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Supercooled liquids display dynamics that are inherently heterogeneous in space. This essentially means
that at temperatures below the melting point, particle dynamics in certain regions of the liquid can be orders
of magnitude faster than other regions. Often dubbed dynamical heterogeneity, this behavior has fascinated
researchers involved in the study of glass transition for over two decades. A fundamentally important question
in all glass transition studies is whether one can connect the growing relaxation time to a concomitantly growing
length scale. In this paper, we go beyond the realm of ordinary glass forming liquids and study the origin
of a growing dynamical length scale ξ in a self-propelled “active” glass former. This length scale, which
is constructed using structural correlations, agrees well with the average size of the clusters of slow-moving
particles that are formed as the liquid becomes spatially heterogeneous. We further report that the concomitantly
growing α-relaxation time exhibits a simple scaling law, τα ∼ exp(μξ/Teff ), with μ as an effective chemical
potential, Teff as the effective temperature, and μξ as the growing free energy barrier for cluster rearrangements.
The findings of our study are valid over four decades of persistence times, and hence they could be very useful
in understanding the slow dynamics of a generic active liquid such as an active colloidal suspension, or a
self-propelled granular medium.

DOI: 10.1103/PhysRevE.102.062605

I. INTRODUCTION

It is well known that liquids near a glass transition dis-
play a growing length scale [1–5] that is normally associated
with the concomitant sluggish dynamics. This growing length
scale in a typical glass former often characterizes the spa-
tial extent of dynamic heterogeneity, and the literature on
this subject is quite extensive [2,6,7]. The aforementioned
heterogeneity in space and time is ubiquitous in nature and
also observed in active systems having an internal source of
energy, ranging from biological cells [8] and tissues [9] to
even ant colonies [10]. The visual identification of dynamic
heterogeneity in a glass forming liquid at low temperatures
often requires a definition of a cluster of particles moving
slower than the surrounding medium. The average size of
these clusters, which can be treated as a growing length scale,
tends to increase as one approaches the glass transition, and
the cooperative movement of these large clusters results in
the observed sluggish dynamics. There exist numerous re-
ports on the study of growing length scales in passive glass
forming liquids, covering extensive simulations [3–5,11–14],
experiments [15–17], and theoretical investigations [18–22].
However, similar explorations of a growing length scale in
active glass formers remain limited in scope. Here we study
the dynamic heterogeneity in a system of self-propelled par-
ticles, and we explore various growing length scales that are
concomitant with sluggish dynamics near the glass transition.
The active liquid in our study is represented by a mini-
mal Ornstein-Uhlenbeck (OU) model in which the activity is
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completely described by only two parameters, the persistence
time τp and the effective temperature Teff. The model can be
used to study active colloidal suspensions, passive tracers in
bacterial baths, and self-propelled granular media, to mention
a few. In what follows, we provide a brief background cover-
ing some results that are relevant to our study.

It is well established that the four-point structure factor is
maximum around the α- relaxation time (τα) for typical glass
forming systems [4,5], and it can be profitably used to extract
a dynamical length scale (ξ ). In this paper, we have extracted
ξ and two other length scales, namely the microscopic hexatic
length scale ξ6 and the diffusion length scale

√
Dτα . We also

find that at lower temperatures, the dynamical length scale ξ

decouples from all the other length scales examined here—
an observation made earlier in some works on passive glass
formers [23–25]. The dynamic length scale ξ extracted from
long-range structural correlations can be connected to the con-
comitant growing α-relaxation time scale τα through a simple
scaling law, τα ∼ exp(μξ/Teff ), that is similar to predictions
from the random first-order transition theory (RFOT) [26,27]
in two dimensions. Our results are valid over four decades of
persistence time, and at every τp, Teff state point the size of
the slow-moving clusters agrees well with the dynamic length
scale ξ . We conclude the paper with the role of persistence
time τp on the chemical potential μ, which is essentially an
energy cost per unit length to form clusters of slow-moving
particles.

The paper is organized into the following sections. Sec-
tion I discusses the introduction and necessary background
of the subject, Sec. II presents the minimal model used in
our work to describe an athermal active glass forming liquid,
Sec. III presents a discussion of our results, and finally in
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Sec. IV we summarize our work and present interesting future
directions resulting from our work. We will now discuss the
numerical model used in our work.

II. MINIMAL MODEL

There is enough evidence to suggest that fluids composed
of active particles can exhibit glassy dynamics at sufficiently
high particulate densities, notable mentions being experiments
on migrating cells [8] and embryonic tissues [9], as well
as numerical simulations [28]. There have been some recent
reports on the influence of activity on the sluggish dynamics
in glass forming systems [28–32], but the results depend qual-
itatively on the presence of thermal noise in the system. In our
work, we use an athermal model of self-propelled particles
introduced earlier [28,33–35]. The model is deemed athermal
as there is no explicit presence of thermal noise term in the
position update of the particles. The governing equations for
the ith particle with mass m read

ṙi = 1

mγ

[
−

∑
j �=i

∇iφ(ri j ) + f i

]
,

ḟ i = 1

τp

[
− f i +

√
2mγ kBTeff ηi

]
. (1)

Put simply, the dynamics is overdamped with mγ as the
friction coefficient and falls under the Ornstein-Uhlenbeck
(OU) type of stochastic process that has been used to model
athermal active systems. The self-propulsion force f i is a
colored noise with an exponentially decaying autocorrelation
function given by

〈 fiα (t ) f jβ (t ′)〉noise =
(

mγ kBTeff

τp

)
δαβδi je

−|t−t ′|/τp, (2)

where the Greek symbols α, β and the Latin symbols i, j de-
note, respectively, the vector components and particle labels.
We take ηi to be a Gaussian white noise of zero mean and unit
variance,

〈ηiα (t )η jβ (t ′)〉noise = δαβδi jδ(t − t ′). (3)

The angular brackets 〈· · · 〉noise refer to an average in the dis-
tribution of noise under consideration. The particles interact
through the Lennard-Jones potential,

φ(ri j ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4εi j
[( σi j

ri j

)12 − ( σi j

ri j

)6]
, 0 < ri j � rm,

εi j
[
A
( σi j

ri j

)12 − ( σi j

ri j

)6 + ∑3
p=0 C2p

( ri j

σi j

)p]
, rm < ri j � rc,

0, r > rc,

(4)

that is smoothly truncated to zero along with its first two
derivatives, at the cutoff distance rc. The parameters A, B,
C0, C2, C4, and C6 are obtained by matching φ and its two
derivatives at the boundaries rm and rc. We have employed the
celebrated Kob-Andersen (KA) [36,37] binary glass former
where the ratio of large (L) to small (S) particles is kept as
80:20. All particles have the same mass m irrespective of their

size. We took εLL, σLL, and
√

mσ 2
LL/εLL as the characteris-

tic units of energy, length, and time, respectively. In these
units, the potential parameters become εSS = 0.5, εLS = 1.5,
σSS = 0.88, and σLS = 0.80. The inner and outer cutoff dis-
tances are then, respectively, rm = 1.122 46 and rc = 2.5. The
density is fixed at ρ = 1.20 throughout our paper. It should
be noted that a finite temperature divergence of the relax-
ation time in the three-dimensional equilibrium KA liquid
is known to happen at the mode coupling temperature Tc =
0.435, which also serves as the upper bound for the glass tran-
sition temperature Tg. A similar finite temperature divergence
is not expected in equilibrium 2D liquids due to the pres-
ence of Mermin-Wagner-like fluctuations [38,39] that tend
to grow logarithmically with the system size and eliminate
any transient localization of particles that is necessary for a
plateau to develop in the self-intermediate scattering function
[40–42]. Since our primary objective was to extract a growing
length scale through long-wavelength structural correlations,
we have employed a 2D periodic box with N = 10 000

particles that conforms to a square box of size L = 91.2871,
and is large enough for our work. To integrate Eq. (1), we
used a stochastic velocity Verlet algorithm [43] with a time
step of 
t = 0.0001 that guaranteed numerical stability in the
entire parameter range explored in this paper. To assert the
robustness of our results, we performed our study over a wide
range of persistence times τp, ranging from 0.0002, which cor-
responds to the limit of equilibrium Brownian dynamics (BD),
to all the way up to 1.0, which is far from equilibrium. We ex-
plore effective temperatures in the range 0.35 � Teff � 2.50,
where the former limit corresponds to a strongly supercooled
regime with significant cooperative dynamics, and the latter
corresponding to a high-temperature limit where cooperative
behavior is absent. Below, we discuss our results in detail.

III. RESULTS AND DISCUSSION

A. Dynamic length scale (ξ)

To extract the dynamic length scale ξ , we evaluate the four-
point structure factor [44,45]

S4(q; τ ) = 1

N
(〈Q(q; τ )Q(−q; τ )〉 − |〈Q(q; τ )〉|2), (5)

where q is a typical wave vector and τ is an elapsed time
interval. The angular brackets used here denote an ensem-
ble average over 100 independent realizations of the system
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FIG. 1. Four-point structure factor as a function of wave vector at
a typical low temperature. The long-wavelength (q → 0) collective
behavior is amplified by increasing the persistence time τp. One can
therefore expect the formation of larger clusters with increasing τp at
any given effective temperature; see Fig. 4.

and two independent wave vectors for a given magnitude,
namely {(0, q), (q, 0)}. We define Q(q; τ ) as the Fourier
transform

Q(q; τ ) =
N∑

n=1

wn(τ )exp[−iq · rn(0)] (6)

of the filtered-particle density

Q(r; τ ) =
N∑

m=1

wm(τ )δ(r − rm(0)),

where the summations run over all particles in the system.
To calculate the quantities mentioned above, we have used a
microscopic overlap function defined as

wn(τ ) = �[a − |rn(τ ) − rn(0)|]. (7)

Here �(x) is the Heaviside step function that serves to filter
out the particles that do not move farther than a specified
distance a, during the time interval τ . We have taken a =
0.3, which roughly corresponds to the plateau value of the
mean-squared displacement (MSD) at all temperatures. De-
noting the α-relaxation time, τα , to be the time at which
the self-intermediate scattering function falls 1/e of its initial
value, we plot our data on S4(q; τα ) at a typical low effective
temperature in Fig. 1. It is evident from the figure that at
any given effective temperature, the long-wavelength (q → 0)
response increases with the persistence time τp, suggesting to
us that the dynamical length scale ξ must increase with the
persistence time τp. To extract ξ at any fixed pair of (τp, Teff),
we fit our S4(q; τα ) data to the following Ornstein-Zernike
(OZ) relationship:

S4(q; τα ) = A

1 + (qξ )2
, (8)

where A = limq→0 S4(q; τα ) and ξ are fitting parameters for
the chosen (τp, Teff) pair; see Fig. 2. The extracted dynamical
length scale ξ is plotted in Fig. 3, where it is evident that at all
temperatures, the effect of τp is to increase the length scale ξ .

FIG. 2. Our data on S4(q, τα ) for a typical (τp, Teff) pair. The solid
line is a fit to the OZ relationship mentioned in Eq. (8), and the
extracted dynamical length scale ξ is plotted in Fig. 3.

This explains the formation of larger clusters of slow-moving
particles as τp is lifted at any given Teff; see Fig. 4, where we
show the displacement maps of the full system. The reader
can easily verify that at any given state point, the size of a
typical slow-moving cluster agrees well with our estimated ξ

representing the diameter of the white circles plotted merely
to aid the eye of the reader.

The method used here relies on the interplay between
dynamics and structure near the glass transition. There are,
however, alternative approaches in the context of passive
liquids, most notably through inherent structures that are es-
sentially the minima in the rugged potential energy landscape
of glass forming liquids [46–50]. We believe that our approach
is simpler and has the potential to yield a deep insight into the
sluggish dynamics of active glass formers, through the con-
cept of a chemical potential μ (described later) that depends
on the persistence time τp. In what follows, we will show that
an increase in the persistence time leads to a larger free-energy

FIG. 3. At any effective temperature, the length scale ξ increases
with the persistence time τp, and therefore it results in a higher degree
of spatial heterogeneity. This behavior manifests in the emergence of
larger clusters of slow-moving particles at higher values of persis-
tence times at any specific effective temperature; see Fig. 4.
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FIG. 4. Snapshots of dynamical clusters for various [Teff, τp]
pairs, namely (a) [0.35,1.0], (b) [0.35,0.0002], (c) [0.70,1.0],
(d) [0.70,0.0002], (e) [2.50,1.0], and (f) [2.50,0.0002]. The color bar
indicates the magnitude of particle displacements recorded over a
specified time, which is set to be of the order of τα . To aid the eye of
the reader, we plot white circles of diameter ξ extracted from the OZ
relation over these slow-moving regions. It is immediately evident
that the spatial extent (size) of a typical cluster is in good agreement
with our estimate of ξ . It should be noted that the ratio of L- to S-type
particles inside these slow-moving clusters remains at the global ratio
80:20 throughout the parameter range explored in our work, thereby
ruling out any phase separation dynamics.

barrier for cluster rearrangements, directly leading to the con-
comitantly growing time scale τα . It is evident from Fig. 4
that at higher effective temperatures Teff and lower persistence
times τp, the system becomes increasingly homogeneous with
the cluster size becoming much smaller. On the other hand,
decreasing either Teff or increasing τp leads to an increase in
cluster size, and therefore spatial heterogeneity. The largest
clusters in our study appear in the state Teff = 0.35 and τp =
1 × 100. Below we present a simple scaling relationship that
connects this growing length scale ξ to the concomitantly
growing time scale τα that remains valid over a wide range
of persistence times.

B. Free-energy barrier for cluster rearrangements

If we consider μ as a chemical potential that needs to be
scaled for the formation of a cluster of a certain size ξ , then

we may assume a simple scaling formula for the relaxation
(rearrangement) time of these clusters,

τα = τα0exp

[
μξ

kBTeff

]
, (9)

where μ and τα0 are treated as fitting parameters at any fixed
τp. The product μξ then refers to the growing free-energy
barrier of cluster rearrangements as the effective temperature
is lowered, at any fixed τp. The form of our scaling law is
similar to the two-dimensional limit of the random first-order
transition theory (RFOT) [26,27] that is known to connect
the relaxation time scale to a growing mosaic length scale,
with the latter governing the free-energy barriers between the
metastable states. Since then, there have been some interesting
works on three-dimensional passive glass forming liquids that
reported similar scaling laws to connect the relaxation times
to an appropriate growing length scale [51]. It should be noted
that within RFOT, the dependence of this free-energy barrier
on length scale is normally assumed to be a power law with
an exponent that is usually unknown, and is only heuristically
proposed to be d/2, with d as the number of spatial dimen-
sions. Thus in the marginal case of two dimensions, we arrive
at 
F = μξ , and it is quite remarkable that our scaling law
is able to account for the relaxation times in the active glassy
liquid up to four decades of persistence time τp, all the way up
to τp = 1.0, where the liquid is substantially active. Recently,
Nandi et al. extended RFOT in active liquids by capturing
the modulation of configurational entropy by activity to pre-
dict the relaxation time scales in the active liquids [52]. Our
work, however, goes a step further and connects the dynamical
length scale to the growing relaxation times by computing
the cost of cluster rearrangements, namely the free-energy
barrier μξ . Through this picture, we are able to collapse our
relaxation time data using just two fitting parameters, namely
μ and τα0. Our work has therefore great utility in experiments
targeting dynamical heterogeneity in such systems. In Fig. 5,
we show both our raw data and a collapse to the scaling
law reported in Eq. (9), over four orders of magnitude of
the persistence time. The dashed envelope holding identical
data points clearly shows that we have collapsed τα data close
to three orders of magnitude. It is indeed remarkable that
this simple scaling law remains valid even up to moderate
levels of activity where the liquid is far from equilibrium. The
quality of the collapse is evident from this figure, particularly
at lower effective temperatures, and all the way to the lowest
effective temperature accessible in our simulations. It should
be noticed that our scaling law predicts a divergence of the
relaxation time only as Teff → 0. The overestimation by our
scaling law at high temperatures (Teff > 1.5) can be attributed
to the lack of well-defined clusters in this regime as particles
do not move cooperatively at these effective temperatures. The
high-temperature limit, τα/τα0 → 1 (Teff → ∞), nevertheless
is consistent with the expectations from a viable scaling
theory.

To understand the effects of the persistence time τp on
the chemical potential μ, we provide a table of our fitting
parameters (Table I). It is evident from this table that increas-
ing the persistence time leads to a reduction in μ, which in
turn facilitates the formation of large clusters; see Fig. 4. We
propose that μ should be realized as the energy cost per unit
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FIG. 5. Top: Unnormalized data show a ∼103 order of magnitude
variation of τα . Bottom: Demonstration of data collapse for the scaled
time τα/τα0 vs scaled free energy μξ/Teff achieved over four decades
of τp. The solid line is a fit to the scaling law in Eq. (9). The dashed
envelope in both parts of the figure holds the same data points. Note
that the relaxation time is predicted to have a true divergence only
at Teff → 0. At very high temperatures, well-defined clusters do not
exist, and the scaling law overestimates the relaxation times.

length to form a cluster at any effective temperature, and a
lower μ therefore implies the formation of bigger clusters.
Once clusters of a certain size ξ are formed, their relaxation
times are correctly captured by a free-energy barrier μξ that
is seen to grow with 1/Teff at any given τp; see Fig. 6. The
effect of persistence time has been beautifully captured by the
energy barrier of cluster rearrangements. In what follows, we

TABLE I. Extracted values of τα0 and μ for ξ as fitting param-
eters. It is evident from Fig. 4 that increasing the persistence time
lowers the chemical potential, thereby facilitating the formation of
large clusters of slow moving particles; see Fig. 4.

τp τα0 μ

1.0 50.0 0.035
0.1 15.0 0.068
0.02 8.5 0.074
0.002 3.0 0.079
0.0002 1.9 0.095

FIG. 6. Growing energy barrier μξ for cluster rearrangements
as a function of effective temperature Teff. The collapse is evident
as Teff → 0, indicating the validity of the scaling law mentioned in
Eq. (9).

shall explore some other relevant microscopic length scales in
the active liquid that can be constructed from the underlying
structure and particle dynamics.

C. Hexatic length scale (ξ6)

The hexatic length scale ξ6 is a well known static length
scale that has been used to study medium range crys-
talline order (MRCO) in 2D passive glass forming liquids
[23,25,53,54]. It is routinely obtained from the spatial corre-
lation function of the hexatic order parameter,

�6 =
〈

1

N

N∑
j=1

ψ
j

6

〉
, (10)

where ψ
j

6 = 1

n j

n j∑
k=1

exp(i6θ jk ), (11)

and θ jk is the angle between the separation vector r jk and a
reference axis, say the x̂ axis. Here nj refers to the number
of Voronoi (nearest) neighbors of any particle particle j in
the liquid, and 〈· · · 〉 describes the ensemble average over
statistically independent snapshots taken in the steady state.
By mathematical construction, ψ

j
6 can range anywhere in

the interval [0, 1] with the values 0 and 1 corresponding,
respectively, to a locally disordered and a locally ordered con-
figuration. In Fig. 7, we show instantaneous snapshots of our
local order parameter ψ

j
6 to visualize the presence of ordered

and disordered regions in our system. It is evident from the
figure that the degree of local bond orientation ordering tends
to increase only marginally with the persistence time, indi-
cating that the hexatic length scale may not be the dominant
length scale that signifies sluggish dynamics. To quantitatively
extract a hexatic length scale ξ6, we first compute the radial
distribution function

g(r) = 1

2πr
rρ(N − 1)

∑
j �=k

δ(r − |r jk|) (12)
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FIG. 7. Color maps of the local bond orientation order parameter
ψ

j
6 , where j is any particle in the system. The panels represent

the full system at various [Teff, τp] pairs, namely (a) [0.35,0.1],
(b) [0.35,0.0002], (c) [0.70,0.1], (d) [0.70,0.0002], (e) [2.50,0.1],
and (f) [2.50,0.0002]. At lower effective temperatures, increasing the
persistence time brings only a marginal increase in the local bond
order.

and the spatial correlation of the hexatic order parameter,

g6(r) = L2

2πr
rN (N − 1)

∑
j �=k

δ(r − |r jk|)ψ j
6 ψk∗

6 , (13)

where the interval 
r is the thickness of a typical annular shell
around any particle that has an average number density, ρg(r).
In our simulations, we set 
r = 0.05. A numerical fit of the
peak values of g6(r)/g(r) data to the Ornstein-Zernike (OZ)
correlation function

g6(r)/g(r) ∼ r−1/4exp(−r/ξ6) (14)

directly yields the hexatic length scale ξ6 [54]. In Fig. 8, we
show a plot of this hexatic correlation function normalized to
the radial distribution function g6(r)/g(r), at a fixed persis-
tence time τp.

The solid lines are a fit to the OZ prediction Eq. (14) to
extract the hexatic length scale ξ6. It is clear, at least qualita-
tively, that ξ6 tends to increase as the effective temperature
Teff is lowered. To further illustrate the dependence on the

FIG. 8. A plot of g6(r)/g(r) at various values of effective temper-
ature but a fixed persistence time τp = 0.10. Solid lines that indicate
a fit to the OZ prediction Eq. (14) are used to extract a hexatic length
scale ξ6.

persistence time τp, we show in Fig. 9 a plot of ξ6 versus
1/Teff at various values of persistence times. It is evident from
this figure that at lower temperatures, the effect τp on ξ6 is
only marginal. These observations are consistent with our data
on local order, shown earlier in Fig. 7. Next, we will discuss
another length scale that arises from the microscopic analysis
of particle diffusion.

D. Diffusion length scale
√

Dτα

A microscopic length scale can be constructed from the all
particle diffusion coefficient D and the α-relaxation time τα in
the form of

√
Dτα [44]. The realization of this as a growing

length scale can be argued from the fact that τα is a good
approximation of the onset time of the Fickian diffusion in
typical liquids. The latter clearly becomes larger as the liquid

FIG. 9. At lower effective temperatures (1/Teff > 1.0), the hex-
atic length scale ξ6 grows very weakly. Moreover, the effect of τp on
ξ6 at these temperatures is also marginal. Therefore, we are led to the
conclusion that ξ6 is not the dominant length scale that is connected
to the growing relaxation time.
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FIG. 10. Length scale (
√

Dτα) obtained from the diffusion coef-
ficient increases with the inverse of Teff for various persistence times.

is taken to lower temperatures shown in Fig. 10. In Fig. 11,
we plot all these length scales as a function of temperature for
two different values of persistence times. We further note that
in the region of our interest, i.e., at Teff < 1.0, the difference
between D and the partial diffusion coefficients of small DS

and large particles, DL, is only marginal (not shown here).
We therefore choose D over these partial diffusivities on the
grounds of simplicity. In what follows, we discuss our obser-
vations on the dependence of all the length scales reported in
this paper, namely ξ, ξ6 and

√
Dτα as a function of the state

parameters, τp and Teff.

E. Decoupling of length scales on Teff and τp

It is evident from Fig. 11 that all length scales tend to grow
with inverse effective temperature, but the dynamic length
scale ξ clearly dominates all and is therefore clearly decou-
pled from the others. This is especially true at lower effective
temperatures and for all the persistence times considered here.
The role of persistence time is to merely push the onset of
decoupling toward higher temperatures. One can observe this
qualitatively in Fig. 11 where we show our data on all the
length scales for two extreme values of τp, namely 0.0002
(bottom) and 0.1 (top). Similar decoupling of length scales has
been studied in volume fraction-dependent studies of passive
liquids maintained at a fixed temperature [25].

IV. SUMMARY

To summarize our paper, we have performed extensive
numerical simulations to extract various length scales near the
glass transition in a model active glass forming liquid. The de-
pendence of these length scales on the effective temperatures
and persistence times is carefully explored, and a detailed
comparison between the dynamic and static length scales is
also presented. An important finding of our work is a simple
exponential scaling law, τα ∼ exp(μξ/Teff ), that connects the
dynamic length scale ξ to the concomitant growing time scale
τα through the concept of a chemical potential μ—a cost that
needs to be scaled in order to form clusters of slow-moving
particles. The quantity μξ then refers to a growing free

FIG. 11. Length scales vs effective temperature for two different
persistence times, namely for τp = 0.1 (top) and τp = 0.0002 (bot-
tom). It is evident that all length scales grow with inverse effective
temperature. Note that for any given persistence time, the dynamical
length scale ξ progressively decouples from the other length scales
as the effective temperature is lowered. The onset of this decoupling,
however, is pushed to higher effective temperatures as the persistence
time is increased.

energy barrier that can account for slower rearrangement of
the aforementioned clusters, as Teff is lowered. Our estimated
ξ also agrees very well with the size of these clusters, further
asserting our claim. We also observe that ξ dominates over the
static length scale ξ6 at all temperatures and persistence times
considered here. The latter is saturated at lower temperatures
and is only marginally affected by the persistence time in this
range. There is therefore no general correspondence between
ξ6 and ξ in the case of an “athermal” active liquid. The
findings reported in our paper are robust over four orders of
magnitude variation in persistence time and hence should be
of great utility to researchers interested in the glassy dynamics
of a generic active liquid.
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