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Equivalence between condensation and boiling in a Lennard-Jones fluid
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Condensation and boiling are phase transitions highly relevant to industry, geology, and atmospheric science.
These phase transitions are initiated by the nucleation of a drop in a supersaturated vapor and of a bubble in an
overstretched liquid, respectively. The surface tension between both phases, liquid and vapor, is a key parameter
in the development of such nucleation stage. Whereas the surface tension can be readily measured for a flat
interface, there are technical and conceptual limitations to obtain it for the curved interface of the nucleus. On
the technical side, it is quite difficult to observe a critical nucleus in experiments. From a conceptual point of
view, the interfacial free energy depends on the choice of the dividing surface, being the surface of tension the
one relevant for nucleation. We bypass the technical limitation by performing simulations of a Lennard-Jones
fluid where we equilibrate critical nuclei (both drops and bubbles). Regarding the conceptual hurdle, we find the
relevant cluster size by searching the radius that correctly predicts nucleation rates and nucleation free energy
barriers when combined with Classical Nucleation Theory. With such definition of the cluster size we find the
same value of the surface tension for drops and bubbles of a given radius. Thus, condensation and boiling can be
viewed as two sides of the same coin. Finally, we combine the data coming from drops and bubbles to obtain, via
two different routes, estimates of the Tolman length, a parameter that allows describing the curvature dependence
of the surface tension in a theoretical framework.
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I. INTRODUCTION

Understanding first-order phase transitions is of great
importance to many fields, ranging from biology [1] to
atmospheric science [2], physics [3], geology [4], and indus-
try [5,6].

In the absence of impurities or external surfaces, first-order
phase transitions start with the emergence of a nucleus of the
stable phase in the bulk of the parent metastable phase [7,8].
A nucleus is “critical” if it is big enough so that it has a 50%
chance to either grow or redissolve.

Although the emerging phase is more stable, the presence
of an unfavourable interface between the nucleus and the par-
ent phase can delay to a great extent the phase transition. Thus,
for instance, alkane vapors can be saturated thousands of times
over their vapor pressure before condensation takes place [9],
alkane liquids can be substantially superheated above the boil-
ing temperature [10–12], or liquid water can be supercooled
up to ∼60 K below melting until it freezes [13–16].

Therefore, the surface tension, γ , or the free energy per
unit area between both phases, plays a key role in the de-
velopment of first-order phase transitions. Whereas γ can be
readily measured for a flat interface at equilibrium—at least
between fluid phases [17]—it cannot be directly probed for
curved interfaces, which is the relevant case for nucleation.
Moreover, the fact that critical nuclei are nanoscopic objects
makes it very difficult to observe them in experiments, let
alone measure their γ . The usual strategy is to infer γ by
combining a theoretical description of nucleation with mea-
surements of the nucleation rate (the number of nuclei that

appear per unit of time and volume) [7,17–19]. This approach
relies on the validity of theoretical approximations that are
difficult to assess.

Computer simulations do have access to the time and
length scales relevant for the observation of critical nu-
clei. However, whereas the methodology and theoretical
framework for computing γ for flat interfaces is very well
established [20–29], that for curved interfaces is still under
development [30–32]. One of the key issues is that γ for
curved interfaces depends on the location of the interface,
which can be defined in different ways [32,33]. The current
situation is that the dependence of γ with the curvature of
the interface is contradictory between different groups [18,30–
32,34–44]

In this work we address fundamental questions regarding
the liquid-vapor interface with computer simulations. It has
been shown in different simulation works that spherical nuclei
can be equilibrated at constant volume and temperature in
finite systems [35,44–53]. Recently, we showed with sim-
ulations of bubbles [54] and crystals [55] that nuclei thus
equilibrated are critical, in agreement with Density Func-
tional Theory (DFT) predictions [56,57]. On the other hand,
we have extensively developed recently the so-called Seed-
ing method [58–61] to study nucleation phenomena. This
method consists in obtaining with simulations the properties
of critical clusters and “plugging” them in the Classical Nucle-
ation Theory (CNT) formalism [62–65] to obtain predictions
of the nucleation rate and of the γ -curvature dependence.
This approach has been successful for a wide range of
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systems [54,58,59,61,66–70], and we use it here to study con-
densation. In particular, we apply Seeding at constant volume
both to condensation and to cavitation for a Lennard-Jones
model.

Since Seeding relies on CNT, it is necessary to validate it
by comparing its predictions with rigorous calculations that
do not rely on such a framework. We do so by computing
nucleation rates via Umbrella Sampling (US) [71,72] and
direct brute force simulations [73] as well as by testing the
consistency of the γ -curvature dependence obtained via Seed-
ing with the value for a flat interface.

All consistency tests are successfully passed for our Seed-
ing simulations provided that the nucleus surface is identified
with that where the density is the average between the density
of both phases (“equidensity” surface). Therefore, we identify
the equidensity surface with the surface of tension. On the
other hand, we directly compare the condensation of liquid
drops in a supersaturated vapor with the cavitation of vapor
bubbles in an overstretched liquid. We find that, for a given
temperature, drops and bubbles of the same radius have the
same γ when using the equidensity definition of the surface
of tension. Finally, we estimate the Tolman length [74], a
parameter useful to predict the γ -curvature dependence, via
two different routes, as recently proposed in Ref. [55].

II. SIMULATION DETAILS

The Lennard-Jones model potential, as well as the simula-
tion details, are the same as in our previous work [54,70]. In
particular, we study the truncated and force-shifted Lennard-
Jones (TSF-LJ) potential [75], a model for which the vapor-
liquid transition has been previously investigated [70,75–77]:

UTSF-LJ(r) = ULJ(r) − ULJ(rc) − (r − rc)U ′
LJ(rc), (1)

where ULJ(r) is the standard 12-6 Lennard-Jones potential
and U ′

LJ(r) is its first derivative. The interaction potential is
truncated and shifted at rc = 2.5σ , where σ is the particle’s
diameter and ε the depth of the untruncated Lennard-Jones
potential. Unless otherwise specified, all magnitudes in this
work are given in Lennard-Jones reduced units [54]. Thus, the
reported temperatures are reduced by ε/kB, distances by σ ,
densities by σ−3, pressures by ε/σ 3, times by τ =

√
mσ 2/ε

(where m is the particle mass), interfacial free energies by
ε/σ 2, and nucleation rates by 1/(τσ 3).

We use cubic boxes with periodic boundary condition and
the molecular dynamics (MD) LAMMPS package [78] to per-
form all simulations of this work. The equations of motion are
integrated with a leap-frog algorithm [79].

In the MD Seeding simulations we used a time step of
0.0012. The system was kept at constant temperature using the
Nosé-Hover thermostat [80] with a relaxation time of 0.46.

For the MD simulations used within the US scheme we set
the time step for the integration of the motion equations to
0.0012. The relaxation times for the Nóse-Hover thermostat
and barostat were 0.46 and 1.6, respectively.

All simulations are carried out at T = 0.785. The co-
existence pressure at such a temperature for the model is
pcoex = 0.0267. We determined this value, refined with re-
spect to that of 0.026 previously published [75], by running

long (4 × 105 τ ) MD NVT (i.e in the canonical ensemble)
simulations with an elongated box (50 × 17 × 17) where the
vapor and the liquid were put in contact at the temperature of
interest. The average pressure normal to the interface in such
a simulation corresponds to pcoex.

III. SEEDING OF CONDENSATION

This work is based on a recent publication where we
demonstrate how to compute bubble nucleation rates in an
overstretched Lennard-Jones fluid by equilibrating critical
bubbles in the NVT ensemble, an approach we call “NVT-
Seeding” [54]. The Seeding method, originally developed
to study crystal nucleation [58–61], and more recently ap-
plied to vapor cavitation [54,70,81], consists in combining
CNT [62–65] with computer simulations to estimate nu-
cleation free energy barrier heights, �Gc, interfacial free
energies, γ , and, most importantly, nucleation rates, J .

According to CNT, the Gibbs free energy barrier for the
nucleation of a spherical liquid drop is given by the following
expression:

�G = γ A − V �p, (2)

where V and A are the volume and the area of the drop, re-
spectively. By maximizing Eq. (2) assuming a spherical drop
shape one obtains both the height of the nucleation free energy
barrier,

�Gc = 2πR3
c�p

3
, (3)

where Rc is the critical droplet radius and �p is the pressure
difference between the interior of the drop and the surround-
ing vapor, and the number of particles in the critical drop,

Nc = (32πρlγ
3)/(3�p3), (4)

where ρl is the critical drop number density and γ is the
liquid-vapor surface tension. By substituting in the equation
above Nc by the droplet volume (4/3πR3

c) times ρl one recov-
ers the Laplace equation:

�p = 2γ

Rc
. (5)

This derivation shows that the Laplace equation, which is
valid when the droplet surface is located at the the surface
of tension, is implicit in CNT. Consequently, Rc should be
identified with the radius of tension, Rs. This is an important
point that we will use later in the paper.

The CNT prediction for the nucleation rate of drops is
given by [7]

J = A0ρvap exp

(
−�Gc

kBT

)
, (6)

where kB is the Boltzmann constant, ρvap is the density of the
vapor phase that multiplied by exp (−�Gc

kBT ) gives the number
density of critical clusters, and A0 is a kinetic prefactor.

A0 is computed as the product of the Zeldovich factor, Z ,
and the rate of attachment to the critical nucleus, f + [7,63]:

A0 = Z f +. (7)
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FIG. 1. Snapshot of a critical drop equilibrated in the NVT
ensemble at T = 0.785 surrounded by supersaturated vapor. The
droplet radius is about 6.8, and the density of the surrounding vapor
0.0550.

Z takes into account the establishment of a steady state,
and, according to CNT, is given by [7,62,63]

Z =
√

|�G(N )′′|Nc

2πkBT
=

√
�p

6πkBT ρlNc
=

√
�p

8π2kBT ρ2
l R3

c

,

(8)
where Nc is the number of particles in the drop and
|�Gc(N )′′|Nc is the curvature of �G(N ) evaluated at the bar-
rier top.

The attachment rate, f +, can be estimated by multiplying
the collision frequency of the vapor per unit of wall area given
by the kinetic theory of gases (ktg) by the area of the critical
bubble:

f +
ktg =

√
kBT

2πm

(
6
√

πNc

ρl

)2/3

, (9)

where the subscript “ktg” stresses the fact that this expression
of the attachment rate is based on the kinetic theory of gases.
Combining this equation with Eqs. (8), (4), and (5), the fol-
lowing kinetic prefactor is obtained:

Aktg
0 =

√
�pRc

πm

ρvap

ρl
. (10)

The equations above are quite powerful, because only Rc,
�p, and the density of both phases are required to obtain key
nucleation parameters such as free energy barriers, interfa-
cial free energies, and ınucleation rates. The Seeding method
consists in performing simulations of a cluster of the stable
phase surrounded by the mestastable phase (a liquid drop
surrounded by supersaturated vapor in our case as shown in
Fig. 1) to compute Rc, �p, ρl , and ρvap in order to get “cheap”

estimates of �Gc, γ , and, most importantly, J through the
expressions above.

The main drawback of Seeding is that the definition of
Rc is not unique. Therefore, the resulting free energy barrier
depends on the specific definition of Rc. This contrasts with
rigorous simulation methods like US [73,82] or with theoret-
ical approaches like DFT [83–85] where the nucleation free
energy does not depend on the criterion chosen to measure the
nucleus size, which can be estimated a posteriori via, e.g., the
nucleation theorem [86–88] (although in the particular case
of DFT an approximate functional needs to be proposed so
that the results do also contain approximations). To assess
the suitability of our choice to compute Rc we complement
Seeding with US simulations.

A. Rc, �p, ρl , and ρvap

We use the NV T ensemble to run the simulations of the
drops given that in such an ensemble critical nuclei are nat-
urally equilibrated and stabilized for long times [54,55]. We
equilibrate drops in 10 different systems. The edge of the
cubic simulation box, L, and the total number of particles in
each system, NT , are reported in Table I. A large number of
particles are used to minimize finite-size effects [52,54,89].
Each system was simulated for about 103 Lennard-Jones times
of equilibration and 2 × 105 of production.

To prepare the initial configuration we cut a spherical
liquid drop from a bulk liquid simulation and insert it in
a bulk vapor box removing the overlapping vapor particles.
The liquid drop is cut with a certain tentative radius, but
the precise number of particles in each phase is not crucial
given that equilibrium is reached along the course of the NV T
simulation.

From a simulation of a drop surrounded by supersaturated
vapor one can obtain an average radial density profile starting
from the center of the drop as that shown in Fig. 2 (to find the
drop center in each configuration we use a strategy similar to
that described in our previous work [54] consisting in this case
in identifying the maxima of density profiles computed along
each cartesian coordinate). Following Refs. [54,70], we obtain
Rc from such a density profile as the distance at which the
density is average between the liquid and the vapor plateaux.
This is indicated with a vertical dashed line in Fig. 2. We refer
to this way of obtaining Rc as the “equidensity” criterion. The
Rc’s thus obtained in our NVT-Seeding simulations are also
reported in Table I. Other definitions of Rc are in principle as
valid as the equidensity criterion [70,84,85]. We argue later in
the paper that our Rc definition is a good one because it makes
Seeding predictions consistent with independent calculations
of γ , J , or �Gc.

To get �p = pl − pvap we obtain first the vapor density,
ρvap, by counting the number of particles outside a sphere
concentric with the drop but with a larger radius (we use a
sphere radius 7σ larger than that of the drop, but we have
checked for a few selected cases that any value beyond ∼5σ

gives the same result). ρvap is given by the number of particles
outside the sphere divided by the L3 minus the sphere volume.
We then use the bulk vapor equation of state to infer pvap from
ρvap. We report pvap and ρvap in Table I. We have checked for
all studied systems that pvap coincides with the overall virial
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FIG. 2. Density profile of a critical drop equilibrated in the NVT
ensemble at T = 0.785 surrounded by supersaturated vapor. The
droplet radius, indicated by a red vertical line, is given by the point at
which ρ(r) takes an average value between both plateaux (equiden-
sity criterion). The density profile corresponds to the system labeled
as IV in Table I.

pressure of the system. On the other hand, pl is obtained,
as in our previous work [54,70], by assuming equal chem-
ical potential between the critical drop and the surrounding
vapor: ∫ pvap

pcoex

1

ρvap(p)
d p =

∫ pl

pcoex

1

ρl (p)
d p, (11)

where pcoex is the coexistence pressure and ρvap(p) and ρl (p)
are the bulk vapor and bulk liquid number densities at pres-
sure p, respectively. In Table I we report pl and �p for all
studied systems. Once pl is known, ρl , also reported in the
table, can be easily computed from the bulk liquid equation
of state. In all cases, this computation of ρl , based on the
equality of chemical potential between both phases, is consis-
tent with that obtained from the density profiles. For instance,
for system IV we get ρl = 0.0680, which is fully consistent
with the first plateau observed in the density profile shown
in Fig. 2. This means that the mechanical pressure and the
thermodynamic pressure inside the drop coincide, a matter of
current debate for solid-liquid nucleation [90].
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FIG. 3. Box volume vs time in NpT simulations starting from 40
configurations taken from the NVT-Seeding simulation labeled IX in
Table I. The imposed pressure is the average viral pressure of the
NVT-Seeding run.

There has been much simulation, theoretical, and ex-
perimental work devoted to study of the formation of
nuclei confined at constant volume [32,44,48,91–99]. In
Refs. [54,55] we showed with simulations that nuclei equi-
librated in the NVT ensemble are critical because they have
equal chances to grow or shrink when simulated in the NpT
(i.e isothermal isobaric ensemble) at the same temperature
and at the average pressure along the NVT run. Based on this
result, we opted to study here drop nucleation in the NVT
ensemble, where statistics is better because clusters remain
stable for very long times [54]. Stabilizing nuclei to gain
time to study their properties is something quite desirable. An
alternative strategy to the use of constant volume simulations
is to pin the nucleus to a heterogeneous solid substrate [100].

Despite having already shown the equivalence between
stable (NVT) and critical (NpT) nuclei for cavitation [54],
we check here for one of the NVT-Seeding simulations if
the drops equilibrated at constant volume and temperature do
correspond to a Gibbs free energy maximum. In Fig. 3 we
show the evolution of the box volume in NpT simulations
started from 40 independent configurations gathered along the
NVT-Seeding trajectory labeled IX in Table I. The imposed
pressure is the average virial pressure along the NVT-Seeding

TABLE I. NVT-Seeding data for the different drops studied in this work at T = 0.785.

Label L NT ρl ρvap pl pvap �p Rc γ �Gc/(kBT ) Aktg
0 Aaf

0 log10(J )

I 38.019 3774 0.6833 0.05690 0.09279 0.03161 0.0612 5.86 0.1792 32.8 0.028 −17.1
II 39.160 4291 0.6811 0.05496 0.0846 0.03092 0.0537 6.82 0.1831 45.5 0.028 −22.6
III 39.160 4373 0.6801 0.05414 0.08095 0.03063 0.0503 7.15 0.1800 49.2 0.027 −24.2
IV 39.160 4510 0.6797 0.05384 0.07961 0.03052 0.0491 7.48 0.1835 54.8 0.027 0.030 −26.6
V 39.160 4623 0.6792 0.05342 0.07769 0.03037 0.0473 7.79 0.1843 59.7 0.027 −28.8
VI 39.160 4796 0.6782 0.05277 0.07468 0.03013 0.0446 8.20 0.1827 65.5 0.027 0.036 −31.3
VII 39.160 4964 0.6783 0.05269 0.07432 0.03010 0.0442 8.49 0.1878 72.3 0.027 −34.2
VIII 39.160 5163 0.6776 0.05216 0.07181 0.02991 0.0419 8.86 0.1856 77.8 0.027 −36.6
IX 39.160 5435 0.6771 0.05176 0.06989 0.02976 0.0401 9.30 0.1865 86.0 0.026 −40.2
X 85.264 34519 0.6761 0.05105 0.06638 0.02949 0.0369 9.99 0.1843 98.2 0.026 −45.5
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run. Roughly, in 50% of the cases the box expands (the drop
dissolves), and in the other half of the cases the box shrinks
(the drop grows). This result supports the use of NVT to study
drop condensation in the same manner that we used for bubble
cavitation and crystal nucleation [54,55]. Furthermore, the
equivalence between clusters equilibrated at constant volume
and critical nuclei has been recently proven with DFT theoret-
ical arguments for crystallization (see supplementary material
of Ref. [57]).

Having computed Rc, �p, ρvap, and ρl we have everything
needed to obtain γ , �Gc and J according to the equations
presented in Sec. III. We report the values for these variables
in Table I and plot them in Figs. 4(a)–4(c) versus the vapor
pressure with black dots. In the following section we comment
on each of these graphs.

B. γ , �Gc, and J

1. γ

As shown in Fig. 4(a) the prediction we obtain from Seed-
ing is that γ decreases as the vapor supersaturation increases.
This trend is in agreement with previous work [35,47]. Ac-
cordingly, using the capillarity approximation (i.e., that γ is
pressure independent) would be erroneous. The green square
in Fig. 4(a) corresponds to the surface tension at coexis-
tence [70] obtained through the pressure tensor [101] in an
NVT simulation of a liquid and a vapor at contact. The trend
of the Seeding data is fully consistent with the coexistence
value, as shown by the linear fit in the figure. This is a good
consistency test, although the γ values provided by Seeding
could still be incorrect despite the fact that they extrapolate
correctly to coexistence. Therefore, a test for Seeding predic-
tions away from coexistence is needed.

2. �Gc

To further test our Seeding results we compare �Gc ob-
tained with Seeding with that computed via US. In Fig. 4(b),
where we plot �Gc versus the vapor pressure, black solid
dots correspond to Seeding and red ones to US (details on
US calculations are described in Sec. IV). Whereas Seeding
predictions rely on the validity of CNT and on a proper def-
inition of Rc, US calculations are rigorous and independent
on the criterion to identify the nucleus size [73]. On the other
hand Seeding is much “cheaper” than US from a computa-
tional point of view. As a matter of fact, Seeding has access
to much higher nucleation barriers than US. The accordance
between Seeding and US shown in Fig. 4 is excellent, which
gives us great confidence in Seeding predictions. The choice
of the equidensity surface to identify the drop radius has
proven correct. If we use another criterion, such as the Gibbs
(equimolar) dividing surface, the agreement between Seeding
and US deteriorates [empty black symbols in Fig. 4(b)]. To
compute Re, the radius associated with the Gibbs dividing
surface, we use NT = Nl + Nvap where Nl = 4/3πR3

eρl and
Nvap = [VT − (4/3πR3

e )]ρvap, where VT is the volume of the
simulation box and the densities ρl and ρvap are obtained as
described in Sec. III A.

In a recent publication on cavitation (nucleation of bubbles
instead of drops) we compared the performance of differ-
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FIG. 4. (a) γ vs vapor pressure obtained from NVT-Seeding data
of droplets surrounded by supersaturated vapor. The surface tension
at coexistence (p = 0.0267) is included [70]. (b) �Gc vs vapor pres-
sure. NVT-Seeding and US data are compared. Empty black symbols
correspond to Seeding predictions when the Gibbs dividing (equimo-
lar), instead of the equidensity, surface is employed to identify the
cluster radius. (c) Nucleation rate vs vapor pressure as obtained from
NVT-Seeding, US, and spontaneous nucleation.

ent criteria to identify the cluster radius and found that the
equidensity criterion also made Seeding predictions consistent
with other rigorous calculations [70]. Therefore, identifying
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FIG. 5. Time dependence of the mean-squared deviation of the
number of particles in the critical drop for system VI in Table I. Half
the slope of this plot gives the attachment rate according to Eq. (12).

the critical drop radius with the equidensity distance seems to
be quite general for condensation-evaporation transitions.

3. J

Once �Gc is known computing J via Eq. (6) is quite
straightforward. The kinetic prefactor A0 given by the kinetic
theory of gases, Eq. (10), depends on parameters we already
have under control: �p, Rc, and the density of both phases.
The values of A0 computed via Eq. (10), Aktg

0 , are reported in
Table I.

These A0 values are approximate since they rely on the
validity of the kinetic theory of gases to estimate the attach-
ment rate (see Sec. III). We therefore have to check Aktg

0 by
computing the attachment rate with an alternative approach.
Following the work by Auer and Frenkel [102], the attachment
rate can be computed from the diffusion of N , the number of
particles in the liquid drop, around the critical drop [102]:

f +
af = 〈(N (t ) − N (0))2〉Nc

2t
, (12)

where the average is performed over several trajectories start-
ing from a critical drop configuration. The “af” subscript
stresses the fact that this expression of the attachment rate is
based on the work by Auer and Frenkel.

To compute N we follow Ref. [103]. We count as neigh-
bors all particles within a 1.625 distance of a tagged particle.
Particles with eight or more neighbors are labeled as “liquid.”
Two liquid particles belong to the same drop if their mutual
distance is less than 1.625. An example of the calculation of
f + according to Eq. (12) is illustrated in Fig. 5. Typically,
〈N (t ) − N (0)〉Nc

is obtained by averaging 20 NpT runs started
from independent configurations of the critical drop, com-
ing either from NVT-Seeding or from US simulations (see
Sec. IV). In these runs, the pressure is fixed to the virial value
of the simulations were the critical clusters were previously
equilibrated. According to Eq. (12), the slope of Fig. 5 divided
by 2 gives f +. Multiplying such f + by the Zeldovich factor
we get an estimate of the kinetic prefactor, Aaf

0 , that does not

TABLE II. Data corresponding to the brute force calculations.

Label NT 〈V 〉 pv ρv log10(J )

BF-1 4000 57 145 0.035 0.0700 −9.235
BF-2 4000 53 456 0.036 0.0748 −8.287

rely on the kinetic theory of gases. Aaf
0 is reported in Table I

for a couple of critical clusters generated with NVT-Seeding
(systems IV and VI). Aaf

0 is very close to Aktg
0 . This agreement

suggests the validity of the kinetic theory of gases to estimate
the attachment rate and makes the theoretical framework that
supports the Seeding technique quite powerful given that,
since Aktg

0 can be used, only Rc, �p, and the density of both
phases are required to get accurate estimates of J in a wide
range of orders of magnitude. Note in Fig. 4(c) that Seeding
(black dots) has access to J values many orders of magnitude
lower than US (red dots).

The green dots in Fig. 4(c) correspond to rate estimates
obtained in brute force NPT molecular simulation runs per-
formed at high supersaturations where condensation occurs
spontaneously from an unseeded vapor. In such cases the
nucleation rate can be estimated as J = 1/(t〈V 〉), where 〈V 〉
is the average volume before nucleation and t is the nucleation
time averaged over a number of independent trajectories (typ-
ically 20 in our case). NT , V , the vapor pressure and density,
and J for the two states where we studied spontaneous con-
densation are reported in Table II. In Fig. 4(c) we show that J
estimates from Seeding and from spontaneous nucleation are
consistent with each other, which further indicates the ability
of Seeding to predict nucleation rates. It is worth mentioning
here that NVT-Seeding and spontaneous nucleation are com-
plementary techniques. On the one hand, the former does not
have access to such high supersaturations given the difficulty
to equilibrate small clusters in the NVT ensemble [54,55]. That
said, it would be nonsense to use Seeding where nucleation
occurs spontaneously in a straightforward manner. On the
other hand, spontaneous nucleation is limited to a narrow
window of nucleation rates (that enabled by computational
time), whereas Seeding has access to extremely low rates.

We would like to end this section by discussing finite-size
effects, which could be present if a nucleus sees its replica
through periodic boundary conditions. On the one hand, we
made sure that the density of the outer phase reaches a plateau
before L/2 by looking at radial density profiles such as that
shown in Fig. 2. On the other hand, we note that the box side
of system X is more than twice than those of the other systems.
By looking at Figs. 4(a), 4(b), and 4(c) one can see that the
results from system X are fully consistent with those inferred
from the other systems, which strongly supports the absence
of noticeable finite-size effects in our simulations.

IV. UMBRELLA SAMPLING

As previously indicated, to validate the Seeding results
we used the US technique. We followed Refs. [103,104] to
compute �Gc for two different vapor pressures: p = 0.031
and p = 0.033. Details on the simulation box size and number
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TABLE III. Data corresponding to the US calculations.

Label L NT �Gc/(kBT ) Aaf
0 log10(J )

US-1 39.112 4000 17.7 0.041 −10.3
US-2 38.501 4000 40.7 0.039 −20.3

of particles in the systems used to perform the US calculations
are given in Table III.

The free energy associated with the formation of an N
particle cluster drop can be obtained from

�G(N ) = −kBT ln[P(N )], (13)

where P(N ) is the probability distribution of N . Our criterion
to compute N is described in Sec. III B 3. It is important to
note that even though different criteria may give different N
for a given configuration, the height of an US free energy
barrier does not depend on the criterion to determine the
cluster size [73]. Therefore, contrary to what happens in Seed-
ing, the US method does not depend on the specific criterion
to determine the nucleus size. This is why it is important
to validate the Seeding method with other techniques such
us US.

With conventional NpT simulations at the selected pres-
sures P(N ) can be sampled only up to N ∼ 40 while the
critical cluster is much larger in this regime. To sample the rest
of the free energy barrier a biasing potential, Ubias, is added to
the original Hamiltonian:

Ubias = 1
2 kbias(N − N0)2, (14)

where N0 controls the cluster size around which the sampling
will be centered and k the width of such sampling. Tens of
overlapping sampling “windows” centered at different N0 val-
ues are required to reconstruct the whole free energy barrier.
The effect of the bias potential on the calculation of the free
energy barrier is removed as follows [71]:

�G(N ) = −kBT ln
〈 χN

e−Ubias/(kBT )

〉
+ C, (15)

where χN is the fraction of clusters with N particles that ap-
pear within a certain window and C is a constant. The constant
is obtained by gluing together the first part of the energy
barrier evaluated without the biasing potential [Eq. (13)] with
the rest of the windows. The result is the whole free energy
barrier.

To compute each window we use the hybrid Molecu-
lar Dynamics–Monte Carlo scheme labeled as HMC(nM-
NpT)/US in Ref. [104]. From the starting configuration,
random velocities are assigned to every particle according
to a Maxwell-Boltzmann distribution, and a short (�t 19.2
Lennard-Jones times) MD simulation is run for generat-
ing a new configuration, which is accepted with probability
min[1, exp{−[Ubias(�t ) − Ubias(0)]/(kBT )}]. In the case of
either acceptance or rejection new random velocities are as-
signed at the beginning of each short MD cycle. For each
window, 10 000 of such cycles were performed for equi-
libration and 60 000 to obtain the free energy barrier. We
used kbias = 0.04kBT in the biasing potential [Eq. (14)], which
gives an acceptance rate of ∼25%.
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FIG. 6. Free energy for two different pressures (p = 0.031 and
p = 0.033) versus the number of particles in the drop as obtained
from US calculations. The different colors represent the different
windows performed.

In Fig. 6 we plot both free energy barriers, where �Gc =
17.7kBT for p = 0.033 and �Gc = 40.7kBT for p = 0.031
(also reported in Table III). As already discussed, the agree-
ment between US and Seeding is excellent [see Fig. 4(b)].

Additionally, we compute the kinetic prefactor Aaf
0 [Eq. (7)]

to obtain the nucleation rate [Eq. (6)]. To do that, we launch
tens of unbiased trajectories from independent configurations
at the barrier top in order to compute the attachment rate via
Eq. (12). The Zeldovich factor [Eq. (8)] can be obtained by
numerically calculating the curvature of �G(N ) at the barrier
top. We report Aaf

0 thus calculated and the corresponding J
in Table III. As previously discussed, J from US is fully
consistent with that coming from Seeding [see Fig. 4(c)].

In summary, we have compared Seeding, which relies on
the theoretical assumptions by CNT and ktg and depends on
the criterion employed to determine the cluster size, with US,
which does not have these limitations. We have obtained an
excellent agreement between both techniques. This is very
good news because Seeding is much more efficient than
US and has access to much lower values of the nucleation
rate.

V. CONDENSATION VERSUS BOILING

A. Comparison for a given Rc

We have studied quite recently the nucleation of bubbles
for the same Lennard-Jones model employed here [54]. Since
the study was performed at the same temperature, the question
that naturally arises is whether bubbles and drops with the
same radius have the same interfacial properties. To establish
the comparison we have repeated the analysis performed in
Ref. [54] because in that work we used 0.026 as the coex-
istence pressure instead of 0.0267. We took the 0.026 value
from a paper published more than a decade ago [75]. However,
we have recomputed more carefully the coexistence pressure
at T = 0.785 and obtain p = 0.0267 instead, which is the
value we use in this work. The difference is subtle, but given
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TABLE IV. NVT-Seeding data for the different bubbles studied in this work at T = 0.785.

Label L NT ρvap ρl pvap pl �p Rc γ �Gc/(kBT ) ABK
0 log10(J )

I 36.731 30795 0.03765 0.6453 0.02365 −0.02601 0.0497 7.35 0.1826 52.7 0.341 −23.5
II 36.731 30342 0.03834 0.6484 0.02398 −0.01914 0.0431 8.50 0.1832 70.6 0.342 −31.3
III 36.731 29760 0.03875 0.6501 0.02419 −0.01503 0.0392 9.53 0.1869 90.6 0.345 −40.0
IV 36.731 29034 0.03907 0.6514 0.02433 −0.01191 0.0362 10.52 0.1906 112.5 0.348 −49.5
V 36.731 28147 0.03949 0.6530 0.02453 −0.00776 0.0323 11.50 0.1857 131.1 0.344 −57.6
VI 36.731 27082 0.03972 0.6539 0.02464 −0.00558 0.0302 12.45 0.1881 155.7 0.346 −68.3

that the pressure inside the nucleating phase is obtained by
integrating from the coexistence pressure [see Eq. (11)], it is
very important to use an accurate value for the latter.

The simulation data for different bubbles equilibrated at
T = 0.785 in the NVT ensemble are reported in Table IV.
The values of Rc corresponding to each system (obtained with
the equidensity criterion as discussed in Sec. III A and in
Ref. [54]) are very close to those recently reported by our-
selves [54]. However, the values of �p here reported are not
identical to those of Ref. [54] due to the coexistence pressure
issue discussed above. In Fig. 7(a) we plot �p versus 1/Rc

for bubbles and and drops at T = 0.785. Drops and bubbles
of the same size have the same �p, which is perhaps the most
important result of the paper. Note that, for a given Rc, the
pressures of the external and the internal phases are not the
same if one compares cavitation and condensation. What is
the same is the pressure difference between the internal and
the external phases. For instance, let us focus on the case
of drop VII and bubble II, both with Rc ≈ 8.5. In Fig. 8 we

compare their radial density profiles. The density of the liquid
inside the drop is different from that of the liquid outside the
bubble. Also, the density of the vapor inside the bubble is
different from that of the vapor outside the drop. The bubble is
surrounded by a liquid of pressure −0.01914 whereas the drop
by a vapor of pressure 0.0301: the pressures of the external
phases do not even have the same sign. The bubble and the
drop also have very different pressures: 0.02398 and 0.07432,
respectively. Despite the fact that the external and the internal
pressures are very different, �p is not: 0.043 and 0.044 for the
bubble and the drop, respectively.

According to the Laplace equation, that �p(Rc) is the
same for drops and bubbles, implies that γ also must be the
same regardless of the identity of the internal and the external
phases. In Fig. 7(b) we plot γ versus 1/Rc for bubbles and
drops and find that, indeed, they have the same γ within our
statistical noise. Of course, attending to Eq. (3), �Gc, which
depends only on Rc and �p, is also the same for a given Rc,
as illustrated in Fig. 7(c).
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FIG. 7. (a) �p vs 1/Rc, (b) γ vs 1/Rc, (c) �Gc vs Rc, and (d) log10 J vs 1/Rc for droplets (black symbols) and bubbles (red symbols) as
obtained from NVT-Seeding.
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FIG. 8. Radial density profiles of drop VII and bubble II, com-
pared. They have almost identical radius, Rc.

The nucleation rate for bubbles with a given Rc is close
to the corresponding drop but is not exactly the same, given
that the kinetic prefactor is not identical. In the case of bubble
nucleation we have carefully assessed [70] that the following
expression by Blander and Katz (BK) provides a good approx-
imation for A0:

ABK
0 =

√
�pRc

πm
, (16)

which is very similar, but with a missing (ρvap/ρl ) factor with
respect to the ktg expression we use for drop condensation
[Eq. (10)]. The ABK

0 values we use in our Seeding predictions
of bubble cavitation are reported in Table IV alongside the re-
sulting values of J obtained as J = ρlABK

0 exp[−�Gc/(kBT )].
As can be seen in Fig. 7(d), the rate for bubbles and drops for
a given Rc is quite similar, although it is systematically lower
for the latter due to the ρvap/ρl factor previously mentioned.

Condensation and cavitation have already been compared
in the literature [32,35,43,48,105–107]. However, there are
only a few cases in which γ has been compared for a given
temperature as a function of the droplet or bubble size [32,35]
as we do in this work. Establishing such a comparison in
experiments is difficult because it is not possible to detect the
critical nucleus. In simulations the nucleus can be visualized,
but computing γ is a hard task. It requires either computing
the free energy of a system with the nucleus inside [32,34] or,
more easily, computing the nucleus size and using a theory to
infer γ [60,108] as we do in this work. In either approach, one
has to deal with the arbitrariness of establishing a location for
the interface.

In our case, we found in a recent work by “trial and error”
that the equidensity surface gives good results for cavita-
tion [70]. By “good results” we mean that Seeding predictions
of nucleation are consistent with those coming from inde-
pendent methods that do not rely on a precise definition of
the nucleus size. In this work we have demonstrated that the
same criterion to locate the interface is successful in con-
densation. Therefore, one of our main findings is that the
equidensity surface is the one that provides good predictions

when CNT is used both for cavitation and for condensation.
This means that the equidensity surface can be identified with
the surface of tension, which is the one for which CNT works
and the Laplace equation holds (see Sec. III) [47,49,55,109].
We believe that identifying the surface of tension with the
equidensity surface for both cavitation and condensation is
an important finding of our work. This leads to the relevant
conclusion that condensation and cavitation are two sides of
the same coin in the sense that they share the same surface
tension.

In Ref. [35] γ was found to be quite different for both
phenomena, but the comparison was not established for the
surface of tension but for the equimolar surface. In Ref. [32],
however, the comparison was established for the surface of
tension, and, although γ was similar for condensation and
cavitation, there were significant differences that need to be
further investigated in order to match our work with that of
Ref. [32].

B. Comparison for a given metastability degree

In Ref. [83] it was proposed in a DFT study that the work of
formation of critical bubbles studied at different temperatures
collapses when plotted against the metastability degree, Xm,
quantified as

Xm = μnuc − μcoex

μspinodal − μcoex
, (17)

where μnuc is the chemical potential of the parent phase at
the conditions where nucleation is studied, μcoex is the co-
existence chemical potential at the same temperature and at
coexistence pressure, and μspinodal is the chemical potential
at the same temperature but at the pressure where spinodal
decomposition takes place. To estimate the spinodal pressure
we run NpT simulations of the bulk liquid and vapor phases
with 4000 particles. We estimate the spinodal decomposition
pressure as that for which the system undergoes a phase tran-
sition without any induction period, right after the start of the
simulation. Both chemical potential differences in Eq. (17)
can be easily obtained by numerically integrating the molar
volume along pressure at constant temperature. The denom-
inator is the maximum possible metastability, whereas the
numerator is the actual metastability of the state where nucle-
ation is studied. Therefore, Xm varies from 0 at coexistence, to
1 at spinodal decomposition. The mestastability degree above
described can be computed for drop as well as for bubble nu-
cleation. Therefore, we have the chance to compare nucleation
free energy barriers for drops and bubbles as a function of
Xm. The comparison, shown in Fig. 9, reveals the interesting
conclusion that �Gc for bubble and drop nucleation is the
same for a given metastbility degree. Therefore, not only can
nucleation barriers at different temperatures be collapsed via
the metastability degree as proposed in Ref. [83], but bubble
and drop nucleation data also match for a given metastability
degree.

C. Tolman length

Since bubbles and drops of the same radius have the same
interfacial properties, we can use the data coming from both
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FIG. 9. Nucleation free energy barrier for drops and bubbles (see
legend) as a function of the metastability degree, Xm, defined in
Eq. (17).

systems altogether in order to compute the Tolmann length,
δT , which is defined as [34,74]

δTolman = lim
Rs→∞

(Re − Rs), (18)

where Re is the Gibbs equimolar radius and Rs is the radius of
the surface of tension. We identify Rs with Rc (the equidensity
radius) given that (1) we obtain good predictions of nucle-
ation when we use Rc and (2) Rs is the radius that enters
CNT [47,49,55,109]. To underline the fact that we identify
Rc with Rs we label Rc as Rs=c in the following figures. Re can
be easily computed from the radial density profiles [54,55]. In
Fig. 10(a) we show Re − Rs=c versus 1/Rs=c for all data (either
bubbles or drops) coming from this work. The extrapolation to
1/Rs=c = 0 provides an estimate of δTolman, indicated with an
empty blue dot in the figure. We obtain δTolman = 0.15 ± 0.02.
We showed in a recent paper, in which we analyzed spherical
hard sphere crystals in equilibrium with the fluid, that δTolman

can be also estimated by fitting γ to the following expression:

γ = γ0

(
1 − 2

δT

Rs

)
, (19)

where γ0 is the value of γ at coexistence at the temperature
of interest and δT is the fitting parameter that serves as an
estimate for δTolman [55]. This approach is similar in spirit to
those that include γ given by Eq. (19) in CNT to fit free energy
barriers obtained by rare event methods [84,110]. Again, we
identify here Rs with Rc. Consequently, we use the γ data
coming from such a radius (that reported in Tables I and IV) to
obtain an estimate of δT with the expression above. The data
of γ versus 1/Rs=c are shown in green in Fig. 10(b). The solid
line is a linear fit of γ versus 1/Rs=c, which includes γ0 (the
green square in the figure). The δT value coming from such fit,
δT = 0.21 ± 0.03, is shown with a red dot in Fig. 10(a). Both
values, δTolman obtained via Eq. (18) [blue dot in Fig. 10(a)]
and δT coming from Eq. (19) (red dot in the same figure),
are consistent with each other within the statistical uncertainty
of our estimates. This corroborates the idea, recently checked
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FIG. 10. (a) Re − Rs=c and (b) γ vs 1/Rs=c for drops and bubbles
together.

for hard sphere crystals [55], that the Tolman length can be
obtained either from Eq. (19) or from Eq. (18). Hence, this
idea seems to be a general one pertaining not only to the
crystal-fluid equilibrium but also to the liquid-vapor one.

This study may shed some light in the intense litera-
ture debate about the magnitude and sign of the Tolman
length [18,30–32,34–44]. We obtain a Tolman length of about
20% of the particle diameter. Its sign is positive, which means
that γ decreases when one moves away from coexistence at
constant temperature.

VI. CONCLUSIONS

The main conclusions we draw from our work are the
following:

(1) We have used NVT-Seeding to investigate droplet nu-
cleation in a supersaturated Lennard-Jones vapor. The results
obtained from this technique are consistent with the follow-
ing: (i) independent calculations of the nucleation free energy
barrier performed with Umbrella Sampling, (ii) the surface
tension of a flat interface obtained from the pressure tensor
in a vapor-liquid coexistence simulation, and (iii) the drop
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nucleation rate obtained both with US and in brute force
spontaneous nucleation simulations.

(2) NVT-Seeding requires defining the radius of a droplet
equilibrated in the NVT ensemble. The radius definition that
passes the consistency tests mentioned in point (1) is that
given by the surface where the density is average between that
of the interior and that of the exterior phases. Such a radius
definition was also successful in our earlier studies of bubble
nucleation [54,70]. Therefore, we identify this “equidensity”
radius with the radius of tension, Rs.

(3) The good performance of Seeding strongly supports
the use of CNT to describe nucleation. However, the capillar-
ity approximation (that γ is curvature independent) does not
provide good results. A γ dependent on the curvature of the
critical nucleus must be plugged into the the theory. Therefore,
the theory, although powerful, requires the involvement of
simulations given that the γ -curvature dependence is obtained
by computing the size of the critical cluster at different pres-
sures.

(4) The kinetic theory of gases provides very good esti-
mates of the kinetic prefactor of the condensation nucleation
rate. This makes the theoretical framework very powerful
given that only the size of the critical cluster, the density of
the external phase, and the bulk phases equations of state are
needed to estimate nucleation rates.

(5) We compare NVT-Seeding results of droplets with
those obtained for bubbles and find that, for a given

temperature, bubbles and droplets of the same radius have,
within the accuracy of our method, the same pressure differ-
ence with the surrounding medium. Therefore, bubbles and
droplets of the same size have the same surface tension and
the same nucleation free energy barrier. In this respect, con-
densation and boiling can be seen as two sides of the same
coin. Such duality is verified only if the size of the critical
nucleus (either a bubble or a drop) is determined with the
equidensity radius (our empirical definition of the surface of
tension).

(6) We estimate the Tolman length, δT , by extrapolating
to infinite-size drops and bubbles the difference between the
equimolar radius, Re, and Rs. Such δT is consistent with that
obtained by linearly fitting γ (1/Rc), in accordance with our
recent work on hard sphere crystals [55].
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