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Compression and swelling of hydrogels in polymer solutions: A dominant-mode model
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The swelling and compression of hydrogels in polymer solutions can be understood by considering hydrogel-
osmolyte-solvent interactions which determine the osmotic pressure difference between the inside and the
outside of a hydrogel particle and the changes in effective solvent quality for the hydrogel network. Using
the theory of poroelasticity, we find the exact solution to hydrogel dynamics in a dilute polymer solution,
which quantifies the effect of diffusion and partitioning of osmolyte and the related solvent quality change
to the volumetric changes of the hydrogel network. By making a dominant-mode assumption, we propose a
model for the swelling and compression dynamics of (spherical) hydrogels in concentrated polymer solutions.
Osmolyte diffusion induces a biexponential response in the size of the hydrogel radius, whereas osmolyte
partitioning and solvent quality effects induce monoexponential responses. Comparison of the dominant-mode
model to experiments provides reasonable values for the compressive bulk modulus of a hydrogel particle, the
permeability of the hydrogel network, and the diffusion constant of osmolyte molecules inside the hydrogel
network. Our model shows that hydrogel-osmolyte interactions can be described in a conceptually simple
manner, while still capturing the rich (de)swelling behaviors observed in experiments. We expect our approach
to provide a roadmap for further research into and applications of hydrogel dynamics induced by, for example,
changes in the temperature and the pH.

DOI: 10.1103/PhysRevE.102.062607

I. INTRODUCTION

Hydrogels are cross-linked polymer networks which, when
fully swollen, typically imbibe large volumes of water rel-
ative to their dry volume. They can have strong volumetric
responses to changes in, for example, the pH, the temperature,
and the osmotic pressure of their surroundings, which makes
them interesting for drug delivery and responsive materials
like actuators and soft robotics [1–3].

Recently, the compression and reswelling of microgel
particles in response to an osmotic shock have been re-
ported [4]. Initially fully swollen microgels were brought into
a continuously flowing polymer solution, and from both phe-
nomenological and formative poroelastic modeling of their
volumetric response the diffusion constant of osmolyte inside
the hydrogels, the permeability, and the bulk modulus of the
hydrogel network could be inferred. Due to nonlinearities,
both the phenomenological and poroelastic model were solved
numerically.

Moreover, remarkable overshoot behavior of hydrogels
swelling in polymer solutions has been reported. These

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

experiments have been described using a numerically solved
relaxational dynamics model based on the free energy of a hy-
drogel particle, but this model provides little direct insight into
the resulting underlying hydrogel dynamics [5]. To obtain a
more fundamental understanding of the physical mechanisms
that govern these (de)swelling processes, an analytical model
description, where the role of the different physical properties
is more directly evident, would be desirable.

Here, using the theory of poromechanics, we propose a
dominant-mode model describing the volumetric response of
hydrogels for both swelling and compression in concentrated
polymer solutions. Large volumetric changes of hydrogels
typically give rise to nonlinearities in the compressive bulk
modulus of the hydrogel, the permeability of the hydro-
gel network, and the diffusion coefficient of the osmolyte.
To obtain explicit insight into the hydrogel dynamics, we
solve the osmolyte mass conservation equation and the force
balance equation exactly for hydrogels in dilute polymer so-
lutions. We find the temporal effect of osmolyte diffusion on
the hydrogel radius to be of biexponential form, expressing
the interplay between osmolytes that stresses the hydrogel
network and the resulting “diffusion” of the hydrogel net-
work [6,7]. Also, partitioning of the osmolyte between the
hydrogel and the surrounding polymer solution, and changes
in the quality of the solvent for the hydrogel network, induce
monoexponential swelling or compression to the equilibrium
state, determined solely by hydrogel network diffusion. From
this exact solution we approximate the hydrogel response to
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concentrated polymer solutions by making a dominant-mode
assumption.

The dominant-mode model is fitted to the measured volu-
metric response of hydrogels from both Sleeboom et al. [4]
and Aangenendt et al. [5]. Reasonable values are obtained for
the (effective) diffusion constant, permeability, and bulk mod-
ulus, which scale as expected with the concentration of the
hydrogel network and osmolyte. The dominant-mode model
provides fit values for the material parameters consistent with
expected trends.

After briefly introducing the swelling and compression
experiments on hydrogel particles we reanalyze here, the
equations of motion of hydrogel dynamics are formulated
using the theory of poroelasticity. With the exact solution
of hydrogel-osmolyte dynamics in a dilute polymer solution,
we formulate the dominant-mode model. Finally, the model
is compared to the experiments, and the estimations for the
compressive modulus, the hydrogel permeability, and the os-
molyte diffusion constant are discussed.

II. SWELLING AND COMPRESSION EXPERIMENTS

A. Microgels

In the experiments of Sleeboom et al. [4] microgels
with various acrylamide monomer concentrations and cross-
linker densities were synthesized. This resulted in “soft,”
“medium,” and “stiff” microgel particles, depending on their
estimated compressive modulus, as assessed with capillary
micromechanics (CM) [8]. The microgels were trapped in
a microfluidic device where they were first equilibrated
in demi-water and subsequently compressed by replacing
the demi-water by a continuously flowing polymer solu-
tion of dextran 70k (from Leuconostoc spp, Mw = 70 kDa,
Sigma-Aldrich, radius of gyration Rg ≈ 6 nm [9]) [see
Figs. 1(a) and 1(b)]. The hydrogels initially decrease in
volume and either reswell to (approximately) their original
volume or deswell to some reduced volume [see Figs. 1(c)–
1(f)]. The experiments in Figs. 1(d)–1(f) show that a higher
osmotic pressure induces a faster initial decrease in hydrogel
volume, but [see Fig. 1(f)] not necessarily a smaller equi-
librium volume. Therefore, apart from the osmotic pressure,
solvent-quality effects are expected to be relevant for the
determination of the equilibrium volume.

B. Aquapearls

In the experiments of Aangenendt et al. [5] so-called aqua-
pearls (sodium polyacrylate particles) were used as model
hydrogel particles of macroscopic size. Swelling experi-
ments were conducted by having dried hydrogel particles
swell in polymer solutions of dextran 70k, polyethylene
glycol 20k (PEG 20k, Mw = 20 kDa, Sigma-Aldrich, Rg ≈
7 nm [10]) and polyethylene oxide 200k (PEO 200k, Mw =
200 kDa, Sigma-Aldrich, Rg ≈ 22 nm [10]) at various os-
molyte concentrations. It was shown that the combination
of alterations in solvent quality and the osmotic pressure
differences due to partitioning of osmolyte between the
polymer solution and the hydrogel particle could explain

(a) (b)

(c)

(d)

(e) (f)

FIG. 1. Schematic (a) and microscopy (b) image of the microflu-
idic setup in which microgels, with radius a = 20 μm, are trapped
and the surrounding water (blue) can be replaced by a polymer
solution (red). The ratio of the volume V (t ) of soft (d), medium
(e), and stiff (f) microgels to their original volume V0 is given as a
function of time t after water is replaced by a dextran 70k polymer
solution, unless specified otherwise. Replacing water by a PEO 2M
polymer solution (d) shows that a large osmolyte causes permanent
compression of the hydrogel particle. The solid lines are fits to
the dominant-mode model, with parameters displayed in Table I.
[Panels (a)–(c) are adapted from Sleeboom et al. [4].]

the observed overshoot in the PEO 200k swelling experi-
ments and the monotonic swelling observed in dextran 70k
and PEG 20k swelling experiments (see Fig. 2). Likewise,
solvent quality and partitioning could account for the un-
dershoot and monotonic deswelling observed in compression
experiments (see Fig. 3).

III. POROELASTIC MODELING

We first outline the basic equations of poroelastic-
ity [7,11,12], from which the exact solution for a hydrogel
particle in a dilute polymer solution is found. Assuming the
long-time dynamics of this solution to be similar to those in
the regime of concentrated polymer solutions, we construct
a dominant-mode model for hydrogel swelling and compres-
sion.

A. Hydrogel dynamics in dilute polymer solutions

Regarding the hydrogel particle as a superposed solid
phase (hydrogel network) and fluid phase (dilute polymer
solution), and the osmolyte particles as a constituent of the
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(a)

(b)

FIG. 2. The normalized volume V (t )/V0 as a function of time t
of initially dry aquapearl hydrogel particles for different PEO 200k
concentrations exhibiting an overshoot (a), and for dextran 70k and
PEG 20k exhibiting no overshoot (b). The solid lines are fits of the
dominant-mode model, with parameters displayed in the upper half
of Table II.

fluid phase [13,14], the mass conservation equations read in
Eulerian form

∂φs

∂t
+ ∇ · (φsvs ) = 0, (1)

∂φn

∂t
+ ∇ · (φnvn) = 0, (2)

∂cφs

∂t
+ ∇ · [cφs(vn + vdif )] = 0, (3)

where both phases are assumed to be incompressible; φs and
φn are, respectively, the volume fractions of the polymer solu-
tion and the hydrogel network; vs and vn are their respective
velocities; and c is the concentration of osmolyte particles per

(a)

(b)

FIG. 3. The normalized volume V (t )/V0 as a function of time t
of aquapearl hydrogel particles in various PEO 200k concentrations,
exhibiting no undershoot (a), and for dextran 70k and PEG 20k
exhibiting an undershoot (b). The solid lines are fits to the dominant-
mode model, with parameters displayed in the lower half of Table II.
The dashed line is a fit of the 7.5-wt-% PEO 200k experiment which
is forced to take into account the final stage of slow deswelling
(see Table III for fit parameters).

unit volume of polymer solution. We idealize the hydrogel
particle as being spherically symmetric. Summing Eqs. (1)
and (2), using that φs + φn = 1, and applying the divergence
theorem, we find

φsvs + φnvn = 0, (4)

which directly relates the velocity of the polymer solution to
the velocity of the hydrogel network.

The advective osmolyte velocity in Eq. (3) equals vn,
because the osmolyte particles are assumed to have much
stronger frictional interaction with the hydrogel network than
with the solvent, i.e., the hydrogel network and the os-
molyte particles move advectively as a single complex. On
the other hand, in order for the osmolyte to enter the hydrogel
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diffusively on experimentally relevant time scales it should
not be so large that the much slower reptation mechanism
becomes dominant. We therefore assume that the radius of
gyration of an osmolyte particle Rg is comparable to the mesh
size ξ of the hydrogel network, i.e., Rg ∼ ξ .

Assuming osmolyte diffusion to be Fickian, the velocity
of osmolyte particles relative to the hydrogel network vdif is
given as

cvdif = −Dosm∇c, (5)

with Dosm the diffusion coefficient of osmolyte inside the
hydrogel network.

Assuming mechanical equilibrium and the absence of body
forces, the overall force balance for the hydrogel can be writ-
ten as

∇ · σ = 0, (6)

with σ the Cauchy stress tensor of the whole hydrogel particle,
i.e., of the polymer solution and hydrogel network combined.
Using the Terzaghi effective stress [12,15], we can decompose
σ as

σi j = σ ′
i j − (p + �)δi j, (7)

where σ′ is the elastic stress of the hydrogel network, and p,
�, and p + � are, respectively, the pneumatic pressure, the
total osmotic pressure, and the total pressure of the polymer
solution [16]. For a dilute polymer solution in the hydro-
gel network, the total osmotic pressure � = �id + �exc is
composed of the ideal part �id = kBT c and the excess pres-
sure due to hydrogel network-osmolyte interactions �exc =
kBT cρBns, where ρ is the number density of the hydrogel
network and Bns is the cross-virial coefficient of interac-
tions between the hydrogel network and the osmolyte in the
polymer solution, through which the solvent quality can be
increased, �exc > 0, or decreased, �exc < 0. Darcy’s law re-
lates gradients in the pneumatic pressure to the flow of solvent
through the hydrogel-osmolyte complex as [12]

φs(vs − vn) = −κ

η
∇p, (8)

where κ is the permeability of the hydrogel-osmolyte complex
for the solvent, and η is the dynamic viscosity of the solvent.

For dilute polymer solutions, the total osmotic pressure is
low, implying the strain in the hydrogel network to be small,
and thus the network responds approximately as a linear elas-
tic material. Assuming the hydrogel network to be isotropic
and homogeneous, the elastic stress of the hydrogel network,
relative to the stress-free equilibrium state in osmolyte-free
solvent, is written as

σ ′
i j = M

1 − ν

[
νekkδi j +

(
1

2
− ν

)
ei j

]
, (9)

with ei j = 1
2 (∇iUj + ∇ jUi ) the infinitesimal strain tensor,

M = K + 4G/3 the longitudinal modulus of the hydrogel
network [17], K the compressive bulk modulus, G the shear
modulus, and ν the Poisson ratio. The displacement field
U(r, t ) = U (r, t )r̂ is radial, with r ∈ [0, R0] the radial position
in the network and R0 the stress-free hydrogel radius.

Mass conservation of osmolyte [Eq. (3)] and the overall
force balance [Eq. (6)] are found as

∂c

∂t
− Dosm

1

r2

∂

∂r
r2 ∂c

∂r
= 0, (10)

η

κ

∂U

∂t
− M

∂

∂r

1

r2

∂

∂r
r2U = − ∂

∂r
kBT c(1 + f ), (11)

where we defined f ≡ ρBns. Equation (10) is the standard
diffusion equation for osmolyte in the hydrogel network. The
displacement field [see Eq. (11)] obeys a diffusionlike equa-
tion sourced by the gradient in total osmotic pressure. These
equations can alternatively be derived from the framework of
incompressible mixtures [14].

Due to both short-range repulsive and long-range inter-
actions with the hydrogel network, osmolyte is partitioned
between the hydrogel particle and the surrounding polymer
solution. The equilibrium partition coefficient Q gives the
ratio of the equilibrium concentration of osmolyte in the
hydrogel to the osmolyte concentration in the surrounding
medium [18]. As the hydrogel network is homogeneous, the
osmolyte concentration at the hydrogel surface equals the
equilibrium concentration for all times:

c(r, t ) = Qc0, at r = R0, (12)

with c0 the concentration of osmolyte in the surrounding poly-
mer solution. This concentration can be considered constant,
because experimentally the microgel dynamics were shown
to be independent of the velocity of the polymer solution [4].
Similarly, the aquapearl particles were put on a roller bank
in a bath of polymer solution to ensure a constant outside
osmolyte concentration [5]. Initially, no osmolyte is present
in the hydrogel:

c(r, t ) = 0, at t = 0. (13)

Force balance requires the total pressure of the surrounding
polymer solution to equal the total radial stress at the hydro-
gel surface, i.e., σrr (R0, t ) = −(p0 + �0), with σrr given by
Eq. (7), p0 the pneumatic pressure of the outside polymer
solution, and �0 = kBT c0 the osmotic pressure of the out-
side polymer solution. Using that � = kBT c(1 + f ), invoking
Eq. (12), and using the fact that the hydrogel network is
permeable for solvent p(R0, t ) = p0, the radial network stress
at the hydrogel surface is given as

σ ′
rr (r, t ) = −kBT c0[1 − Q(1 + f )], at r = R0, (14)

which shows that the difference in osmotic pressure between
the surface of the hydrogel and the surrounding polymer so-
lution can provide a resultant force on the hydrogel surface.
In a swelling experiment, where the hydrogel network swells
from its fully dried state, the network is initially compressed
relative to its stress-free state. In a compression experiment,
on the other hand, the hydrogel particle starts out in the stress-
free state, giving as initial condition

U (r, t ) = r

(
Rinit

R0
− 1

)
, at t = 0, (15)

where Rinit is the initial radius of the hydrogel network and R0

is the osmolyte-free equilibrium radius.
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Equations (12)–(15) provide the necessary boundary con-
ditions to solve Eqs. (10) and (11). The solution to Eq. (10)
can be written, using a Hankel transform [19], as

c(r, t )

Qc0
= 1 −

∞∑
k=1

2(−1)k+1 j0

(
πk

r

R0

)
exp

(
−(π )2 t

τosm

)
,

(16)
where j0 is the spherical Bessel function of the first kind of
order zero, and τosm ≡ R2

0/Dosm is the time for the osmolyte to
diffuse completely through the hydrogel. Next, we may solve
Eq. (11) using another Hankel transform to find

U (r, t ) =
∞∑

m=1

Um(t )

β2
mNm

j1(βmr/R0), (17)

Um(t ) = U init
m (t ) + U bc

m (t ) +
∞∑

k=1

U dif
km (t ), (18)

where βm is the mth positive solution of

2
1 − 2ν

1 − ν
j1(βm) = βm j0(βm), (19)

and Nm is the normalization of the mth mode of the network
displacement field:

Nm = 1

2β4
m

(
cos (2βm) − 1 + βm

2
sin(2βm) + β2

m

)
. (20)

The effect of swelling from an initially compressed or swollen
state is given as

U init
m (t )

R0
= Rinit/R0 − 1

[3 j1(βm) − βm j0(βm)]−1
exp

(
−β2

m

t

τn

)
, (21)

where τn ≡ R2
0η/κM is the typical time for the hydrogel net-

work to swell or compress. The effect of force balance at the
hydrogel surface is

U bc
m (t )

R0
= − [1 − (1 + f )Q]�0

M

1 − exp
(−β2

mt
/
τn

)
[ j1(βm)]−1

, (22)

and the contribution of the kth mode of osmolyte diffusion to
the mth displacement mode is given as

U dif
km (t )

R0
= −(1 + f )Q

�0

M

2 sin(βm)

(πk)2 − β2
m

�km(t ), (23)

where

�km(t ) = exp[−(πk)2t/τosm] − exp
(−β2

mt
/
τn

)
1 − (πk)2τn/β2

mτosm
. (24)

Equation (21) shows that the effect of swelling from a pre-
stressed state is determined by the hydrogel network diffusion
time. Changes in the equilibrium volume due to partitioning
of osmolyte and changes in solvent quality [see Eq. (22)] are
also mediated on the network diffusion time scale. The effect
of osmolyte diffusion in the hydrogel network [see Eqs. (23)
and (24)] generates biexponential temporal effects, because
the gradient of the osmotic pressure in the hydrogel network,
varying on the time scale of osmolyte diffusion τosm, causes
stress gradients in the network.

B. Dominant-mode model

Given the dynamics for hydrogel particles in dilute poly-
mer solutions, we construct a dominant-mode model for
hydrogel dynamics in concentrated polymer solutions from
the following considerations.

If the time scale of network diffusion is either smaller than
or comparable to that of osmolyte diffusion, i.e., τn � τosm,
the first mode in Eqs. (16)–(24), with k = m = 1, is dominant
on time scale τosm in the long-time limit; all other modes decay
much faster. Thus, the first mode is sufficient to understand the
long-time effects of the interplay between osmolyte diffusion
and hydrogel (de)swelling.

For a concentrated polymer solution, compared to a di-
lute polymer solution, the volume change in the hydrogel is
expected to be large, because of the high osmotic pressure
of the polymer solution, implying that the permeability κ ,
the compressive bulk modulus K , and the osmolyte diffusion
coefficient Dosm may vary appreciably over time. We do not
expect them to vary over an order of magnitude, however,
because if the hydrogel volume decreases, for example, by
75% the permeability is expected to decrease by 60%, as ap-
proximately V (t )/Vinit = [ξ (t )/ξinit]3 and κ (t ) ∝ ξ 2(t ), with
ξ (t ) the time-varying average mesh size of the hydrogel net-
work. The permeability is usually determined with relative
uncertainties on the order of 10% [5], and similar uncer-
tainties hold for the compressive bulk modulus [4] and the
osmolyte diffusion coefficient [20]. Therefore, we assume that
the variance of the material parameters does not give rise
to qualitatively different hydrogel-osmolyte dynamics. This
does not necessarily imply that the dilute-solution hydro-
gel dynamics suffices to describe the hydrogel dynamics in
concentrated polymer solutions, however, because for concen-
trated polymer solutions the osmolyte must be described as an
independent phase instead of a constituent of the fluid phase.

As a closed-form approximation to the hydrogel dynamics
in concentrated polymer solutions, we propose the dominant
mode of the exact solution [Eqs. (16)–(24)], but now regarding
K , κ , and Dosm as effective constants. Using only the dominant
mode amounts to blurring of the hydrogel boundary, because
for t → 0 the gradient in the osmolyte concentration at the
hydrogel surface remains finite, contrary to what Eqs. (12)
and (13) imply.

For a dilute polymer solution, the total osmotic pressure
of the polymer solution is the sum of the ideal contribution,
which equals the osmotic pressure of the surrounding polymer
solution, and an excess contribution due to osmolyte-network
interactions. Therefore, in the dominant-mode model we re-
place the total osmotic pressure in the dominant mode of
Eqs. (17)–(23) by the sum of the osmotic pressure of the
surrounding concentrated polymer solution �0 and a pressure
quantifying the solvent-quality change �exc, giving the radius
of the hydrogel relative to the stress-free state �R(t ) as

�R(t ) = �Rinit (t ) + �Rbc(t ) + �Rdif (t ), (25)

with the contribution due to initial compression or swelling
given by

�Rinit (t ) = k

η

M(1 − Rinit/R0)

R0
Cinit (ν)

exp(−t/tn)

−1/tn
, (26)
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where tn ≡ R2
0η/κMβ2

1 is the exponential relaxation time for
hydrogel swelling or compression. Force balance at the hy-
drogel surface provides

�Rbc(t ) = − k

η

(1 − Q)�0 − Q�exc

R0
Cbc(ν)

1 − exp(−t/tn)

1/tn
,

(27)
which determines the equilibrium volume of the hydrogel im-
mersed in polymer solution. The effect of osmolyte diffusion
results in

�Rdif (t ) = − k

η

Q(�0 + �exc)

R0
Cdif (ν)

e−t/tosm − e−t/tn

1/tn − 1/tosm
, (28)

which is proportional to the maximum osmotic pressure of the
polymer solution in the hydrogel network and where tosm ≡
R2

0/Dosmπ2 is the exponential relaxation time for osmolyte
diffusion.

The proportionality constants in Eqs. (26)–(28) are
given as Cinit (ν) = j1(β1)[3 j1(β1) − β1 j0(β1)]/N1, Cbc(ν) =
j2
1 (β1)/N1, and Cdif (ν) = 2 j1(β1) sin(β1)/N1(π2 − β2

1 ). For
−0.08 < ν � 1/2, we can approximate β1 as

β1 = π

(
1 − 2(1 − 2ν)

π2 − 4 + ν(π2 + 8)

)
, (29)

within an accuracy of 1%. To first order in x ≡ 1 − β1/π the
proportionality constants read Cinit (ν) ≈ 6 + (18 − 2π2)x,
Cbc(ν) ≈ 2 + 6x, and Cdif (ν) ≈ 2 + 3x, a particularly useful
approximation for polyacrylamide hydrogels having a Poisson
ratio of about 0.48 [21].

Prestress in the hydrogel network [see Eq. (26)] and the
force balance at the hydrogel boundary [see Eq. (27)] cause
swelling or compression on time scale tn to the equilibrium
state of the hydrogel, which is determined by the balance
between the resultant compressive force (1 − Q)�0 over the
hydrogel surface and the solvent quality pressure Q�exc at the
hydrogel surface. For Q = 0 the hydrogel is compressed in
equilibrium relative to the stress-free state due to the osmotic
pressure of the surrounding polymer solution �0 > 0. If the
solvent quality increases, however, such that �0(1 − Q) <

Q�exc, the hydrogel can swell relative to the stress-free state.
In case osmolyte diffusion is slow, i.e., tosm � tn, additional

(de)swelling can occur on time scale tosm, depending on the
sign of �0 + �exc [see Eq. (28)]. This slow (de)swelling
stems from two competing effects due to osmolyte diffusion.
On the one hand, the gradient in the osmotic pressure �0

vanishes, which decreases the compressive force on the hy-
drogel particle, thus inducing swelling. On the other hand, the
gradient in solvent quality pressure �exc vanishes. The latter
induces either swelling if the osmolyte increases the solvent
quality, �exc > 0, or compression if the solvent quality is de-
creased, �exc < 0. Therefore, for a strong decrease in solvent
quality �0 + �exc < 0, an overshoot in a swelling experiment
can occur (see Fig. 2). Similarly, if �0 + �exc > 0, an under-
shoot in a compression experiment is possible (see Fig. 3).

The velocity of the hydrogel surface at t = 0, v0, is given
by a global form of Darcy’s law v0 ∝ κ�P/ηR0, which stems
from the approximative nature of the dominant-mode model.
The pressure difference �P in Eq. (26) is proportional to the
stress initially present in the hydrogel network, in Eq. (27) it
is proportional to the osmotic pressure difference between the

TABLE I. Material properties based on the model fits displayed
in Fig. 1. The standard error for each derived material parame-
ter is given in brackets. We assumed all fitted parameters to be
uncorrelated.

K κ Dosm �exc

Solution (kPa) (nm2) (μm2/s) (kPa)

Medium 13 wt% 8.5(1.7) 0.22(0.02) 5.4(1.0) 238.0(0.4)
Medium 13 wt% 6.3(1.1) 0.25(0.03) 7.1(1.0) 234.0(0.8)
Medium 5 wt% 8.5(0) 0.26(0.04) 5.8(0.6) 34.4(0.2)
Medium 5 wt% 8.5(0) 0.15(0.02) 4.8(0.4) −34.4(0.2)
Soft 13 wt% 2.0(0.1) 0.53(0.01) 12.7(0.3) 238.0(0.1)
Soft PEO 2M 9.1(0.1) 0.58(0.04) 0.0(0) 0.0(0)
Stiff 5 wt% 17.0(0) 0.18(0.11) 7.5(293.0) 3.0(4.8)
Stiff 13 wt% 17.0(0) 0.13(0.01) 5.9(0.6) 1280.0(10.8)

inside and the outside of the hydrogel in equilibrium, and in
Eq. (28) it is proportional to the equilibrium osmotic pressure
of the polymer solution in the hydrogel network.

To test the validity of the dominant-mode model, we
compare it to measurements of the hydrogel volume in the
swelling and compression experiments described in Sec. II.

IV. COMPARISON TO EXPERIMENT

To test the dominant-mode model proposed in the previous
section for validity, we use Eqs. (25)–(28) to obtain estimates
for the (effective) osmolyte diffusion constant Dosm, and both
the compressive bulk modulus K ≡ M(1 + ν)/3(1 − ν) and
the permeability κ of the hydrogel particles, with M the lon-
gitudinal modulus and ν ≈ 0.48 the Poisson ratio [21,22], by
fitting the dominant-mode model to the measured volumetric
response of both the microgels and the aquapearl hydrogels
(see Figs. 1–3). Also, we find an estimation for the change
in solvent quality as the excess osmotic pressure �exc of
the osmolyte in the hydrogel network. We estimate the equi-
librium partition coefficient Q either from literature for the
microgels [23] or by modeling the available volume in the
hydrogel network as spherical pores for the aquapearls (see
Appendix F of Aangenendt et al. [5]). The osmotic pressures
of the polymer solutions �0 as a function of the concentration
of osmolyte are known from literature for the 70k dextran [9],
the PEG 20k [24], and the PEO 200k [5] polymer solutions.
Using the MATHEMATICA function NonlinearModelFit, the
dominant-mode model is fitted to the volumetric measure-
ments (see Figs. 1–3). In case the fit routine did not converge,
the value of K or κ was fixed from the estimated value deter-
mined with, respectively, CM or a conventional permeability
test [5] (see Tables I and II for a summary of, respectively, the
fit parameters for the microgel and the aquapearl particles).

As explained in Sec. III B, the dominant-mode model con-
tains the effective values for the material parameters K , κ ,
Dosm, and �exc. Nevertheless, we do expect the fitted values to
give the typical order of magnitude and trends in the material
parameters, e.g., the magnitude of the solvent quality pressure
�exc is expected to increase with osmolyte concentration.
For the microgels, the order of magnitude of the compres-
sive modulus K agrees with independent measurements from
CM [4], where the compressive modulus of the medium
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TABLE II. Material properties based on the model fits displayed
in Figs. 2 and 3. The upper and lower sections of the table display the
swelling and compression cases, respectively. The standard error for
each derived material parameter is given in brackets. We assumed all
fitted parameters to be uncorrelated.

K κ Dosm �exc

Solution (kPa) (nm2) (μm2/s) (kPa)

Saline 27() 7.5(0.5) 0.0(0) 0.0(0)
Dextran 70k 8 wt% 35(5) 5.5(1.0) 1.0(16.1) −6.8(41.5)
PEG 20k 8 wt% 86(8) 2.2(0.5) 1.7(36.8) −46.3(297.0)
PEO 200k 2 wt% 27() 7.9(0.5) 45.1(53.8) −17.6(4.2)
PEO 200k 4 wt% 27() 7.6(0.5) 82.1(35.1) −38.6(3.6)
PEO 200k 5 wt% 27() 6.9(0.8) 62.4(28.3) −49.7(4.3)
PEO 200k 7.5 wt% 31(2) 7.5(0) 19.5(29.6) −48.4(9.9)
PEO 200k 10 wt% 43(2) 7.5(0) 5.5(14.6) −79.6(22.1)
Dextran 70k 8 wt% 37(1) 10.5(0.6) 6.4(1.8) −4.0(0.5)
PEG 20k 8 wt% 75(1) 5.3(0.2) 3.9(4.8) −46.2(11.3)
PEO 200k 4 wt% 27() 25.4(1.1) 81.6(3.6) −40.7(0.5)
PEO 200k 7.5 wt% 153(10) 16.3(1.4) 78.2(4.4) −315.0(25.4)
PEO 200k 10 wt% 219(16) 14.4(1.3) 109.0(7.0) −562.0(49.0)

particles was found as K = 13(5) kPa, with the uncertainty in
brackets. The permeability κ decreases with increasing bulk
modulus, which is to be expected, as a higher bulk modulus
implies a smaller cross-linker to cross-linker distance and
therefore a smaller mesh size and permeability. The odd one
out, however, is the PEO 2M experiment on soft particles,
which disagrees with the 13-wt-% dextran 70k experiment
on the compressive bulk modulus of the soft particles. In this
experiment we chose to set Dosm and �exc, which given the
large size of the osmolyte are expected to be very small, to
zero in order to improve the convergence of the fit.

The osmolyte diffusion constant inside the hydrogel is gen-
erally expected to be a fraction of its value in the surrounding
polymer solution [25]. Indeed, the fitted values for Dosm are a
fraction of the mutual diffusion coefficient in a 13-wt-% dex-
tran 70k solution, Dosm = 6 × 101 μm2 s−1 [20]. Finally, the
solvent quality pressure �exc increases with the concentration
of osmolyte, as expected.

For the aquapearl swelling experiments the fitted perme-
ability agrees with independent measurements, which indicate
κ = 8(5) nm2 [5]. Moreover, the compressive bulk modulus
agrees to that obtained by CM [5], except for the PEG 20k
swelling experiment. The osmolyte diffusion coefficients all
have a rather large uncertainty. For the PEO 200k experiments
this is probably caused by polydispersity in osmolyte size [5]
(see below). For the dextran 70k and PEG 20k swelling ex-
periments the uncertainty may be connected to the fact that
they do not exhibit an overshoot, thereby making the effect
of osmolyte diffusion less pronounced. Finally, the PEO 200k
swelling experiments show that the magnitude of the solvent
quality pressure increases with the osmotic pressure, as ex-
pected.

The compression experiments on dextran 70k and PEG
20k agree with the appurtenant swelling experiments, showing
the robustness of the dominant-mode model. The PEO 200k
compression experiments, however, show anomalously high
values for all four fit parameters. In Aangenendt et al. [5],

TABLE III. Fitted material properties from the PEO 200k
7.5-wt-% experiment where the data points are weighted propor-
tional to their time coordinate (see the dashed line in Fig. 3). The
extracted diffusion coefficient corresponds, most probably, to a high
molecular weight fraction of the osmolyte.

K κ Dosm �exc

Solution (kPa) (nm2) (μm2/s) (kPa)

PEO 200k 7.5 wt% 40(1) 3.2(0.2) 1.6(0.4) −41(1)

it was established that the PEO 200k osmolyte consists of a
wide range of species having different sizes. As the different
species have different diffusion constants and, possibly, dif-
ferent effects on the solvent quality, a complicated evolution
of the volume of the hydrogel particle is to be expected. The
dominant-mode model assumes only a single size of osmolyte
molecules, however, implying the fitted material parameters
to reflect a kind of average effect of all osmolyte species.
As a result, the solid line fits in Fig. 3(a) show, for example,
that the slow deswelling for t � 105 s is effectively ignored,
for the model fit equilibrates at t ∼ 105 s. Indeed, if we force
the fit routine to take into account the final deswelling pro-
cess by weighing each data point proportionally to the time
coordinate, and hence giving more weight to the long-time
data, the fit of, for example, the 7.5-wt-% PEO 200k com-
pression experiment provides credible values for all four fit
parameters [see the dashed line in Fig. 3(a) and Table III
for the fit parameters]. The fitted diffusion constant, most
probably, pertains to a high molecular weight species of PEO
200k, the solvent quality pressure agrees with the appurtenant
swelling experiment, and the bulk modulus and permeability
of the hydrogel particle agree with their independent mea-
surement introduced above [5]. Moreover, the polydispersity
in the PEO 200k osmolyte probably causes the large value
and uncertainty of the fitted diffusion constant for the PEO
200k swelling experiments. The low molecular weight species
cause a fast decrease in solvent quality, giving rise to the
overshoot in hydrogel volume [see Fig. 2(a)].

V. CONCLUSIONS

Using the theory of poroelasticity we formulated a
dominant-mode model which accounts for the swelling
and compression of hydrogels in concentrated polymer so-
lutions. The dominant-mode model is derived through a
dominant-mode assumption: the long-time hydrogel dynam-
ics in concentrated polymer solutions is assumed to be similar
to that in dilute polymer solutions.

The equilibrium volume of the hydrogel is shown to be
determined by the balance between the osmotic compressive
force and the solvent quality pressure at the hydrogel sur-
face. Diffusion of osmolyte results in nonmonotonic changes
in hydrogel volume. On the one hand, osmolyte diffusion
causes a gradual decrease in compressive force on the hydro-
gel particle, resulting in initial compression and subsequent
reswelling. On the other hand, depending on whether the
osmolyte increases or decreases the solvent quality for the
hydrogel network, it can cause swelling or compression at
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the time scale of osmolyte diffusion. This paper shows that
the spatiotemporal effect of osmolyte diffusion may cause
nonmonotonic evolution of the hydrogel volume. In a pre-
vious relaxational dynamics model [5], osmolyte diffusion
was treated phenomenologically, where only temporal feed-
back between osmolyte diffusion and hydrogel swelling was
taken into account. Interestingly, nonmonotonicity was still
observed, showing the temporal effect of osmolyte diffusion
to be crucial to understand nonmonotonic (de)swelling of
hydrogels.

Comparison of the dominant-mode model to experiment
provides reasonable estimations of the compressive bulk mod-
ulus K and the permeability κ of the hydrogel network, the
osmolyte diffusion constant, and the solvent quality change
due to the presence of osmolyte. Therefore, the dominant-
mode assumption, which assumes the long-time hydrogel
dynamics in dilute and concentrated polymer solutions to be
similar, seems justified. One could argue that this is to be
expected, since the material parameters do not vary strongly
during the evolution in hydrogel volume. What is unexpected,
however, is the fact that the dominant-mode model also ac-
curately describes the short-time response of the microgel
particles (see Fig. 1). We hypothesize this to be due to a
cancellation of errors between the idealized description of the
experimental setup and neglect of higher order modes in the
exact solution.

In this paper we focused on osmolyte diffusion and the
appurtenant effects of its osmotic pressure on the swelling
and compression of hydrogels. The model can be extended
to account for changes in the external pH and temperature;
however, their spatiotemporal propagation is also governed by
a diffusion equation. Therefore, we expect the dominant-mode
model to have wider applicability. Finally, it is apposite to
ask to what extent the implicit assumption of near-equilibrium
made in our paper is justified beyond the fact that it appears
to provide an adequate description, or, a fortiori, under what
external conditions, e.g., magnitude of osmotic shocks, we can
explicitly expect it to break down. This could be an interesting
avenue of further research.
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