a kth-order tensor (it is also called kth rank,
but we avoid that because of another meaning associated with
the rank of a tensor). As a result, the moment on the left is
a function of r for a spatially inhomogeneous system and is
r-independent otherwise.

However, these tensor moments themselves are not the best
choice to describe the orientational ordering; in their original
form, they are not all linearly independent. To construct a
tensor orientational order parameter, one takes a linear combi-
nation of the tensor moments of the same order, with the basic
requirement that the tensor order parameter must be symmet-
ric and traceless. This way, the independent components of
the tensor can then be easily accounted for, and the leading
nonvanishing tensor order parameters can be identified.

For simplicity, here we use a monomial notation to repre-
sent symmetric tensors, where a product having no ⊗ implies
that it is already symmetrized. For example, the symmetric
tensors of first, second, and third orders are

m1 = m1,

m1m2 = 1
2 (m1 ⊗ m2 + m2 ⊗ m1),

062701-7



JIE XU AND JEFF Z. Y. CHEN PHYSICAL REVIEW E 102, 062701 (2020)

m2
1 = m1 ⊗ m1,

m1m2m3 = 1
6 (m1 ⊗ m2 ⊗ m3 + m2 ⊗ m3 ⊗ m1

+ m3 ⊗ m1 ⊗ m2 + m1 ⊗ m3 ⊗ m2

+ m2 ⊗ m1 ⊗ m3 + m3 ⊗ m2 ⊗ m1),

m1m2
2 = 1

3 (m1 ⊗ m2 ⊗ m2 + m2 ⊗ m1 ⊗ m2

+ m2 ⊗ m2 ⊗ m1),

where the permutation of the subscripts on the right-hand
ensures that the tensor is symmetric. The overall numerical
factors used here are consistent with the later definition of Q
and M tensors, which can be associated with the Legendre and
Chebyshev polynomials.

The second-order identity tensor is a special case,

id = m2
1 + m2

2 + m2
3. (5)

It has the simple matrix-element form: all diagonal elements
have a value 1 and off diagonal 0. Here the identity tensor is
used to generate a symmetric and traceless tensor by mixing
it with a symmetric tensor, as discussed in Appendix B 2.

B. Construction of orientational order parameters

The symmetric traceless tensors defined above can be used
to represent and distinguish different classes of molecules.
This is due to a basic symmetry property: Within the (m1,
m2, m3) frame, a molecule recovers its original state under
a proper rotation operation. Hence, all rotated configurations
should be equally probable. The profound consequence is that
some low-order symmetric traceless tensors of a particular
molecular class vanish. Keeping the leading nonvanishing
symmetric traceless tensors, one then identifies the orienta-
tional order parameters, in a tensor form, of this class of
molecules.

In a mathematical-physics language, the orientation of
a molecule is represented by the body-fixed frame u =
(m1, m2, m3), in reference to the laboratory frame. Within
SO(3), a proper rotation of the molecule in reference to the
body-fixed frame can be represented by a rotation matrix g, in
which the Euler angles (now defined from the u-frame) have
specific values permitted by the allowed symmetry operation.
Such a rotation produces a new orientation of the body-fixed
frame, in reference to the laboratory frame, represented now
by ug (a matrix-matrix product; see Appendix A). Because
the states of the molecule in body-fixed frames u and ug are
identical, viewed from the laboratory frame, one has

f (r, ug) = f (r, u). (6)

Plugging Eq. (6) into Eq.(4) allows for identification of the
symmetry properties of the tensor moments:

〈mi1 ⊗ · · · ⊗ mik 〉 = 〈m′
i1 ⊗ · · · ⊗ m′

ik 〉, (7)

where ug = (m′
1, m′

2, m′
3). These properties can then be car-

ried over to the definition of the corresponding symmetric
traceless tensors, which allows for the identification of van-
ishing ones due to the SO(3) symmetry.

In either real or computer-simulated systems, the body-
fixed frame on a molecule can translate and rotate [according

to SO(3)] in the physical space. Although, from the math-
ematics of the symmetry analysis, a molecule could be
characterized by additional improper rotations in O(3), the
actual mirror and inversion transformations of the body-fixed
frame can never take place physically. Hence, the transforma-
tion matrix g in (6) can only be those of the SO(3) group.

All subgroups of molecules in a class share exactly
the same proper rotational symmetries. Then, a common,
nonvanishing, symmetric-traceless-tensor set is available for
identification of the orientational order parameters of all
subgroups in a class. The improper rotational symmetries
(mirror planes and center-inversion) divide a class further
into subgroup of molecules, but are unused in establishing
the symmetry property of the distribution density, Eq. (6).
The free energy, on the other hand, is invariant under both
proper and improper symmetry transformations. The number
of leading order parameter tensors selected here, sometimes
beyond one, enables distinguishing of the subgroups at the
free-energy level, which is a concept more thoroughly ad-
dressed in Sec. IV.

While the principal procedure is clear, the actual deriva-
tion for each class of molecules is tedious and cumbersome.
We refer to Ref. [44] for mathematical details and omit the
intermediate steps. Next we list the main results from such a
group-theory exercise.

C. Axisymmetric molecules, class C∞

Because of the axisymmetry, the Euler angle γ is irrelevant
and we can show that the orientational properties are governed
by the main axis m1. The zeroth-, first-, and second-order
symmetric traceless tensors generated by m1 are

Q[0] = 〈1〉, (8a)

Q[1] = 〈m1〉, (8b)

Q[2] = 〈
m2

1 − 1
3 id

〉
. (8c)

The superscript with square brackets indicates the order of the
tensor. The density variation is described by the zeroth-order
tensor. Both Q[1] and Q[2] are kept here as the orientational
order parameters, as they have different elastic-energy proper-
ties to be discussed below. The coefficients of the Q[n] tensor
can be generally related to those of the Legendre polynomial
of degree n (see Appendix B).

D. Axisymmetric molecules, class D∞

Again, the Euler angle γ disappears from the angular ma-
trix u. The additional dihedral rotation in D∞ makes Q[1]

vanish. Hence together with the density variation described
by Q[0], Q[2] is the orientational order parameter tensor for
class D∞. Rodlike and disklike molecules belong to the D∞
class and the use of Q[2] is common in the literature.

E. Finite axial-symmetric molecules, class Cn

One of the most important symmetry properties of class Cn

(also Dn below) is the n-fold rotational symmetry about the m1

axis, where γ is the Euler rotation angle that has a basic unit
value γ = 2π/n. A single rotation of this angle changes the
directions of m2 and m3 to m′

2 and m′
3 within the body-fixed
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frame. As explained in Appendix A, such a rotation operation
can be represented by the matrix g = (m1, m′

2, m′
3). To com-

plete all rotational positions about the m1 axis, n consecutive
rotations with the basic unit angle γ = 2π/n, must be taken,
which requires the use of n powers of the g matrix. Hence, we
know that a tensor formed by the product of g factors of m1,
m′

2, and m′
3 is required to describe the rotational symmetry in

class-Cn (also Dn below). In the Euler-angle representation,
after all n factors are considered, a typical matrix element
contains terms such as cosn γ and sinn γ .

As it turns out, two kinds of nth-order symmetric traceless
tensors, M[n]

1 and M[n]
2 , are needed to represent the orien-

tations of m2 and m3, where the subscript labels the kind.
Loosely speaking, this is caused by the need of including
two orthogonal directions, m2 and m3. For class Cn, it can
be shown that the leading nonvanishing symmetric traceless
tensors, M[n]

1 and M[n]
2 , are nth-order. Hence, both the first-

and second-kind M[n]
1 and M[n]

2 are selected as the orientational
order parameters of class Cn. Here we list a few examples. The
low-order first-kind order parameters are

M[2]
1 = 〈

2m2
2 − (

id − m2
1

)〉 = 〈
m2

2 − m2
3

〉
, (9a)

M[3]
1 = 〈

4m3
2 − 3

(
id − m2

1

)
m2

〉
, (9b)

M[4]
1 = 〈

8m4
2 − 8

(
id − m2

1

)
m2

2 + (
id − m2

1

)2〉
, (9c)

and the second-kind are

M[2]
2 = 〈2m2m3〉, (10a)

M[3]
2 = 〈

4m2
2m3 − (

id − m2
1

)
m3

〉
, (10b)

M[4]
2 = 〈

8m3
2m3 − 4

(
id − m2

1

)
m2m3

〉
. (10c)

Appendix A explains how they are constructed with the aid of
the first- and second-kind Chebyshev polynomials.

All Q tensors survive the symmetry operations of class
Cn. Here there is a dilemma of what need to be selected as
the orientational order parameters. For a complete description
of the orientational ordering, one needs to keep at least the
leading order M[n]

1 and M[n]
2 . Then, the matching order in Q

is also n and one keeps all Q[k] tensors, k = 0, 1, 2, 3, . . . , n,
up to that order. The last one, Q[n], for example, is needed to
couple the order parameters M[n]

1 or M[n]
2 , in the free-energy

expansion [see next section].
An important example is the C2 class of a relatively small

n = 2. Here Q[1], Q[2], M[2]
1 , and M[2]

2 are all needed for a
complete treatment of the systems consisting of kite or bent-
core molecules. See Sec. V D.

F. Finite axial-symmetric molecules, class Dn

The main difference between the Dn and Cn classes is the
existence of a twofold symmetry about an axis perpendicular
to m1. It eliminates all M2 tensors and all Q[odd] tensors. This
greatly reduces the number of order parameters needed for a
complete description of the ordered systems, in comparison
with those belonging to the counterpart Cn class.

A special example is n = 4. Both square and cross
molecules belong to this molecular group. From the above
assessment, in addition to the density variation Q[0], three
orientational order parameters are required, Q[2], Q[4], and

M[4]
1 . Here,

Q[4] = 〈
m4

1 − 6
7 m2

1id + 3
35 id2〉

,

as discussed in Appendix B.

G. Tetrahedral class T

The class T is associated with the symmetry of a tetra-
hedron. The existence of the twofold rotational axes, as
discussed in Sec. II E, can transform the molecule in such
a way that two of the mi axes are rotated to their opposite
directions; for example, a molecular frame (m1, m2, m3) can
be rotated into (m1,−m2,−m3) and recovers its symmetry.
This requires that in a moment expansion (4), the powers of
m1, m2, and m3 are simultaneously all even, or simultaneously
all odd.

Another type of the essential T symmetry operations is the
rotation of the frame (m1, m2, m3) into (m2, m3, m1), and then
(m3, m1, m2). This implies that the moment tensors should be
invariant under such rotations.

Combining the consideration of these two requirements, in
addition to the density variation Q[0], the leading nonvanish-
ing symmetric traceless tensors are

T = 〈m1m2m3〉 (11)

and

O = 〈
m2

1m2
2 + m2

2m2
3 + m2

3m2
1 − 1

5 id2〉
. (12)

Both are selected as the orientational order parameters for
class T . The need of including both T and O can be further
seen in the free-energy expansion.

The definition of T in (11) was also suggested in Ref. [29].
The tensor T can be re-cast into another version,

T =
√

3

8

4∑
j=1

(
nT

j

)3
, (13)

where the unit vectors nT are defined in (1). This is an equiv-
alent expression, which was used in Ref. [26]. The tensor O
has two identical forms,

O = − 1
2

〈
m4

1 + m4
2 + m4

3 − 3
5 id2〉

, (14)

as suggested in Ref. [25], and

O = − 7
8 Q[4] − 1

8 M[4]
1 . (15)

H. Octahedral class O

All SO(3) rotational symmetries of class T are preserved
in class O. Following the last subsection, both tensors T and
O are available. A typical fourfold rotational symmetry about
one of the three mi axes in class O (which does not appear in
class T ) transforms, e.g., (m1, m2, m3) into (m1, m3,−m2).
As the result, tensor T vanishes. Therefore, the only orien-
tational order parameter of class O is O, in addition to the
density variation Q[0].

I. Icosahedral class I

The characteristic symmetry in class I is the fivefold ro-
tations about a center-vortex axis. This indicates that the
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orientational order parameter must be, at least, a fifth-order
tensor. Although class I allows for symmetry operations of
class T , both forth-order tensor T and tensor O cannot survive
this requirement. Taking all symmetries into consideration,
the leading nonvanishing moment of an orientational distri-
bution function of class I is a sixth-order tensor,

H = 〈[
11m2

1m2
2m2

3

−
√

5
(
m2

1 − m2
2

)(
m2

2 − m2
3

)(
m2

3 − m2
1

)]
0

〉
. (16)

Note that the polynomial inside the average 〈· · · 〉 must be
further expressed in a symmetric and traceless form (the sub-
script 0; see Appendix B 2).

The symmetries of class I are associated with those of an
icosahedron, which has twenty faces and thirty edges [see
Fig. 4(d)]. Out of the 30 edges, one can select two pairs that
are parallel to each other, and identify a vector nI connecting
the midpoints of the two edges. The tensor H can be identi-
cally rewritten in terms of the 15 vectors defined this way, nI

i ,

H = 32

15

15∑
i=1

〈(
nI

i

)6 − 1

7
id3

〉
. (17)

A similar definition can be found in Ref. [25].

J. Discussion

1. Can we make a simpler approach?

How many orientational order parameter tensors should
be used for each class of molecules? One might say that
the high-order orientational order parameter tensors selected
in the above subsections are overstated (too many tensors).
On top of the density variation represented by Q[0], perhaps
taking the single leading tensor of the lowest order would
be adequate. This is indeed the view taken by the author of
Ref. [25], according to which the above classification was
simplified into six categories below.

(1) Classes C∞ and Cn. The orientational order parameter
tensor of the lowest order is the first-order Q[1].

(2) Classes D∞ and Dn where n � 3. The orientational
order parameter tensor of the lowest order is the second-order
Q[2].

(3) Class D2. The orientational order parameter tensors of
the lowest order are Q[2] and M[2]

1 .
(4) Class T . The lowest-order orientational order parame-

ter is the third-order T.
(5) Class O. The lowest-order orientational order parame-

ter is the fourth-order O.
(6) Class I. The lowest-order orientational order parame-

ter is the sixth-order H.
Depending on the level of the physics under examination,

such simplification could be incomplete. The most obvi-
ous example is group C∞v [see Figs. 1(a) and 1(b)]. When
the dipolar interactions between rodlike molecules dominate,
there is no doubt that Q[1] is the most important order parame-
ter. On the other hand, there are many recently studied systems
of weak dipolar rodlike systems, where the use of Q[1] is not
adequate and Q[2] must be supplemented [66]. As matter of
fact, when the crossover between dipolar rodlike molecules
and headless rodlike molecules is examined, both Q[1] and

Q[2] are at the equal footing and need to be simultaneously
examined.

Taking another example, consider rodlike molecules with
a square cross section. To seek the nematic ordering along
the rod axis, the above simplification of using Q[2] captures
most physics. However, dropping M[4]

1 misses possible four-
fold columnar structures, that can form in perpendicular to the
main nematic direction. In another closely related example,
both flat crosslike and squarelike molecules belong to the
D4 group [see Fig. 1(f)]. The simplified version treats them
at the same level as disklike molecules (D∞ group), where
only Q[2] is used [see Fig. 1(c)]. As Q[2] only describes the
orientational ordering along the disk axis, possible orienta-
tional ordering in the plane perpendicular to the disk axis of
crosslike and squarelike molecules is entirely missed. This is a
problem, particularly, for the study of crosslike and squarelike
molecules embedded on a two-dimensional surface, where the
additional M[4]

1 can be used to describe the tetrafold ordering
of molecules [7,8].

What about studying the same nematic phase where Q[2]

is indeed the dominating orientational features? Rodlike
molecules of a circular cross section (D∞ group) and sim-
ilar rodlike molecules of a square cross section (D4 group)
can form a similar long-axis nematic state. However, in two
topic areas, using Q[2] alone is not adequate for these rod-
like molecules in a nematic state. One is the bending of the
nematic texture; the two types of molecules have isotropic
(circular base) and anisotropic (square base) elastic responses.
The other is the study of liquid-crystal defects induced by geo-
metric frustration; while the D∞ rodlike molecules have been
commonly studied, the defects of the D4 rodlike molecules
have not been adequately explored in the literature.

2. What are the differences from using O(3)?

For some molecular groups, the order parameters identi-
fied through O(3) and SO(3) symmetries are the same. This
includes the D2h group, previously examined by Straley [20],
Mulder [21], Bisi et al. [22], and the D4h group, previously
examined by Blaak and Mulder [7] and Blaak et al. [8].

Many theoretical studies used O(3) to identify the order
parameters for achiral molecules [25,58–62]. Consequently
some order parameters identified in Table I, which are based
on SO(3), would be eliminated. Apart from the philosophical
difference, what are the practical differences in using the iden-
tified order parameters according to these two approaches?

The essential difference between using O(3) and SO(3)
for order parameters is reflected by an illuminating example.
Nissinen et al. [59,60] as well as Turzi and Bisi [61,62]
separately introduced general methods to identify the order
parameters, according to O(3) classification. Their second-
order tensors for C2v , D2 and D2h are equivalent to our Q[2]

and M[2]
1 ; at this level, the three structures have the same

second-order order parameters as noted by the authors. This
is not the case here when we use SO(3). According to our
Table I, C2v is distinguished from D2 and D2h by a nonvanish-
ing M[2]

2 . The D2 and D2h molecules have the same M[2]
2 = 0,

but are distinguished at the level of the elastic free energies
(see the next section). According to our theory, the three can
be separately distinguished by using second-order tensors.
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For C2v , Lubensky and Radzihovsky [33] used the equiv-
alents of Q[2] and M[2]

1 in their study of bent-core molecules,
when O(3) is also applied to order parameters. Realizing that
these two order parameters are inadequate, they introduced a
third-order order parameter, in order to describe the possible
existence of the “tetrahedron” state. In contrast, according to
our theory based SO(3), we have an additional second-order
M[2]

2 parameter, which can be used for describing such a state
already. See more discussion in Sec. V D.

Amending third-order tensors to a physical problem for
which the second-order tensors are inadequate is a common
approach. For example, Lubensky and Radzihovsky [33] in-
troduced a third-order, symmetric traceless tensor for C2v .
Nissinen et al. [59] also suggested to use third-order tensors,
in a nonsymmetric form, for S4 and D2d molecules, While
for other molecular groups, e.g., those with threefold sym-
metries, we also introduce third-order, symmetric traceless
order-parameter tensors, for molecules with twofold symme-
tries, our identification of second-order order parameters is
sufficient.

This section explains the necessity of including the com-
plete set of orientational order parameter tensors [established
based on SO(3)] in a theoretical treatment to model the orien-
tational features of the different molecular classes. The next
section explores the symmetry invariance of the free energy
[following O(3)], in particular, of the elastic terms. As a side
note, the use of symmetric order parameter tensors facilitates
the writing of their first spatial derivatives in three forms: Gra-
dient, diveregene, and curl. In contrast, nonsymmetric order
parameter tensors have no such simple expressions.

IV. FREE ENERGY AND ITS GRADIENT EXPANSION

A. Molecular model

Though much of the discussion in this section can be
carried out without the reference to a molecular model, we in-
troduce some concepts by referencing to a free-energy model
that uses a density distribution function ρ(x, u) in its formal-
ism, where both position and orientation of a molecule are
concerned. A molecular fluid composed molecules of a single
symmetry group is assumed here. Up to the second-virial
term, from the general Mayer expansion, we arrive at a free
energy that contains the contributions from the entropy and
pairwise interaction,

F

kBT
=

∫
d� dxρ(x, u) ln ρ(x, u)

+ 1

2

∫
d� dx d�′ dx′ρ(x, u)G(r, u, u′)ρ(x′, u′),

(18)

where r = x′ − x is the relative position vector of two consid-
ered molecules. The Mayer function −G(r, u, u′) is expressed
by

−G(r, u, u′) = exp[−v(r, u, u′)/kBT ] − 1, (19)

where v(r, u, u′) is the pairwise interaction potential energy,
where both the distance between and the relative orientations
of the molecules are incorporated. The free energy in Eq. (18)
is a generalized expression from the Mayer expansion consist-

ing of a fluid that has no orientational dependencies [67]. The
kernel function G(r, u, u′) carries the information on the inter-
action between molecules, which is the driving mechanism for
the formation of liquid-crystal states. The interaction energy
between the molecules usually contains attraction and repul-
sion components. The following general discussion makes no
assumption on the nature of the interaction potential energy
itself.

In this section, we establish the procedure of deriving the
free-energy model by an expansion in terms of the tensor order
parameters introduced in the last section. We first describe the
general framework and then arrive at some general principles
about the expansion, regardless of particular molecular sym-
metry. The expansion for each molecular symmetry is then
determined. Our goal is to describe the type of terms existing
in a free-energy expansion, in particular, of the second term in
Eq. (18).

In most molecular systems, the density and orientational
distributions are coupled to form a single distribution func-
tion, ρ(x, u). The usual assumption in a molecular theory is
the normalization condition,∫

ρ(x, u) dx d� = n, (20)

where n is the total number of rigid molecules. Then,

ρ(x, u) = ρ0 f (x, u), (21)

where the normalization condition in (3) is assumed and ρ0 =
n/V is the overall density.

The first term in (18) is usually referred to as the entropy
term, containing both orientational and translational entropies.
If required, one can expand the entropy term in terms of pre-
sumably small order parameter tensors. The leading quadratic
terms of the order parameter tensors contain coupled terms, if
more-than-one order parameters are required for description
of the system. To compare with the entropy term within a
LdG theory, the expanded series typically contains (coupled)
cubic and quartic terms in the orientational order parameters.
The coefficients of the quartic terms are normally positive,
to ensure that a particular ordered state are stabilized with
a finite bound. Once a set of orientational order parameters
are selected, every term in the order-parameter expansion
from the entropy has a determined coefficient; that is, no free
coefficients are left in the theory.

The second term in (18), F̃2, is the determinant factor
that drives the system into orientational ordered state in the
bulk and controls the form of the distortion-energy terms.
The main concern here is the group symmetry of the sys-
tem and effects on the pairwise interaction. The molecular
symmetry operations dominate the type of terms that are
nonvanishing in an expansion of F̃2 in terms of the order
parameters.

B. Gradient expansion and symmetries

We take the second term in (18), F̃2, as a typical interaction
energy to start a gradient expansion. The conclusions are not
limited to the particular form in (18) and can be generalized
beyond.
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TABLE II. Most general form of the quadratic terms of the interaction-energy expansion, in terms of symmetric traceless tensors A[n] and
B[n]. The terms are grouped by the bulk energy (no derivatives), elastic energy I (first derivatives), and elastic energy II (second derivatives).

Bulk energy Elastic energy I Elastic energy II

A[n] · B[n] A[n−1] · (∇ · B[n] ), A[n] · ∇ × B[n] ∇A[n] · ∇B[n], (∇ · A[n] ) · (∇ · B[n] ), ∇A[n−2] · (∇ · B[n] ), (∇ · A[n] ) · (∇ × B[n−1] )

The kernel term in F̃2 relates the interaction between
molecules at two different spatial points, x and x′. Consid-
ering a Taylor expansion of f (x′, u′) = f (x + r, u′) up to the
second order, one has

F̃2 =
2∑

k=0

ρ2
0

2k!

∫
dx d� d�′ f (x, u)K [k](u, u′) · ∇k f (x, u′),

(22)

where a kth-order symmetric tensor is introduced,

K [k](u, u′) =
∫

G(r, u, u′)rk dr, (23)

for k = 0, 1, 2. Following the convention used in a LdG
theory, higher order terms, k > 2, are dropped. When the
(k = 1)-term vanishes, the procedure is known as the square-
gradient expansion.

Two symmetry properties of the kernel function are used
here. The interaction between a pair of molecules only de-
pends on their relative positions and orientations. Hence the
interaction energy is invariant when the coordinates of the two
interacting molecules are exchanged, which implies

G(−r, u′, u) = G(r, u, u′). (24)

The second property is that no matter how the entire space is
rotated, the interaction energy should always have the same
value. That is, the kernel function is invariant under any sym-
metry transformation of the SO(3) space, t, which implies

G(tr, tu, tu′) = G(r, u, u′). (25)

These properties are used in determining the symmetry prop-
erties of K [k](u, u′). The dependence of K [k] on both u and
u′ are then expanded in tensor powers of these two vari-
ables. Then, the u-related power terms, in combination with
the f (x, u)-factor in (22), produce tensor moments, formally
expressed in (4). Similarly the u′-related power terms, in
combination with the f (x, u′)-factor in (22), produce tensor
moments as well. All the tensor moments are then further
expressed in symmetric traceless forms.

Before proceeding further, the following tensor notations
are assumed. Let A[n] be an nth-order symmetric traceless
tensor. Three types of derivatives can be written

∇A[n] =∂iA
[n]
j1... jn

,

∇ · A[n] =
∑

i

∂iA
[n]
j1... jn−1i,

∇ × A[n] =
∑

i j

εi jk∂iA
[n]
j1... jn−1 j,

where εi jk is the Levi-Civita symbol. The inner product be-
tween two tensors, A[n] and B[n], is a scalar,

A[n] · B[n] =
∑
all i

A[n]
i1...in

B[n]
i1...in

. (26)

The most general form in a tensor expansion of F̃2 is shown
in Table II. At this stage, no symmetry analysis beyond those
shown in (24) and (25) is considered. Next, we incorporate
the molecular symmetries discussed in Sec. 1, and specify
surviving terms under the symmetry operations.

Recall that the molecular symmetry is characterized by
orthogonal transformations that produce the same molecular
state. Hence, under these O(3) transformations, the kernel
function G has the same values because of the symmetry.
There are two types of symmetry operations in O(3). The
proper rotational operations are those of SO(3), which are
used in defining the order parameter tensors in the last section.
This restricts us to consider the selected order parameter ten-
sors (second column of Table I) in the free-energy expansion
of order parameter tensors (A[n] and B[n] of Table II).

The second type of symmetry operations, the improper
rotations (inversion and mirror symmetries), also make the
kernel function unchanged. Due to the integration over r in
the definition of Eq. (23), an improper rotation that changes
the variables in G(r, u, u′) can be converted to a proper ro-
tation that changes the variables in K [k](u, u′) by a simple
r inversion. The end result, due to the kth power of r, is
that K [k](u, u′) is either odd or even, under these improper
rotation considerations. The direct consequence is that not
all terms in Table II, with the selected order parameters of
certain molecular class, survive for a particular molecular
group. For molecular groups within the same molecular class,
the different improper rotations in each molecular group lead
to different surviving terms. Going through the mathematical
analysis of all 24 groups in Table I is obviously tedious [45].
Below we list the main results of this consideration.

The zeroth-order tensor Q[0] describes the density variation
from 1, of a homogeneous liquid. In the rest of this paper,
we implicitly assume that all Q[0] represent the difference
Q[0] − 1.

C. Axisymmetries, class C∞

The order parameters are Q[0], Q[1], Q[2].

1. Group C∞

We can show these terms are nonvanishing.
(1) In the bulk energy,

Q[0] · Q[0], Q[1] · Q[1], Q[2] · Q[2]. (27)

(2) In elastic energy I,

Q[0] · (∇ · Q[1] ), Q[1] · (∇ · Q[2] ),

Q[1] · ∇ × Q[1], Q[2] · ∇ × Q[2]. (28)

062701-12



GENERAL LIQUID-CRYSTAL THEORY FOR … PHYSICAL REVIEW E 102, 062701 (2020)

(3) In elastic energy II,

∇Q[0] · ∇Q[0], ∇Q[1] · ∇Q[1], (∇ · Q[1] ) · (∇ · Q[1] ),

∇Q[2] · ∇Q[2], (∇ · Q[2] ) · (∇ · Q[2] ),

∇Q[0] · (∇ · Q[2] ), (∇ · Q[2] ) · (∇ × Q[1] ). (29)

2. Group C∞h

The bulk energy is given by (27), and the elastic energy II
is given by (29). All terms in the elastic energy I vanish.

3. Group C∞v

We can show these terms are available.
(1) In the bulk energy,

Q[0] · Q[0], Q[1] · Q[1], Q[2] · Q[2]. (30)

(2) In elastic energy I,

Q[0] · (∇ · Q[1] ), Q[1] · (∇ · Q[2] ). (31)

(3) In elastic energy II,

∇Q[0] · ∇Q[0], ∇Q[1] · ∇Q[1], (∇ · Q[1] ) · (∇ · Q[1] ),

∇Q[2] · ∇Q[2], (∇ · Q[2] ) · (∇ · Q[2] ), ∇Q[0] · (∇ · Q[2] ).
(32)

D. Axisymmetries, class D∞

The order parameters are Q[0] and Q[2].

1. Group D∞

We can show that the following terms are available.
(1) In the bulk energy,

Q[0] · Q[0], Q[2] · Q[2]. (33)

(2) In elastic energy I,

Q[2] · ∇ × Q[2]. (34)

(3) In elastic energy II,

∇Q[0] · ∇Q[0], ∇Q[2] · ∇Q[2],

(∇ · Q[2] ) · (∇ · Q[2] ), ∇Q[0] · (∇ · Q[2] ). (35)

2. Group D∞h

The bulk energy is given by (33), and the elastic energy II
is given by (35). All terms in elastic energy I vanish.

E. Finite axial-symmetries molecules, class Cn

Recall that the order parameters are Q[k], (k = 0, . . . , n),
M[n]

1 , M[n]
2 . In what follows, we shall write down the terms of

the order � n − 1 first, followed by nth-order terms.

1. Group Cn

The bulk energy contains

Q[k] · Q[k], k = 0, 1, . . . , n − 1;

A[n] · B[n], A[n], B[n] ∈ {
Q[n], M[n]

1 , M[n]
2

}
. (36)

Elastic energy I contains

Q[k−1] · (∇ · Q[k] ), Q[k] · ∇ × Q[k], k = 1, 2, . . . , n − 1;

Q[n−1] · (∇ · B[n] ), B[n] ∈ {
Q[n], M[n]

1 , M[n]
2

}
,

A[n] · ∇ × B[n], A[n], B[n] ∈ {
Q[n], M[n]

1 , M[n]
2

}
. (37)

Elastic energy II contains

∇Q[k] · ∇Q[k], k = 0, 1, . . . , n − 1;

(∇ · Q[k] ) · (∇ · Q[k] ), k = 1, 2, . . . , n − 1;

(∇ · Q[k] ) · (∇ × Q[k−1]), ∇Q[k−2] · (∇ · Q[k] ),

k = 2, 3, . . . , n − 1;

∇A[n] · ∇B[n], (∇ · A[n] ) · (∇ · B[n] ), ∇Q[n−2] · (∇ · B[n] ),

(∇ · A[n] ) · (∇ × Q[n−1]),

A[n], B[n] ∈ {Q[n], M[n]
1 , M[n]

2 }. (38)

2. Group Cnv

The bulk energy contains

Q[k] · Q[k], k = 0, 1, . . . , n − 1;

Q[n] · Q[n], Q[n] · M[n]
1 , M[n]

1 · M[n]
1 , M[n]

2 · M[n]
2 . (39)

Elastic energy I contains

Q[k−1] · (∇ · Q[k] ), k = 1, 2, . . . , n − 1;

Q[n−1] · (∇ · Q[n] ), Q[n−1] · (∇ · M[n]
1 ),

Q[n] · ∇ × M[n]
2 , M[n]

1 · ∇ × M[n]
2 . (40)

Elastic energy II contains

∇Q[k] · ∇Q[k], k = 0, 1, . . . , n − 1;

(∇ · Q[k] ) · (∇ · Q[k] ), k = 1, 2, . . . , n − 1;

∇Q[k−2] · (∇ · Q[k] ), k = 2, 3, . . . , n − 1;

∇A[n] · ∇B[n], (∇ · A[n] ) · (∇ · B[n] ), ∇Q[n−2] · (∇ · B[n] ),

A[n], B[n] ∈ {
Q[n], M[n]

1

}
,

∇M[n]
2 · ∇M[n]

2 ,
(∇ · M[n]

2

) · (∇ · M[n]
2

)
,(∇ · M[n]

2

) · (∇ × Q[n−1]). (41)

3. Groups Cnh (n even) and S2n (n odd)

The bulk energy is given by (36). Elastic energy I vanishes.
Elastic energy II is given by (38).

4. Groups S2n (n even) and Cnh (n odd)

The bulk energy contains

Q[k] · Q[k], k = 0, 1, . . . , n − 1;

Q[n] · Q[n], M[n]
1 · M[n]

1 , M[n]
1 · M[n]

2 , M[n]
2 · M[n]

2 . (42)

Elastic energy I has

Q[n−1] · (∇ · M[n]
1

)
, Q[n−1] · (∇ · M[n]

2

)
,

Q[n] · ∇ × M[n]
1 , Q[n] · ∇ × M[n]

2 . (43)
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Elastic energy II has

∇Q[k] · ∇Q[k], k = 0, 1, . . . , n − 1;

(∇ · Q[k] ) · (∇ · Q[k] ), k = 1, 2, . . . , n − 1;

(∇ · Q[k] ) · (∇ × Q[k−1]), ∇Q[k−2] · (∇ · Q[k] ),

k = 2, 3, . . . , n − 1;

∇Q[n] · ∇Q[n], (∇ · Q[n] ) · (∇ · Q[n] ),

(∇ · Q[n] ) · (∇ × Q[n−1]), ∇Q[n−2] · (∇ · Q[n] ),

∇M[n]
1 · ∇M[n]

1 , ∇M[n]
1 · ∇M[n]

2 , ∇M[n]
2 · ∇M[n]

2 ,(∇ · M[n]
1

) · (∇ · M[n]
1

)
,

(∇ · M[n]
1

) · (∇ · M[n]
2

)
,(∇ · M[n]

2

) · (∇ · M[n]
2

)
. (44)

F. Finite axial-symmetric molecules, class Dn

The order parameters are the following:
(1) If n is even: Q[k], (k = 0, 2, . . . , n), M[n]

1 .
(2) If n is odd: Q[k], (k = 0, 2, . . . , n − 1), M[n]

1 .

1. Group Dn

Two case are considered here.
(1) When n is odd, the bulk energy has

Q[k] · Q[k], k = 0, 2, . . . , n − 1;

M[n]
1 · M[n]

1 . (45)

Elastic energy I has

Q[k] · ∇ × Q[k] k = 2, 4, . . . , n − 1;

Q[n−1] · (∇ · M[n]
1

)
, M[n]

1 · ∇ × M[n]
1 . (46)

Elastic energy II has

∇Q[k] · ∇Q[k], k = 0, 2, . . . , n − 1;

(∇ · Q[k] ) · (∇ · Q[k] ), ∇Q[k−2] · (∇ · Q[k] ),

k = 2, 4, . . . , n − 1;

∇M[n]
1 · ∇M[n]

1 ,
(∇ · M[n]

1

) · (∇ · M[n]
1

)
,(∇ · M[n]

1

) · (∇ × Q[n−1]
)
. (47)

(2) When n is even, the bulk energy has

Q[k] · Q[k], k = 0, 2, . . . , n − 2;

Q[n] · Q[n], Q[n] · M[n]
1 , M[n]

1 · M[n]
1 . (48)

Elastic energy I has

Q[k] · ∇ × Q[k] k = 2, 4, . . . , n − 2;

Q[n] · ∇ × Q[n], Q[n] · ∇ × M[n]
1 , M[n]

1 · ∇ × M[n]
1 . (49)

Elastic energy II has

∇Q[k] · ∇Q[k], k = 0, 2, . . . , n − 2;

(∇ · Q[k] ) · (∇ · Q[k] ), ∇Q[k−2] · (∇ · Q[k] ),

k = 2, 4, . . . , n − 2;

∇Q[n] · ∇Q[n], ∇Q[n] · ∇M[n]
1 , ∇M[n]

1 · ∇M[n]
1 ,

(∇ · Q[n]
) · (∇ · Q[n]

)
,

(∇ · Q[n]
) · (∇ · M[n]

1

)
,(∇ · M[n]

1

) · (∇ · M[n]
1

)
,

(∇Q[n−2]) · (∇ · Q[n] ), (∇Q[n−2]) · (∇ · M[n]
1

)
. (50)

2. Group Dnh (n odd)

The bulk energy has

Q[k] · Q[k], k = 0, 2, . . . , n − 1;

M[n]
1 · M[n]

1 . (51)

Elastic energy I has

Q[n−1] · (∇ · M[n]
1

)
. (52)

Elastic energy II has

∇Q[k] · ∇Q[k], k = 0, 2, . . . , n − 1;

(∇ · Q[k] ) · (∇ · Q[k] ), ∇Q[k−2] · (∇ · Q[k] ),

k = 2, 4, . . . , n − 1;

∇M[n]
1 · ∇M[n]

1 ,
(∇ · M[n]

1

) · (∇ · M[n]
1

)
. (53)

3. Group Dnh (n even)

The bulk energy is given by (48). Elastic energy I vanishes.
Elastic energy II is given by (50).

4. Group Dnd (n odd)

The bulk energy is given by (45). Elastic energy I vanishes.
Elastic energy II is given by (47).

5. Group Dnd (n even)

The bulk energy has

Q[k] · Q[k], k = 0, 2, . . . , n − 2;

Q[n] · Q[n], M[n]
1 · M[n]

1 . (54)

Elastic energy I has

Q[n] · ∇ × M[n]
1 . (55)

Elastic energy II has

∇Q[k] · ∇Q[k], k = 0, 2, . . . , n − 2;

(∇ · Q[k] ) · (∇ · Q[k] ), ∇Q[k−2] · (∇ · Q[k] ),

k = 2, 4, . . . , n − 2;

∇Q[n] · ∇Q[n],
(∇ · Q[n]

) · (∇ · Q[n]
)
,(∇Q[n−2]) · (∇ · Q[n]),

∇M[n]
1 · ∇M[n]

1 ,
(∇ · M[n]

1

) · (∇ · M[n]
1

)
. (56)

G. Tetrahedral class T

We recall the orientational order parameters are T and O.

1. Group T

In the bulk energy, we have

Q[0] · Q[0], T · T, O · O. (57)
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In elastic energy I, we have

T · ∇ × T, T · (∇ · O), O · ∇ × O. (58)

In elastic energy II, we have

∇Q[0] · ∇Q[0], ∇T · ∇T, (∇ · T) · (∇ · T),

∇O · ∇O, (∇ · O) · (∇ · O), (∇ × T) · (∇ · O). (59)

2. Group Td

In the bulk energy, we have

Q[0] · Q[0], T · T, O · O. (60)

In elastic energy I, we have

T · (∇ · O). (61)

In elastic energy II, we have

∇Q[0] · ∇Q[0], ∇T · ∇T, (∇ · T) · (∇ · T),

∇O · ∇O, (∇ · O) · (∇ · O). (62)

The difference between two groups Td and Th is the coupling
between T and O, which is the reason why we keep these two
tensors as order parameters.

3. Group Th

The bulk energy and elastic energy II are given by (57) and
(59), respectively. Elastic energy I is zero.

H. Octahedral class O

The orientational order parameter is O.

1. Group O

In the bulk energy, we have

Q[0] · Q[0], O · O. (63)

In elastic energy I, we have

O · ∇ × O. (64)

In elastic energy II, we have

∇Q[0] · ∇Q[0], ∇O · ∇O, (∇ · O) · (∇ · O). (65)

2. Group Oh

The bulk energy and elastic energy II are given by (63) and
(65), respectively. Elastic energy I is zero.

I. Icosahedral class I

The orientational order parameter is H.

1. Group I

The bulk energy has two terms

Q[0] · Q[0], H · H. (66)

The elastic energy I has one term,

H · ∇ × H. (67)

The elastic energy II has terms,

∇Q[0] · ∇Q[0], ∇H · ∇H, (∇ · H) · (∇ · H). (68)

2. Group Ih

The bulk energy and elastic energy II are given by (66) and
(68), respectively. Elastic energy I is zero.

V. EXAMPLES

Generally, the free energy of the system (18) is the sum
of the entropy and interaction terms. The interaction term is
expanded in the last section, in a quadratic form, as functions
of the orientational order parameters discussed in Sec. III.
The expansion is obtained from the general consideration of
symmetry properties without the reference to the particular
molecular geometries. That geometry is completely specified
by the interaction energy v(r, u, u′) between two molecules,
appearing in the Mayer function (19) and directly gives rise
to the coefficients of each terms listed in the last section.
When the coefficient of a quadratic term listed in the above
section becomes negative and overpowers the counterpart of
a presumably expandable entropy, an instability arises and the
system has a possibility to undergo a phase transition to a state
characterized by that quadratic term.

When would this happen? These coefficients depend on
two basic parameters in a given system, the overall density ρ0

and temperature T . The former enters into the current theory
through the coefficients of the entropy term (proportional to
ρ0) and interaction term (proportional to ρ2

0 ). The latter is
the direct result of the pre-factor 1/kBT of v, in the Mayer
function. In a more complex density-function theory where
the interaction term is replaced by another form, ρ0 and T
may appear in a more complex manner. A liquid, which has an
interaction potential that contains the hard-core repulsion only
(when two molecules overlap, v = ∞ and nonoverlap, v = 0),
is commonly referred to as a lyotropic liquid crystal, and
there is no T dependence. Otherwise, if an attraction potential
exists, the T dependence can drive a phase transition and the
system is referred to as thermotropic. In the following dis-
cussion, the coefficients of the expanded terms are generally
addressed, without the explicit reference to either lyotropic or
thermotropic systems.

Out of all tensors, the scalar Q[0] is special and it char-
acterizes the density variation. In a spatially homogeneous
system, Q[0] = 1, all free-energy terms involving Q[0] = 1 can
be simplified. Indeed, most conventional LdG expansions take
Q[0] = 1 from the beginning. Such an approximation misses
the possible density variation, needed in considering, for ex-
ample, the smectic states. Here, in order to develop a general
free-energy expansion, Q[0] is retained in the formalism, in
three typical forms, [Q[0] − 1]2, [∇Q[0]]2, and coupling of
∇Q[0] with other tensors, where Q[0] is normalized by

1

V

∫
drQ[0] = 1.

Both [Q[0] − 1]2 and [∇Q[0]]2 terms are not independently
discussed below, as the basic assumption is that, without cou-
pling to orientational ordering, the system stays in a spatially
homogeneously state. The main effect of these two terms is
the penalty to the formation of orientationally ordered states
that require the coupling to a nonvanishing ∇Q[0]. This is
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FIG. 5. Illustration of (a) the general case of an ordered smectic
state of the D∞h group, and (b) the cholesteric phase of the D∞ group.
In (a) the main and secondary axes of the orientational ordering are
n1 and n2. In (b) The main nematic director, lying on the xy plane,
rotates about z, layer by layer.

different from the common practice in a LdG model, where
[Q[0]] is treated as 1 and all Q[0]-related terms are dropped.

A. Example: D∞h group

This is the familiar example of the liquid-crystal phases
formed by rodlike [Fig. 1(a)] and disklike [Fig. 1(c)]
molecules. The only relevant orientational order parameter is
the 3 × 3 “Q-tensor,” Q[2]. In a diagonalized form,

Q[2] = S
(
n2

1 − id/3
) + P

(
n2

2 − n2
3

)
, (69)

where S is the main axis scalar order parameter, P is the
scalar biaxial order parameter, and n1 and n2 are the main and
secondary nematic directors. The only bulk term from Table I
is Q[2] · Q[2]. In the diagonalized representation, it becomes

2
3 S2 + 2P2.

In combination with the entropic term, this forms the basic
model for the isotropic-nematic phase transition of D∞h, if
the system is spatially homogeneous.

There are four derivative terms from Table (I),
|∇Q[2]|2, |∇ · Q[2]|2, |∇Q[0]|2 and ∇Q[0] · (∇ · Q[2] ). In
reference to the coordinates used in Fig. 5, the first two are

|∇Q[2]|2 = 2
3 (∂zS)2 + 2(∂zP)2, (70)

|∇ · Q[2]|2 = 4

9
cos2 θ (∂zS)2 + sin2 θ

[
∂z

(
P − 1

3
S

)]2

. (71)

A linear combination of these two form the essential model
for the formation of the smectic-A and smectic-C states. De-
pending on the final, relative magnitudes of the coefficients
of the (∂zS)2 and (∂zP)2, a system can undergo various se-
quences of phase transitions: Nematic-to-smectic-A (where
P = 0 and θ = 0), nematic-to-smectic-C (where P 
= 0 and
θ 
= 0), or nematic-to-smectic-A followed by smectic-A-to-
smectic-C. The coupling to the density modulation are given
by ∇Q[0] · (∇ · Q[2] ), and the free energy is penalized by
|∇Q[0]|2.

B. Example: D∞ group

A short, rigid DNA molecule is an example of a chiral
molecule. Figure 1(i) illustrates an n = 10 chiral molecule,
for which, D∞ becomes a good approximation as n � 1.
The D∞ group lacks the horizontal mirror symmetry in the

FIG. 6. Illustration of two modes of nematic states of the D2h

group. The left column shows the nematic and biaxial states ordered
along the mean main axes of long molecules; the right column shows
the nematic and biaxial states ordered along the mean normals of
platelike molecules. The main nematic directors are specified by the
green arrows.

D∞h group, hence allows the existence of elastic energy I in
Eq. (34). In addition to the same types of nematic, smectic-A,
and smectic-C states that can be stablized in a liquid of D∞h

molecules, this additional term can drive the system into a
cholesteric phase.

To illustrate this we take a simplified assumption of a
spatially homogeneous S, but a spatially dependent main-axis
director vector n1(z). The coordinate system in Fig. 5(b),
where n1(z) is on the xy plane, allows us to write

Q[2] · ∇ × Q[2] = 2
3 S2n1 · ∇ × n1.

In a cholesteric state, with the particular choice of the axes in
Fig. 5(b), the nematic director n1(z) rotates about the z axis.
The above term drives the system into such a state, when the
coefficient is sufficiently negative [68–70].

C. Example: D2h group

The symmetry of this molecular group is typical of a
rectangular block, illustrated in Fig. 6. In addition to Q[2],
another order parameter tensor M[2]

1 must be considered (see
Table I). Although different definitions have been used for
the order parameters in the literature [20,22,24], to model
the D2h group of molecules, one can equivalently map these
order parameters to our notations. For example, the use of the
Wigner D-functions in Refs. [21,24] is identical to the use of
Q and M, as discussed in Appendix B 3.

The spatially homogeneous nematic states are taken as an
example here. The bulk free energy, as listed in Table I, gives
rise to the coupling between the two second-order tensors,

a1Q[2] · Q[2] + a2Q[2] · M[2]
1 + a3M[2]

1 · M[2]
1 , (72)

where a1, a2 and a3 are coefficients that depend on the molec-
ular shapes. Two independent modes, each consisting of a
linear combination of the two order parameters Q[2] and M[2]

1 ,
can then be established. Each of these two modes corre-
sponds to an ordered nematic state, together with a possible,

062701-16



GENERAL LIQUID-CRYSTAL THEORY FOR … PHYSICAL REVIEW E 102, 062701 (2020)

associated biaxial state. When the remixed coefficient of a
mode is sufficiently negative, this mode is then stabilized.

The physical interpretation of these nematic states are il-
lustrated in Fig. 6. The nematic-1 state is formed by almost
rodlike, long rectangle molecules and the main nematic di-
rector coincides with the direction of the mean long axes of
the molecules. Its associated biaxial state has the same main
nematic director but a secondary nematic director is developed
because of the rectangular shape of the cross section. The
nematic-2 state is formed by near-square-like plate molecules.
The main nematic axis is parallel to the mean plate normals
and there is an isotropic distribution of the orientation of
the edges of the plates. Further orientational ordering of the
edge directions gives rise to a biaxial state associated with the
nematic-2 state [20,22].

D. Example: C2v group

Bent-core or kitelike molecules (Fig. 1) belong to this
group. The body-mounted axes are demonstrated in Fig. 7.
According to the current theory, in addition to Q[0], four
orientational order parameters, Q[1], Q[2], M[2]

1 , and M[2]
2 , are

present, up to second-order tensors.
A number of spatially homogeneous phases (referred to as

the bulk phase in most references) are possible based on an
analysis of these order parameters. All previous studies in-
clude two second-order order parameter tensors, which, as we
mentioned in Sec. V C, are equivalent to Q[2] and M[2]

1 in this
paper. The coupling between these two tensors has a typical
form in Eq. (72). Following the discussion in Sec. V C, two
nematic states and their associated biaxial states are possible.
These are plotted in Figs. 7(a)–7(d), which can be compared
with their counter parts in Figs. 6(a)–6(d). Hence, at this level,
C2v would have the same states as those of D2h, as noted
before [59–62].

The addition of the first-order order parameter tensor (a
vector) Q[1] to the above picture produces a richer number of
bulk states. Figures 7(e) and 7(f) are illustrations of two polar
nematic states where the mean vector 〈m1〉 is nonzero, for both
near-rodlike (left) and near-plate (right) molecules.

In all previous theoretical studies, the orientational order
parameter tensor M[2]

2 was neglected for C2v because of their
usage of O(3) group in identification of order parameters.
From Table I, M[2]

2 · M[2]
2 exists independent of Q[2] and M[2]

1 .
The local distributions of two possible nematic states, in
which

M[2]
2 = 2〈m2m3〉

are finite, are shown in Figs. 7(g) and 7(h) for both near-
rodlike (left) and near-plate (right) molecules. These states
have been observed experimentally [71].

The missing M[2]
2 in an O(3) theory is crucial for descrip-

tion of the phases sketched in Figs. 7(g) and 7(h). To remedy
the missing symmetry, realized by Lubensky and Radzihovsky
of Ref. [33], a third-order symmetric traceless tensor 〈m1m2

3 −
1
5 idm1〉 was introduced. The states in Figs. 7(g) and 7(h), for
example, was argued by Lubensky and Radzihovsky to exist
if such a third-order symmetric traceless tensor is introduced,
among other effects. In contrast, together with Q[1], the three
second-order tensors in our SO(3) theory for order parame-

FIG. 7. Illustration of a bend-core molecule with body-mounted
coordinates m1, m2, and m3 (pointing to the readers from the plane),
as well as (a)–(h) examples of spatially homogenous nematic phases.
The left column are molecules ordered with a main nematic axis
in the mean m2 directions and the right column in the mean m3

directions. The main nematic directors are specified by the green
arrows.

ters are adequate for description of all phases in the figure.
In addition, spatially modulated states can also be described
[32,72].

VI. SUMMARY

This paper explores the relationship between the group
symmetries of a liquid-crystal molecule (Sec. II), the orien-
tational order parameters that can be used to describe such
symmetries when a large number of molecules form a liquid
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crystal (Sec. III), and the free-energy terms that are used to
describe the structures of spatially inhomogeneous and ori-
entationally ordered states (Sec. IV). Although many efforts
have been previously made in the literature, the current at-
tempt is to develop a complete theory for all major classes
of molecules, where the selections of the order parameters
are considered together with the number of essential terms
in the free-energy expansion. The main concern here is the
symmetries of the system and how the pairwise interaction
is expressed by symmetric traceless tensors. The molecular
symmetry operations dominate the type of terms that are non-
vanishing in an expansion of the interaction energy in terms
of the identified order parameters.

The subject matter has been the central focus in the liquid-
crystal community. The most common approach is to take
a LdG-type model, which contains leading terms in a free-
energy expansion on the order parameter tensors. Over many
years, a number of general theories have been formulated
[7,8,20,22,24]. As far as we know, our study here represents
the first systematic examination of the elastic energies in
relationship with molecular symmetries. The leading order
parameter tensors, as summarized in Table I, are kept at a
level where the elastic free-energy terms are consistently pre-
sented in a meaningful form. This approach differs from the
philosophy taken in Ref. [25], where only one or two leading
orientational order-parameter tensors are kept.

The partial inclusion of higher-order tensors as the ori-
entational order parameters were previously explored. For
example, in Ref. [7] a theoretical study of the interaction
energy, which contains a cross product of the orientational
vectors associated with two molecules, is carried out. Such a
form is characteristic of the D2h group, and exists in molecules
following the D4h or Oh symmetries. Thus in that study, some
fourth-order Wigner-D functions (that are equivalent to com-
ponents of symmetric traceless tensors) was included, in order
to account for the symmetries in D4h and Oh. In other studies,
third-order tensors are considered in addition to lower-order
ones, to described the tetrahedral ordering [27,29]. When
the goal is to describe the particular molecular and overall
structural symmetries, rigorous analyses on order parameters
can also be found in the literature [73–76]. However, not all
nonvanishing free-energy terms are consistently discussed.

Some recent LdG models were developed by including
multiple order parameters, without asking their molecular ori-
gins. For example, in Refs. [36,37] the LdG models expanded
in terms of vector and second-order orientational parameter
tensors are studied; in Ref. [33], the LdG model of first-,
second-, and third-order orientational tensor is considered. A
general scheme is summarized for description of a number
of distinct phases in terms of second-, third-, and fourth-
order tensors, in Refs. [30,31]. Their connections to particular
molecular symmetries is opaque. This connection is important
for identification of all elastic energy terms, which has an
important consequence on the resulting structural properties
of stabilized phases.
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APPENDIX A: ORTHONORMAL FRAME, EULER
ANGLES, AND ROTATION OPERATIONS

The orientation of an orthonormal frame, u =
(m1, m2, m3), that is mounted on a molecule, is determined
by the coordinates of the three axes in a stationary laboratory
frame. The three axes can be defined by the three Euler angles
α, β, γ . A standard transformation yields the column vectors

m1 = (cos β, sin β cos α, sin β sin α)t , (A1a)

m2 = (− sin β cos γ , cos β cos α cos γ − sin α sin γ ,

× cos β sin α cos γ + cos α sin γ )t , (A1b)

m3 = (sin β sin γ ,− cos β cos α sin γ − sin α cos γ ,

− cos β sin α sin γ + cos α cos γ )t , (A1c)

where the superscript t denotes the transpose.
Thus, u can be regarded as an Euler rotational matrix, and it

defines a rotation operation in reference to a laboratory frame.
For example, two consecutive rotation operations, u followed
by w, each has their own Euler angles, can be expressed
in terms of the matrix product wu. In another example, the
components, in the (m1, m2, m3) frame, of any vector v can
be calculated from the matrix-vector product uv. Yet in one
more example, one takes a rotation operation (represented by
the rotational matrix g) in the body-fixed frame u, which itself
is rotated from the laboratory frame; such an operation can
be regarded as a combination of two rotation events, first a
rotation represented by g from a laboratory frame (when u still
coincides with the laboratory frame), and second a rotation
operation to set the u frame in space. The combined operation
is then represented by the matrix product ug.

APPENDIX B: SYMMETRIC TRACELESS TENSORS

We summarize the algebraic properties of the symmetric
traceless tensors used in this paper. The derivations of these
properties are documented in Ref. [44].

1. Symmetric traceless tensors generated by monomials

The basic form (a monomial) of a kth-order symmetric
tensor used in this paper is

mk1
1 mk2

2 mk3
3 idl = m1 ⊗ · · ·︸ ︷︷ ︸

k1

⊗ m2 ⊗ · · ·︸ ︷︷ ︸
k2

× ⊗ m3 ⊗ · · ·︸ ︷︷ ︸
k3

⊗ id ⊗ · · ·︸ ︷︷ ︸
l

,

where k = k1 + k2 + k3 + 2l and id is the second-order iden-
tity tensor idi j = δi j , which is defined from id = m2

1 + m2
2 +

m2
3. The symmetric form of a tensor made from the product of

k vectors {x j} is obtained from

x1x2 . . . xk = 1

k!

∑
σ

xσ1 ⊗ xσ2 ⊗ · · · ⊗ xσk ,
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where {σ j} represent all possible permutations of the indices
1, 2, . . . , k.

One can make the monomial mk1
1 mk2

2 mk3
3 traceless, now

carrying a subscript 0, [mk1
1 mk2

2 mk3
3 ]0. When k3 = 0 or 1, a

traceless tensor is produced from the summation [44][
mk1

1 mk2
2 mk3

3

]
0

=
∑

2 j1�k1,2 j2�k2

ak1,k2,k3
j1, j2

mk1−2 j1
1 mk2−2 j2

2 mk3
3 id j1+ j2 , (B1)

where the coefficients are given by

ak1,k2,k3
j1, j2

= (−1) j1+ j2

(
j1 + j2

j1

)

× k1!k2!(2k − 1 − 2 j1 − 2 j2)!!

(k1 − 2 j1)!(k2 − 2 j2)!(2k − 1)!!(2 j1 + 2 j2)!!
.

(B2)

When k3 � 2, the symmetric traceless tensors are deduced
from[

mk1
1 mk2

2 mk3
3

]
0 = [

mk1
1 mk2

2

( − m2
1 − m2

2

) j
mk3−2 j

3

]
0, (B3)

where j is the integer such that 2 j � k3 � 2 j + 1.

2. Symmetric traceless tensors and the special functions

The nth-order symmetric traceless tensor Q[n] is generated
from mn

1,

Q[n] = 〈[
mn

1

]
0

〉
=

〈∑
2 j�n

(−1) j n!(2n − 1 − 2 j)!!

(n − 2 j)!(2n − 1)!!(2 j)!!
mn−2 j

1 id j

〉
.

The coefficients in the above are proportional to those of the
Legendre polynomials. Define

L̃n(y, z) = 2n(n!)2

(2n)!
zn/2Ln(y/

√
z),

where Ln(x) is the nth-degree Legendre polynomial. Such a
definition makes the coefficient of the yn term 1. One can then
formally write

Q[n] = 〈L̃n(m1, id)〉. (B4)

The two tensors, M[n]
1 (first kind) and M[n]

2 (second kind),
involve powers of m1, m2, m3. Their expressions can be
associated with the properties of the nth-degree, first- and
second-kind Chebyshev polynomials, Tn(x) and Un(x). Define

T̃n(y, z) = zn/2Tn(y/
√

z)

and

Ũn(y, z) = zn/2Un(y/
√

z).

One can then show

M[n]
1 = 〈

T̃n
(
m2, id − m2

1

)〉
(B5a)

= 〈[
T̃n

(
m2,−m2

1

)]
0

〉
,

M[n]
2 = 〈

Ũn−1
(
m2, id − m2

1

)
m3

〉
(B5b)

= 〈[
Ũn−1

(
m2,−m2

1

)
m3

]
0

〉
.

3. Connection to Wigner D-matrix

The main text uses symmetric traceless tensors to
characterize the orientational properties of the liquid
crystal molecules. In some studies, for example, in
Refs. [7,24,27,58,77], instead of tensors, the Wigner D-
functions are used as the basic tools to represent the
orientational properties. Here the equivalence of these two
approaches are discussed.

In the above, the nth-order symmetric traceless tensors
are formed in terms of the basic units [mk1

1 mk2
2 mk3

3 ]0 where
k1 + k2 + k3 = n and k3 = 0 or 1. The total number of the
tensors is 2n + 1. To relate to the Wigner D-functions, con-
sider the Jacobi polynomial of degree n. Define P̃(τ,τ )

m (y, z) =
zm/2P(τ,τ )

m (y/
√

z), where P(τ,τ )
m (x) is the Jacobi polynomial

with the index (τ, τ ). One can show that the following 2n + 1
tensors are all symmetric and traceless:

V[n]
k,1(u) = P̃(k,k)

n−k (m1, id)T̃k
(
m2, id − m2

1

)
, 0 � k � n,

V[n]
k,2(u) = P̃(k,k)

n−k (m1, id)Ũk−1
(
m2, id − m2

1

)
m3,

1 � k � n, (B6)

where u = (m1, m2, m3). A special case is when u coincides
with the laboratory frame, for which u = id.

The Wigner D-functions are widely used when functions
of β, α, γ are expanded,

Dn
mm′ (α, β, γ )

= cn
mm′ exp(−√−1mα)dn

mm′ (β ) exp(−√−1m′γ ),

where the functions dn
mm′ (β ) are trigonometric polynomials

and coefficients cn
mm′ constants (see, for example, Ref. [78]).

The Wigner D-functions can be connected to the symmetric
traceless tensors,

Dn
j, j′ = λ

{[
V[n]

j,1(id) · V[n]
j′,1(u) + V[n]

j,2(id) · V[n]
j′,2(u)

]
+ √−1

[
V[n]

j,1(id) · V[n]
j′,2(u) − V[n]

j,2(id) · V[n]
j′,1(u)

]}
,

Dn
− j,− j′ = λ

{[
V[n]

j,1(id) · V[n]
j′,1(u) + V[n]

j,2(id) · V[n]
j′,2(u)

]
− √−1

[
V[n]

j,1(id) · V[n]
j′,2(u) − V[n]

j,2(id) · V[n]
j′,1(u)

]}
,

Dn
− j, j′ = λ

{[
V[n]

j,1(id) · V[n]
j′,1(u) − V[n]

j,2(id) · V[n]
j′,2(u)

]
+ √−1

[
V[n]

j,1(id) · V[n]
j′,2(u) + V[n]

j,2(id) · V[n]
j′,1(u)

]}
,

Dn
j,− j′ = λ

{[
V[n]

j,1(id) · V[n]
j′,1(u) − V[n]

j,2(id) · V[n]
j′,2(u)

]
− √−1

[
V[n]

j,1(id) · V[n]
j′,2(u) + V[n]

j,2(id) · V[n]
j′,1(u)

]}
.

Here λ is a normalization constant that depends on | j| and | j′|
only and V[n]

0,2 = 0. Hence, the Wigner D-functions are related
to the symmetric traceless tensors.
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Thus, the mean symmetric traceless tensors, evaluated
based on a distribution function f (r, u), are just linear com-
binations of the coefficients of the Wigner D-functions, when

f (r, u) is expanded. One can show, for example, Q[n], M[n]
1

and M[n]
2 are related to the coefficients of V[n]

0,1(u), V[n]
n,1(u), and

V[n]
n,2(u).
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