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Origin of subdiffusions in proteins: Insight from peptide systems

Chenliang Xia , Xuefeng He, Jun Wang ,* and Wei Wang †

School of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
and National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures,

Nanjing University, Nanjing 210093, People’s Republic of China

(Received 29 August 2020; revised 9 November 2020; accepted 30 November 2020; published 28 December 2020)

Subdiffusive kinetics are popular in proteins and peptides as observed in experiments and simulations. For
protein systems with diverse interactions, are there multiple mechanisms to produce the common subdiffusion
behavior? To approach this problem, long trajectories of two model peptides are simulated to study the
mechanism of subdiffusion and the relations with their interactions. The free-energy profiles and the subdiffusive
kinetics are observed for these two peptides. A hierarchical plateau analysis is employed to extract the features
of the landscape from the mean square of displacement. The mechanism of subdiffusions can be postulated
by comparing the exponents by simulations with those based on various models. The results indicate that the
mechanisms of these two peptides are different and are related to the characteristics of their energy landscapes.
The subdiffusion of the flexible peptide is mainly caused by depth distribution of traps on the energy landscape,
while the subdiffusion of the helical peptide is attributed to the fractal topology of local minima on the landscape.
The emergence of these different mechanisms reflects different kinetic scenarios in peptide systems though the
peptides behave in a similar way of diffusion. To confirm these ideas, the transition networks between various
conformations of these peptides are generated. Based on the network description, the controlled kinetics based
only on the topology of the networks are calculated and compared with the results based on simulations. For the
flexible peptide, the feature of controlled diffusion is distinct from that of simulation, and for the helical peptide,
two kinds of kinetics have a similar exponent of subdiffusion. These results further exemplify the importance of
the landscape topology in the kinetics of structural proteins and the effect of depth distribution of traps for the
subdiffusion of disordered peptides.
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I. INTRODUCTION

Subdiffusions are typical kinetic behaviors in many com-
plex systems, indicating a slow relaxation and long memory in
the kinetics and reflecting the existence of multiple timescales
related to the competition of multiple energy scales. This kind
of kinetics has attracted much attention in various disciplines
[1–4]. Proteins are typical systems with multiscale subdif-
fusion kinetic behaviors. For example, the slow relaxations
and long-time correlations are observed in experiments for
many different protein systems based on various techniques
[5–9], including IR spectrum [5], fluorescence fluctuations
[6], neutron scattering [7], single-molecular electron transfer
experiments [8], and so on, which indicates that the subdiffu-
sion kinetics are prevalent in protein systems. The concerned
timescales span from microseconds to seconds. This kind of
kinetic behavior is observed more frequently in simulations
[10–17] by investigating the diffusions along the reaction
coordinates [10] or principal components [11,12]. Even a
larger range of timescales are observed from picoseconds to
microseconds. The popularity of the subdiffusive kinetics in
protein systems suggests that there are some intrinsic fea-
tures of the interactions or structural organizations in protein
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systems, and stimulated much research on the dynamics of
proteins.

There are many complex interactions in protein systems.
What kinds of physical ingredients in protein systems produce
the subdiffusive behaviors in such a wide range of timescales?
There are long-lasting discussions on this topic. First, these
kinds of kinetic features are ascribed to the characteristics of
solvent or solvent-protein interactions [18,19]. Some models
are proposed with fractional Gaussian noises or are described
with fractional Brownian dynamics [7,9,16]. Even a simple
harmonic potential is involved to depict the interactions in
proteins, the memory effect, and nonexponential (typically
power-law) relaxation would be produced [6]. This kind of
model can phenomenologically describe the single-molecular
experiments about the equilibrium fluctuation of the distance
between an electron transfer donor and acceptor pair within
an enzyme [6]. The source from noise implies that the sub-
diffusion is driven by the solvent or through the interactions
between the solvent and the fractional surface and/or struc-
ture of a protein. Since the aqueous environment is generally
involved in protein systems, the water-slaved picture is a plau-
sible source of subdiffusions in proteins.

However, the studies based on ultrafast spectroscopy in-
dicate the internal interactions in a protein system have
essential contributions to their dynamics [20,21]. Besides,
the simulations with implicit solvents (where the kinetics
of solvent molecules are discarded) also demonstrate the
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FIG. 1. Illustrations of (a) random network and (b) fractal net-
work. For proteins, the vertices represent the conformations and the
edges indicate the jumps between different conformations.

existence of subdiffusions [22]. To investigate the effects of
the interactions in proteins is also important. To consider the
heterogeneity of the protein interactions, the trapping model
[6,11,13,14,23,24] is frequently used by considering the re-
semblance between proteins and glasses, that is, various local
equilibrium states are randomly distributed on the landscape,
which produce various traps with diverse depths [as shown in
Fig. 1(a)]. In these models, multiple timescales come from the
wide distribution of diverse escaping times. Continuous time
random walk (CTRW) [25–31] is often used to characterize
the kinetics of these models, and the waiting times between
two jumps are picked from a distribution of the escaping
times. This kind of model is more convenient to characterize
the behavior on the high-dimensional landscape and provides
the flexibility to describe the wide temporal correlations in
subdiffusive kinetics, which gives a reasonable description for
experiments and simulations. For instance, a long relaxation
time can be achieved in the trapping model, while the typical
relaxation time for harmonic models is about 10−8 ∼ 10−9 s
[32].

Indeed, the model of random traps is not a perfect de-
scription for the interactions in proteins [12]. In addition, the
trapping model cannot be used to depict the subdiffusion at
equilibrium, and the CTRW is not time invariant and indi-
cates a kinetics far from equilibrium [25–31]. Physically, the
native structure of a protein is generally selected by natural
evolution and the energy landscape is largely determined by
the native structure based on the funnel concept. The traps are
not random but physically correlated. It is possible to postu-
late that the organization of the traps may provide additional
mechanisms to affect the kinetics. Some traps may have more
neighbors, while some others have fewer ones. Fractal energy
landscapes with hierarchical structures [10,12,33] are postu-
lated [as shown in Fig. 1(b)]. The topology of the network may
produce different diffusive abilities on the landscape, since the
system would like to wander around the central hubs which
slow down the diffusion in conformational space. This kind
of effect is related to the pathway entropy and is coupled with
the contributions of the energy depths. This kind of picture
has also been described recently by Meroz et al. [15]. These
results demonstrate rich physics in the subdiffusive kinetics of
protein systems.

During recent years, more complexities have been ob-
served for protein systems. There are many proteins without
stable native structures in natural condition. They are named
intrinsically disordered proteins (IDPs) [34]. The interactions

in these proteins are largely different from typical globular
proteins. Yet the subdiffusions are still observed for these
protein systems [12,35]. From the view of relaxation kinetics,
proteins with different structural features behave similarly.
Are the mechanisms the same for two kinds of peptides?
Indeed, the local interactions between the building blocks
(amino acids) of these proteins are similar but there are clear
differences of landscape architecture between the two kinds of
proteins. The globular proteins generally have a funnel-shaped
energy landscape due to the cooperative interactions, as sug-
gested by Anfinsen principle [36]. Meanwhile, the IDP chains
are only restricted by the peptide connectivity, and flat but
rugged energy landscapes are more popular in IDP systems.
It is widely known that the kinetics of proteins are determined
by their energetic landscape. The long-time asymptotical be-
haviors are generally controlled by the large-scale features of
the energy landscapes. This knowledge implies that there are
different mechanisms related to the subdiffusive kinetics of
the globular proteins and IDPs. What are the connections be-
tween the features of energy landscape and their subdiffusive
kinetics? What are the dominant mechanisms of subdiffusions
in different protein systems? The answers to these questions
would complete our understanding on the subdiffusions in
proteins and help to disclose the structure-dynamics relations
of proteins, which are the tasks of the present paper.

In this paper, the mechanisms of subdiffusions are investi-
gated based on the molecular simulations. Two peptides with
different structural features and energy landscapes, GS4 and
A8, are picked as the model systems for IDP and globular
proteins. Their kinetics are simulated and the interactions and
the energy landscape of these peptides are characterized. The
relationship between mean square of displacement (MSD) and
the lag time are determined based on the trajectories. The ex-
ponents describing the feature of subdiffusion are determined
by fitting the MSD curve. From the MSD curves, the features
of the landscape (including the geometric size and energetic
height of various valleys) are determined based on the diffu-
sive properties at different scales of time. According to these
features of landscapes, several exponents can be calculated
for the diffusions based on various kinds of assumptions. The
comparison of these exponents with that from simulations
suggests the contribution of certain physical ingredients. The
results show that the depth distribution of traps on the land-
scape is the main reason to produce subdiffusion of the peptide
GS4, and the diffusive kinetics of the peptide A8 is largely
related to the fractal topology of the accessible landscape. To
further confirm the connection between the landscape and the
mechanism of kinetics, a network description for the peptide
kinetics is generated based on the conformational clusters.
The controlled kinetics are created based on the topology of
the network. The comparison between the controlled kinetics
and the realistic one supports the view on the mechanisms of
two kinds of peptides.

II. MODEL AND METHODS

A. Model

There are a large number of proteins with different sizes,
diversified compositions, and complex interactions. Since
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FIG. 2. The snapshots of the peptides GS4 and A8. The carbon,
oxygen, and nitrogen atoms are represented as grey, red, and blue
spheres, respectively. The N and C termini of these two peptides are
capped with acetyl and N-methylamide, respectively.

their dynamics largely depend on their structural features
in the native state, the size scaling of various properties is
not explicit and the comparisons between different proteins
is not a trivial task. It is necessary to select some specific
systems to suppress some unexpected factors. In addition,
the characterization of the long-time relaxation of proteins
requires long simulations to sample throughout the essential
parts of the energy landscape. Presently, the simulations of
proteins with all-atom models are still computationally de-
manding tasks for a generic protein. Some model systems
are expected to surmount the practical difficulties. Based on
these considerations, we pick two peptides as the objects
in our investigations. These peptides have the same lengths
but different structural features (as shown in Fig. 2). One
is composed of four glycines and four serines (named GS4)
which are arranged in an interlaced manner. The other con-
tains eight alanines, which is a typical helix former. The N
and C termini of these two peptides are capped with acetyl
and N-methylamide, respectively, to remove the effects of the
terminal charges. This is important for short peptides. Based
on the knowledge of proteins, these peptides have different
structural features. The peptide GS4 is rather flexible because
of the small and polar side chains (even only a hydrogen atom
as the side chain for glycine). Thus, this peptide generally
takes random and fluctuating conformations and is frequently
used as the linker loop in molecular engineering. Here, we use
this peptide to mimic the IDP based on its structural features.
Differently, the peptide A8 has an energetically stable con-
formation in the helical shape and is often used as the typical
system to investigate the helix-coil transition. This peptide can
be considered as a minimal model of proteins with a specific
native structure. We believe that, through the analysis of these
peptides, the mechanisms of various proteins with different
interactions and structural features can be determined.

B. Simulation setup

To simulate the dynamics of these concerned peptides,
GROMACS 5.1.4 molecular simulation package [37] is em-
ployed. Amber ff03 force field [38] and SPC/E water model
[39] are used. Initially, cubic boxes filled with water molec-
ulars are set up for both peptides. The size of box edge is
3.18 nm with 998 water molecules for GS4 and 3 nm with
857 water molecules for A8, respectively. We carry out the
simulations with the NPT ensemble. The temperature is set
as 300 K and the pressure is set as 1 bar. The tempera-
ture controlling is implemented through the coupling with a
thermostat through rescaling of velocity [40] and the pres-
sure is held by a Parrinello-Rahman barostat [41]. The bulk
compressibility is 4.5×10−5 bar−1. The particle Mesh Ewald
method is used for long-range electrostatics, and the LINCS
algorithm is used for all constraints of bonds. The cutoffs of
the short-range neighbor list, the electrostatic interaction, and
the van der Waals interaction are all 0.9 nm and the neighbor
list is updated every 20 steps. The simulation time step is
picked as 2 fs. The trajectories are up to 6 μs (namely, 3×109

steps) and we store the snapshots of the trajectories every
5000 steps.

C. Coordinates of landscapes

To characterize the free-energy landscape and the confor-
mational dynamics, a projection to some certain subspaces
may be helpful to illustrate the key features of the original
conformational space. For example, as for polymers, the dis-
tance between the Cα atoms of the first and the last residues
(named end-to-end distance Qee) can be used to characterize
the overall size of the concerned polypeptide. For the peptide
GS4, the structures are generally largely fluctuating and the
geometrical shape would be statistically isotropic. This kind
of feature looks like that for an athermal polymer. The char-
acterization with Qee is reasonable due to its self-averaging
feature. Meanwhile, for peptide A8, the helical structure is
apparently not spherical. The end-to-end distance can charac-
terize some part of the information about its shape. Yet some
additional information is still necessary, which reflects the
necessity of multiple dimensions to describe helical peptides.
Due to the complexity of the landscape, the choice of suitable
coordinates is not a trivial task.

Generally, the proper coordinates can be determined based
on the data from sufficient sampling of the landscape. A
typical method is the principal component analysis (PCA)
based on a large set of conformations for our peptide systems.
Practically, the PCA operations can be carried out based on
the Cartesian coordinates (named xPCA) or dihedral angles
(named dPCA) of the peptides. For the xPCA, to charac-
terize the feature of the internal structures, the translational
and rotational operations should be applied at first to remove
global motions, which is realized by minimizing the root mean
square of distances with respect to a certain reference state.
Practically, the first frame along the simulation trajectory is
selected as the reference state. Other choices of the reference
states are also tested. The results are similar (data not shown).
After this kind of structural alignment, the covariance Ci j
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between the ith and jth monomers can be determined as

Ci j = 1

Q

Q∑
q=1

(��ri,q · ��r j,q) , (1)

in which ��ri,q is the displacement of ith residue in qth snap-
shot from the corresponding average position as

��ri,q = �ri,q − 1

Q

Q∑
q=1

�ri,q . (2)

The eigenvectors of the corresponding covariance matrix {Ci j}
give a linear characterization of conformational fluctuations.
Since we mainly focus on the backbone motions, it is possible
to choose the Cα atoms of residues in analysis, similar to
the analysis related to the Gaussian network model [42,43].
This kind of coarse graining can help us focus on the global
structural variations. It is worth pointing out that the xPCA
for flexible peptides may introduce remarkable local struc-
tural distortions in various modes [44,45], which is ascribed
to the omissions for the bond and angle constraints in the
related xPCA. The dPCA based on backbone dihedral angles
is a better choice. Based on the backbone dihedrals (φ and
ψ), the conformations can be represented as a sequence of
dihedrals, ωi with 0 � i < 2N , where N is the number of
residues, ω2k = φk and ω2k+1 = ψk , and k is the sequential
index of a residue. The conformations can be described as a
series of vectors ui = (cos(ωi ), sin(ωi )). Correspondingly, the
covariance matrix can be calculated based on the vectors ui as

Ci, j = 1

Q

Q∑
q=1

(�ui,q · �u j,q ) , (3)

�ui,q = ui,q − 1

Q

Q∑
q=1

ui,q . (4)

Typically, for both kinds of PCA, the first several eigenval-
ues are apparently larger than the others. The corresponding
eigencomponents can offer a reasonable approximation for
the covariance matrix and construct a rational subspace to
describe the conformations concisely. These components are
called principal components. Practically, we pick the princi-
pal components based on the largest gap in the eigenvalue
spectrum. In the subspace spanned with these components
(eigenvectors), a reduced description for conformations can be
obtained by projecting the conformations on these eigenvec-
tors. These protocols give a set of self-consistent coordinates
based on data and provide a rational way to characterize the
essential features of conformations and kinetics.

D. Transition network

Considering the complex topology and interaction of pro-
teins, the discovery of reaction coordinates and concise
subspace is often not easy. The network language provides an-
other way to describe the dynamics. That is, the conformations
are clustered based on their neighborhood, and the clusters
are defined as the vertices of the conformational network.
With these vertices, the edges between them are determined
based on their kinetic accessibility according to the trajecto-
ries. The vertices and edges build up a network picture for

FIG. 3. Ramachandran map based on the backbone dihedral an-
gle φ and ψ for (a) glycine, (b) serine, and (c) alanine. The unit of
energy is kBT . In each plot, several regions are marked with numbers.
Each region represents a state of residue with similar structural
features. For the residue glycines, four states are introduced, and for
serines and alanines, three states are defined.

conformational space. In our work, the clustering is based
on the internal dihedral coordinates. This is valid for present
peptide systems with small sizes. Practically, based on the
φ-ψ distribution (namely, the distribution on Ramachandran
plot) of each kind of residue, the subspace spanned with φ and
ψ can be divided into several regions. For the residue glycines,
four states are introduced, and for serines or alanines, three
states are defined accordingly, as shown in Fig. 3. Considering
all the combinations, there are 44×34 = 20 736 states for the
peptide GS4, and 38 = 6561 states for A8, respectively. Note
that not all states can be visited in simulations, since the
exclusive volume effect may prohibit some combinations of
the dihedrals. To unify the transition time in the network, the
lag time �lag is set as 10 ps. These operations define the basic
mapping from conformational space to the conformational
cluster transition network (CCTN). In the visualization of the
network, the populations of the clusters and the strengths of
transition rates are represented by the sizes of the vertices and
the thickness of the edges.

Quantitatively, on the network, the kinetics can be de-
scribed with the corresponding transition matrix, whose
elements record the transition probabilities between the ith
and jth vertices (clusters), Ti j (�lag). The transition probabil-
ity Ti j (�lag) can be calculated based on the number of the
transition events as

Ti j (�lag) = Ni j (�lag)∑
k Nik (�lag)

, (5)

where Ni j (�lag) is the number of transitions from ith vertice to
jth vertice within the time �lag. Note that the retention proba-
bility Tii(�lag) can be determined based on the normalization
condition

∑
j Ti j (�lag) = 1. With the transition matrix, the

evolution of the conformation ensemble can be calculated
based on the mater equation as p(τ + �lag) = T p(τ ), where
p(τ ) gives the distribution of conformations on the network.

E. Analysis on hierarchical plateaus on the landscape

Besides the direct mapping of the landscape, the features
of the landscape can also be analyzed through the dynamic
fluctuations during the evolution. The method by Meroz et al.
[15] is along this direction by extracting information from the
local features of the MSD curve. In this method, the kinetics
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is fitted based on a model of hierarchical energy landscape.
It is assumed that there is a hierarchy of energy traps on the
landscape. In this hierarchy, the ith tier contains the valleys
(characteristic size as Li) with energy barriers (characteristic
energy Ei). In these valleys, there are smaller valleys belong-
ing to the tier i − 1. The sizes and energy barriers satisfy the
relations Li−1 < Li and Ei−1 < Ei. There are multiple tiers in
peptide systems. The set {Li, Ei} gives a characterization for
the landscape of the peptide. With this model, the kinetics
of the system can be determined by these features of the
landscape. For example, there are several characteristic times
for the tier-i valleys. After the time τ c

i , the system can travel
across the valley. After the time τ e

i , the system can overcome
the energetic barrier and escape from the present valley. The
ratio between these timescales can be estimated based on the
characteristic energy Ei as τ c

i /τ e
i ∝ exp(−Ei/kBT ), where kB

is Boltzmann constant and T is the temperature. During the
time τ (τ c

i < τ < τ e
i ), the diffusion of the system would be

limited in the valley and the MSD would be estimated by the
size of the valley as 〈r2(τ )〉 ∝ L2

i . Based on these relations, the
features Li and Ei can be estimated based on the characteristic
times.

How can we extract these characteristic times? It is
suggested that the MSD curves encode the concerned infor-
mation. The local plateaus in the MSD curves indicate the
local equilibrium in certain valleys on the landscape and are
tightly related to the characteristic times of the relaxation.
Mathematically, the timescales corresponding to the plateaus
can be determined based on the minima of the derivatives
αlocal of the MSD, αlocal(τ ) = d〈r2〉/dτ , which can be con-
sidered as an exponent of local diffusion. Practically, the
derivative αlocal is calculated numerically. Due to the numeri-
cal fluctuations of the MSD curve, there are some fluctuations
for the exponent αlocal. This may produce some artificial min-
ima of αlocal, which do not imply the plateaus of the MSD
curve. These minima are generally observed within a short
timescale due to the fast oscillations of the fluctuations. There-
fore, the minima which happen within 100 ps are discarded
to suppress the fluctuations. When a plateau is identified, the
onset time τ̂ c

i and the end time τ̂ e
i of the plateau can be defined

when the second derivative of the MSD curve is smaller (or
larger) than a threshold ε. Physically, the time τ c

i of tier i can
be estimated based on the relation by considering the effect of
the motions in the valley of tier-(i − 1) as

τ c
i ∝ τ̂ c

i

τ c
i−1

τ e
i−1

. (6)

Especially, at tier-1, τ c
1 = τ̂ c

1 . In addition, the escaping time
τ e

i = τ̂ e
i . With these relations, we can determine the charac-

teristic timescales and the features of landscapes.
To produce diffusive kinetics based on the features of the

landscape, additional assumptions are needed [15]. If the en-
ergy landscape has a fractal topology, the diffusive behavior
attributed to this kind of feature can be estimated based on the
crossing times and the size of valleys as

τ c
i ∝ L

1/α f

i . (7)

If the landscape is not fractal, this component is α f = 1.
More frequently, there is a logarithm relationship between the

energy depth and the size of the valleys as

Ei = E0 + γ ln(Li/L0) , (8)

γ is a constant. On such a landscape, the diffusive kinetics
may satisfy the relation

〈r2(τ )〉 ∝ τ 2/(γ+1/α f ) ≡ τα , (9)

where the exponent α = 2/(γ + α−1
f ), which describes inte-

grative effects from the landscape topology and trap depth. If
the landscape of the system is not fractal, the kinetics would
be determined only by the trapping effect and the correspond-
ing exponent αt can be simplified as

αt = 2

1 + γ
. (10)

Therefore, based on various assumptions of landscape, the
diffusive exponent can be estimated. The comparison between
these theoretical estimations and the actual value from the
MSD curve can help to check the validity of the assumptions.

III. RESULTS AND DISCUSSIONS

A. Equilibrium of two peptides

To analyze the diffusive features of these two peptides,
it is necessary to generate a continuous trajectory to carry
out temporal correlation analysis. Considering the complexity
of the landscape, a sufficient long trajectory is expected to
cover the essential parts of the landscape. Facing these re-
quirements, long continuous simulations are carried out for
these two peptides, up to 6 μs. Parts of these trajectories are
also checked, and the similar subdiffusions are observed.

The evolutions of the end-to-end distance Qee for these
peptides are shown in Figs. 4(a) and 4(b). As a remark, the
structural fluctuations of the peptide GS4 are much more
frequent than those of peptide A8. To better illustrate the char-
acteristics of the variations of the peptides, different lengths of
trajectories are shown in the Fig. 4 (100 ns for GS4 and 6 μs
for A8, respectively). This kind of consideration is also used
in other presentations about the evolutions of the peptides. All
other calculations are not limited to the part of the trajectories,
and the total trajectories with the length of 6 μs are used. In
these trajectories, the distance Qee fluctuates around a certain
value. For the peptide GS4, a large Qee corresponds to ex-
tended conformations, while the conformations with small Qee

may have the shape of a loop with its C and N termini close to
each other. Some typical snapshots are given accordingly. The
fluctuations of the Qee represent the conformational variations
of the peptides. Based on the trajectory, the typical timescale
of the conformational conversion from extend coil to com-
pact loop is about several ns. During the whole trajectory,
there are thousands of rounds of conversions, which ensure
the equilibrium of the peptide. For peptide A8, there is a
similar fluctuating picture for the distance Qee, which repre-
sents the repeated wandering on the landscape. Meanwhile,
peptide A8 is somehow different from GS4. Peptide A8 has a
more remarkable population corresponding to the middle Qee.
Based on the snapshots, the most probable conformation is
in a helical form. This is consistent with common knowledge
for peptide A8. Besides this kind of popular structure, the
conformations with large Qee or small Qee are all deformations
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FIG. 4. The figure gives the evolutions of the end-to-end distance
Qee for (a) GS4 and (b) A8, the evolution of the number NHB of
intrapeptide hydrogen bonds for (c) GS4 and (d) A8, the histogram
of the number NHB during the simulation for (e) GS4 and (f) A8

and the free-energy profiles of the peptides (g) GS4 and (h) A8

with the end-to-end distance as the reaction coordinate. Some typical
snapshots of the peptides at certain times are shown (for GS4, 100 ns
of trajectories are used for clarity of presentation).

of the helix structure. That is, the ones with large Qee are
extended and can be considered as the results by stretching
the helix. Those conformations with small Qee are compact,
corresponding to the bending of the helix so the head and tail
of the helix meet each other. These kinds of shape variations
are also observed in literature [46–48]. Another difference
between peptides A8 and GS4 is that the typical timescale
related to structural fluctuations for A8 is much longer than
that for GS4. From Fig. 4(b), the timescale for A8 is more
than tens of nanoseconds. In fact, peptides A8 and GS4 have
the same length. The longer characteristic time of fluctuations
is ascribed to the long dwell time in the state with helical
structure, which reflects the additional stability of the helical

structure. This demonstrates that there are clear differences of
physics for peptides A8 and GS4.

Based on these trajectories, effective free-energy profiles
can be calculated along the coordinate Qee, as shown in
Figs. 4(g) and 4(h). For peptide GS4, the free-energy profile
has a flat shape in the range from about 0.4 nm to about
2 nm, which covers the essential part of the landscape and
includes about 90% populations. This indicates that there is
no (or weak) dependence of free energy on the shape of the
peptide GS4. The quick rise at small Qee originates from
the exclusive volume effect of the terminal residues, while
the gradual increase of free energy for large Qee reflects the
entropic elasticity of the peptide chain. This feature also im-
plies that the intrapeptide interactions are not strong and the
chain behaves like an athermal polymer chain. For peptide
A8, the free-energy profile has a different shape from that for
GS4. A clear dip is observed around 1 nm, corresponding to
the helical structure. Around this minimum, there is a quick
increase of free energy, which forms a funnel in the range
between 0.96 nm and 1.2 nm. About 72% of the population of
the simulation is located in the funnel. Outside of the funnel,
the profile is relatively flat, which is similar to those for GS4.
This is a reflection of the polymeric features of peptide chains.
This kind of landscape is an example of the landscape of
globular protein. This observation is consistent with helix-coil
transition for A8 [49]. With these features, it is reasonable to
conclude that GS4 and A8 can be used as examples for IDP
and globular proteins.

Physically, the variations of the structure and the free
energy are driven by the intrapeptide interactions. Consid-
ering the compositions of the peptides, the number of the
intrapeptide hydrogen bonds, NHB, is a good indicator for
the concerned interactions. Practically, the hydrogen bonds
are measured based on the local geometry of interacting
atoms. That is, the hydrogen bond is defined when the angle
donor-hydrogen-acceptor is smaller than 30◦ and the distance
between the donor and the acceptor is not larger than 0.35 nm.
It is observed that the variations of the number NHB share
similar behaviors as those for Qee. In detail, for peptide GS4,
the states with fewer hydrogen bonds are generally extended,
while those with more hydrogen bonds are often compact.
The variation of NHB is concurrent with the fluctuation of
the shape. Yet peptide A8 is a little different. The states with
more hydrogen bonds correspond to the helical state and the
extended and compact structures are all with fewer hydrogen
bonds. The fluctuation of NHB looks more frequent compared
to that for Qee. Quantitatively, the distribution of NHB can
be determined based on the statistics on the trajectories in
Figs. 4(c) and 4(d), similar to the analysis for free energy. For
GS4, the distribution of NHB has a single peak, which indicates
that there is only a single thermodynamic state. For this dis-
tribution, the most probable number is small, which indicates
that the interactions are weak and cannot stabilize any specific
structures. This is consistent with the picture of athermal
polymer, and is similar to the behavior of IDP. Differently, for
A8, there is a small plateau around the region with small NHB

besides the peak around NHB = 5. The most probable number
(namely, NHB = 5) is the same as the number of hydrogen
bonds in the helix structure. This suggests the dominance of
the helical structure for A8. The existence of the small plateau
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FIG. 5. This figure gives the TA-MSD (upper row) and autocor-
relation functions (lower row) for peptides GS4 (left column) and A8

(right column). Green lines in (c) and (d) are the fittings for 1000 ns
trajectories with Eq. (11).

reflects the tendency toward disordered structures. This kind
of distribution implies a two-state feature for the peptide and is
consistent with the picture from the corresponding free-energy
profile. Note that this kind of characteristic is not strong due
to the small size of A8. It is clear that a more comprehensive
understanding can be achieved through the analysis of the
interactions.

It is widely suggested that the subdiffusions of peptides
are related to the nonergodic kinetics. To exam the aging
effect in the kinetics of these two peptides, the time-averaged
MSD (TA-MSD) and observation-time-dependent autocorre-
lation functions are calculated based on the trajectories with
different lengths. Similar actions were carried out in literature
[10]. Here, the MSD is calculated based on the end-to-end dis-
tance of the peptides. In Figs. 5(a) and 5(b), the slowing down
of the diffusion is demonstrated. The slope becomes smaller
following the increasing observation time (namely, the longer
trajectory). This indicates an observation-time-dependent ki-
netics, and implies the aging in the kinetics. In Figs. 5(c) and
5(d), the correlation functions shift toward longer lag times
with increasing observation time. This is another phenomenon
of aging behavior. As a remark, for the peptide GS4, the
difference of the correlation functions between the 100 ns and
1000 ns trajectories are relatively smaller, which implies that
the peptide is approaching the thermodynamic equilibrium.
This is ascribed to the small size of the concerned peptide
and is consistent with the behaviors suggested from TA-MSD.
Furthermore, based on the TA-MSD and autocorrelation func-
tion, the correlation functions can be well fitted with the
equation

C(�; t ) = c1 exp[−(�/τ )β] + c2B(�/t, α, 1 − α) + c3 ,

(11)

TABLE I. Eigenvectors corresponding to the dominated eigen-
values for GS4 and A8.

Eigenvalue 1 2 3 4 5 6 7 8

0.19 (GS4) (−0.73 −0.21 0.32 0.31 −0.06 −0.18 0.13 0.41)
0.07 (A8) (−0.52 −0.37 −0.30 −0.12 0.14 0.29 0.38 0.50)
0.05 (A8) (0.40 0.22 −0.11 −0.54 −0.50 −0.10 0.19 0.45)

where � is the lag time of correlation time, t is the length
of the concerned trajectory, B(x, α, 1 − α) is the incomplete
beta function, and 1 − α is the exponent of subdiffusive TA-
MSD, and the quantities τ , β, and c1,2,3 are parameters to
be determined based on fitting [as the green lines shown in
Figs. 5(c) and 5(d) for the data related to 1000 ns trajectories].
This relation is derived based on the CTRW model in liter-
ature [10]. This indicates that the kinetics of peptide can be
described by a noisy CTRW model and suggests the possible
nonergodicity during the subdiffusive kinetics.

B. Projected kinetics of peptides based on PCA

For the peptides investigated here, the kinetics are not
apparently all or none. This implies that multiple dimensions
are necessary to depict the behaviors of the peptides. The
coordinate Qee might not be a good coordinate since it does
not capture the features of the native states of the peptides.
It is necessary to propose a rational subspace to describe the
conformations and their diffusive kinetics.

Here we employ the PCA method to generate the rational
subspace and characterize the diffusive features accordingly
based on the throughout sampling on the landscape. It is al-
ready observed in literature that the evolution in the subspace
spanned with the dominant principal components contains
most of the information of the kinetics [50–52]. As described
in the Methods section, the Cα atoms are considered only
in the xPCA. Thus, a 8×8 covariance matrix {Ci j} is gen-
erated. In detail, the eigenvalue spectra based on xPCA for
these two peptides are shown in Figs. 6(a) and 6(b). These
eigenvalues correspond to various kinetic modes of the pep-
tides. For the peptide GS4, there is a large gap between the
largest eigenvalue and the others. This indicates that it is
possible to describe the whole covariance matrix only with
the component corresponding to the largest eigenvalue. A one-
dimensional subspace can be deduced based on this principal
component. Differently, for peptide A8, the distribution of
eigenvalues is a little different from that for GS4. There are no
dominant eigencomponents. The largest gap between eigen-
values is between the second largest eigenvalue and the rest of
the smaller ones. This moderate gap implies a reduced two-
dimensional description of the conformational space based on
the first two eigencomponents. Practically, with these princi-
pal components, the elements of the covariance matrix can be
reproduced with the error smaller than 30%. The features of
these eigenvalue spectra outline the rationality of the xPCA
representation.

It is worth pointing out that these essential components
encode the kinetic characteristics of the peptides. As shown
in Table I, the eigenvectors based on xPCA corresponding to
these essential components are given. Based on the meaning
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FIG. 6. This figure gives the spectra of eigenvalues of covariance
matrix for the peptides (a) GS4 and (b) A8, (c) the root mean square
of fluctuations of residues in these two peptides (black for GS4

and red for A8), and the evolution in the subspaces spanned with
essential eigencomponents for (d) GS4 and (e) A8 (for GS4, only
100ns of trajectories are used for clarity of presentation). The largest
gaps of eigenvalues for these peptides are marked with red arrows
in (a) and (b).

of the essential components, the elements of these eigen-
vectors reflect the fluctuations of the corresponding residues.
For peptide GS4, the absolute values of the first and eighth
elements are apparently larger than the others. It indicates that
the first and eighth residues have stronger fluctuations than the
others, which is confirmed by the fluctuations based on simu-
lation data [as the black bar shown in Fig. 6(c)]. This kinetic
behavior is physically reasonable. For a flexible chain such as
GS4, the head and tail units are less constrained compared to
the middle ones and large fluctuations are produced for the
head and tail units, as suggested by the essential component
of GS4. For peptide A8, the situation is a little bit complex.
The feature of the eigenvector corresponding to the largest
eigenvalue (0.07) is similar to that for the essential component
of GS4. Specifically, these kinds of fluctuations imply the
uncoiling of the helix from both termini. This reflects
the basic characteristics of the peptide chain. In addition, for
the eigenvector corresponding to the second largest eigenvalue
(0.05), the large elements are related to the fourth and fifth
residues. Based on the trajectory, the eigenvector corresponds
to the bending motion of the helix. The fluctuations of the
peptide A8 would be the combination of these two kinds of
motions. As expected, large fluctuations are observed for both
head and tail residues and the middle residues [as the red bar
in Fig. 6(c)]. This observation is consistent with the results by
Sancho et al. on the peptide composed of five alanines [49].
These all exemplify the value of the essential components and
ensure the validity of the xPCA. In the subspaces spanned
by the essential components, the kinetics are demonstrated by

TABLE II. Eigenvalues for GS4 and A8, corresponding to the
dihedral angle principal component analysis (dPCA).

GS4 A8

1 1.29 1.76
2 1.21 0.86
3 1.07 0.49
4 1.01 0.37
5 0.96 0.30
6 0.89 0.24
7 0.88 0.19
8 0.85 0.18
9 0.77 0.17
10 0.77 0.12
11 0.68 0.12
12 0.63 0.09
13 0.27 0.09
14 0.26 0.08
15 0.23 0.07
16 0.21 0.07

projecting the conformations to the concerned components, as
shown in Figs. 6(d) and 6(e). Clearly, similar fluctuating be-
haviors are observed, which further confirms the correctness
of the description with the subspace spanned with essential
components determined by the xPCA.

Similar to the above xPCA, the dPCA based on dihe-
dral angles can be carried out. The eigenvalues are given in
Table II. Based on the criterion related to the largest gap of
the eigenvalues, the first 12 components (for GS4) and the first
component (for A8) are selected to build up the subspaces,
respectively. These selections can produce similar errors of
covariance matrix as those by xPCA. The diffusions of pep-
tides in these subspaces can be characterized accordingly. The
descriptions with dihedral angles consider the constraints of
bonds and angles consistently. It is believed to bring a better
characterization for the landscapes, though the meanings of
the coordinates are not direct.

C. Subdiffusive kinetics and analysis on hierarchical plateau

With the different thermodynamic and kinetic properties
of the peptides, it is expected that these two systems exhibit
different diffusive features in the conformational space. To
quantitatively characterize the conformational diffusion of the
peptides, the MSD is calculated based on the projections of
the peptide conformations in the selected subspaces. Here, the
MSD 〈r2(τ )〉 is defined as

〈r2(τ )〉 = 1

T − τ

T −τ∑
t=0

[r(t + τ ) − r(t )]2, (12)

where T is the total length of trajectory and τ is the lag time.
r is the position of the system in the projected subspace. Here,
the coordinate Qee and the subspace based on two kinds of
PCAs are used to calculate the MSD. Note that the coordinates
of the subspace based on dPCA are different from those based
on end-to-end distance or xPCA. Thus, the MSD curves are
presented in different subfigures. Generally, the lag time de-
pendence of MSD may take the power-law form 〈r2(τ )〉 ∼ τα ,

062424-8



ORIGIN OF SUBDIFFUSIONS IN PROTEINS: INSIGHT … PHYSICAL REVIEW E 102, 062424 (2020)

FIG. 7. This figure gives the mean square of displacement as a
function of lag time in the subspace, (a) the coordinate of end-to-end
distance (EED), and (b) spanned with essential components based on
xPCA (the data are also shown in the insets with normal scale), and
the exponents αlocal related to local diffusion motions for the peptides
(c) GS4 and (d) A8 (the onset time τ̂ c and the escaping time τ e for a
certain valley are marked accordingly).

and the exponent α determines the characteristics of the diffu-
sive kinetics, with α = 1 corresponding to normal Brownian
motion, and α � 1 indicating a subdiffusion behavior. The
corresponding relationships between MSD and the lag time
τ are shown in Figs. 7(a), 7(b), and 8. The MSD curves
in various subspaces are similar. For peptide GS4, the MSD
curves first increase in a power-law manner and then slow
down gradually with a small exponent, which demonstrates
the process of equilibrium. The trend is independent of the
selection of the coordinates to describe the motions. Quanti-
tatively, the exponents in the short-time range are different.
With the coordinate determined by xPCA, the exponent is
0.57 and, based on the dPCA, the exponent is 0.39, which
are smaller than that (0.68) based on the coordinate Qee. This
indicates that the coordinate based on PCA is more proper
since it can describe the slower relaxation of the system. For
the long-time range, similar exponents are achieved, 0.21 for

FIG. 8. This figure gives the mean square of displacement as a
function of lag time in the subspace spanned with essential compo-
nents based on dPCA.

Qee, 0.22 for the xPCA case, and 0.19 for the dPCA case. This
exponent offers a depiction for the subdiffusion of the GS4.
For peptide A8, the behaviors are similar. Yet the separation
between short-time and long-time ranges is not as clear as
that for GS4. This may be ascribed to the stronger internal
friction in A8, since the peptide A8 has stronger interactions
compared to the flexible GS4. For the short-time range, the
exponent is 0.41 for xPCA and 0.38 for dPCA, smaller than
that (0.47) of Qee. The difference of the exponents is small but
is still observable. For the long-time range, the exponent is the
same for Qee and xPCA (both 0.30), and 0.42 for dPCA, which
is different from that of GS4. Clearly, though the exponents
are quantitatively different, these exponents are apparently
smaller than 1, and the range of their values is consistent with
those from other protein systems with various sizes and com-
plexities (from 0.1 to 0.4) [15,53,54]. This reflects that our
peptides are the rational models to investigate the subdiffusion
in protein systems.

Based on these studies, peptides GS4 and A8 are different
in their structures and energy landscapes but their diffusive
kinetics are similar. Does the common diffusive feature mean
that they share some common physical ingredient or is the
similarity of the diffusion an accident by different properties?
The analysis of the hierarchical landscape may help answer
these questions. Based on the analysis on hierarchical plateaus
[15] (as described in the Method section), the exponents α f

and αt related to the size and depth of the multiscale valleys
can be derived based on the MSD curves. In detail, the MSD
curves for various peptides are not monotonic (as shown in the
insets of Figs. 7(a) and 7(b). Local fluctuations are evident.
The derivatives αlocal of the MSD in the subspace determined
by xPCA for GS4 and A8 are exemplified in Figs. 7(c) and
7(d). The corresponding quantities, the onset time τ̂ c, and the
escape time τ e of a certain valley are marked in these figures.
Based on these data for various tiers of valleys, the crossing
time τ c, the escape time τ e, the size L, and the characteristic
energy E can be determined based on the relations in the
Method section. These characteristic quantities for each valley
in the MSD curve based on the xPCA are shown in Table III
and outline the features of the landscapes. It is observed that
the characteristic sizes Li for the peptide GS4 are between
0.45 nm and 0.55 nm, and those for the peptide A8 are between

062424-9



XIA, HE, WANG, AND WANG PHYSICAL REVIEW E 102, 062424 (2020)

TABLE III. Crossing time τ c, escape time τ e, characteristic size
L, and characteristic energy E of each tier i via hierarchical plateau
analysis for GS4 and A8.

GS4 A8

Tier i τ c
i τ e

i Li Ei τ c
i τ e

i Li Ei

(ps) (ps) (nm) (kBT ) (ps) (ps) (nm) (kBT )

1 70.0 2240 0.468 3.47 20.0 830 0.180 3.73
2 71.9 2900 0.488 3.70 21.2 1110 0.188 3.96
3 74.8 3460 0.500 3.83 27.3 1690 0.201 4.13
4 84.6 4320 0.516 3.93 31.7 2200 0.210 4.24
5 85.6 5320 0.529 4.13 41.8 3230 0.223 4.35
6 85.9 6050 0.536 4.26 44.9 3730 0.227 4.42
7 88.0 6500 0.540 4.30 45.0 4010 0.230 4.49
8 88.1 6730 0.542 4.34 47.0 4480 0.234 4.56
9 89.5 7090 0.545 4.37 51.7 5510 0.241 4.67
10 90.1 7710 0.549 4.45 57.3 6520 0.247 4.73
11 57.4 6950 0.249 4.80
12 59.1 7580 0.253 4.85

0.18 nm and 0.26 nm. That is, the valleys for the peptide
GS4 are significantly larger than those for peptide A8. This
phenomenon is attributed to the flexibility of glycine residue.
Without the side chain, the glycine residue can access a larger
conformational space compared to other kinds of residues.
Thus, the valleys are broader when the glycine is involved.
At the same time, the crossing times τ c

i for the peptide GS4

are between 70 ps and 90 ps, which are apparently larger than
those for the peptide A8 (which is between 20 ps and 60 ps).
This is consistent with the observation that the peptide GS4

has wider valleys, since longer times are necessary to cross
the wider valleys. Different from the size and the crossing
time, the energy and escape time for two peptides are in a
similar range. For a same tier, the characteristic energy Ei

for GS4 is a little smaller than that for A8. This is reasonable
since the valleys for peptide A8 are often related to multiple
interactions and the interactions in peptide GS4 are usually
irrelevant. Meanwhile, the escape time τ e

i for peptide GS4 is
relatively larger than that for peptide A8. This contradicts the
intuition based on the relation of characteristic energies and
may be ascribed to the entropic contribution from the width
of the valleys. Note that these geometric and energetic sizes
and various times are physically reasonable. For example,
the timescales and characteristic energies are quantitatively
consistent with the scales for hydrogen bonds (the main in-
teractions in these peptide systems). This supports the validity
of the plateau analysis.

Similarly, the characteristic quantities for each valley in the
MSD curve based on dPCA are also determined, as shown
in Table IV. Here, the quantities Li do not correspond to the
spatial length. In addition, the energetic and temporal quanti-
ties have similar features as those from the xPCA. Though the
different subspaces are introduced, the hierarchical feature of
the landscape is still approved.

As expected, the power-law relations between these char-
acteristic quantities are observed (as shown in Figs. 9 and
10). That is, there are two logarithmic relations [15] ln τ c

i =
ln τ c

0 + (1/α f ) ln Li, and Ei = E0 + γ ln(Li/L0), as Eqs. (7)
and (8). These relations are valid for the results based on

TABLE IV. Crossing time τ c, escape time τ e, characteristic size
L, and characteristic energy E of each tier i via hierarchical plateau
analysis for GS4 and A8 in dihedral angle principal component anal-
ysis (dPCA).

GS4 A8

Tier i τ c
i τ e

i Li Ei τ c
i τ e

i Li Ei

(ps) (ps) (kBT ) (ps) (ps) (kBT )

1 40.0 1180 3.320 3.38 40.0 750 0.624 2.93
2 43.4 1570 3.458 3.59 59.7 1750 0.744 3.38
3 50.0 2610 3.704 3.95 64.2 2460 0.796 3.65
4 51.7 3050 3.775 4.08 81.6 3510 0.857 3.76
5 56.7 4010 3.899 4.26 84.7 4270 0.892 3.92
6 57.7 5760 4.042 4.60 93.6 5150 0.927 4.01
7 57.9 6910 4.110 4.78 105.8 6840 0.987 4.17
8 58.4 7530 4.142 4.86 110.7 8060 1.023 4.29

both xPCA and dPCA. Linear relations are evident with log-
arithmic coordinates. This confirms the self-similarity feature
of the landscape and kinetics. Based on these relations, the
exponents α f , αt , and α for both xPCA and dPCA can be
determined, as shown in Table V. The exponents αfit based
on the fitting of the MSD are also given in Table V. The
equality of the exponents α and αfit supports the validity of
the hierarchical analysis. In addition, the exponent α f is the
result of fitting the landscape with a fractal model, and the
exponent αt is the result of fitting the landscape with a model
with only the contribution of traps. These two exponents are
based on the assumptions of fractal landscape and of depth
distribution of traps, and reflect two aspects of the systems.
At the same time, the integrative effect of both factors gives
exponent α, which describes the real subdiffusive behavior
on such a landscape. The similarity between these exponents
and that derived directly from the kinetics may help to judge
which kind of assumption is suitable for the concerned sys-
tems. To determine which factor contributes essentially, we
compare the exponent α with α f (or αt ). If α ≈ α f , the fractal
model is a reasonable model to describe the landscape, and
if α ≈ αt , it is rational to conclude that the diffusion on the
landscape is governed by the trap effect. Based on the data in
Table V, the peptide GS4 satisfies the relation α ≈ αt , indicat-
ing the essential contribution of the trap effect for the peptide
GS4. Differently, peptide A8 has exponent α, which equals

FIG. 9. The figure gives the relation (a) between crossing time τ c

and characteristic size L, and (b) between Ei and Li for the peptides
GS4 (black solid square) and A8 (red solid circle) in the subspace
spanned with essential components based on xPCA.
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FIG. 10. The figure gives the relation (a) between crossing time
τ c and characteristic size L, and (b) between Ei and Li for the peptides
GS4 (black solid square) and A8 (red solid circle) in the subspace
spanned with essential components based on dPCA.

approximately α f , which implies that the fractal model is
good for the concerned peptide. That is to say, the diffusive
kinetics of the flexible peptide GS4 is close to the behavior de-
termined by the trap feature, while the behavior of the helical
peptide A8 is more likely to diffuse on the fractal landscape.
These results demonstrate that two peptides behave differently
based on this kind of judgment. It is worth pointing out that the
relation between the exponents α and α f (αt ) is valid for the
results based on either xPCA or dPCA. This further supports
the views about the mechanisms of the subdiffusive kinetics of
peptides. Some data for larger protein systems are also listed.
These proteins are similar to peptide A8. This implies that A8

can be used as the representation of structural proteins from
their diffusive behavior.

At first sight, the difference of GS4 and A8 contradicts
with the intuition: The diffusion of the flexible chain with
weaker intrainteractions is governed by the energetic trap, and
the landscape topology is important for the proteins with a
remarkable energy funnel. In fact, a structural peptide should
have much deeper energy traps compared to the nonstructural
ones. This kind of energetic feature seems not to be consistent
with the present conclusions about the mechanisms of the
peptides. Actually, these diffusive behaviors reflect the key
ingredients of the concerned systems. The subdiffusions of
various peptides are induced by the intrachain interactions
of peptides. The chains without any intrachain interactions
would have a normal diffusion on a flat landscape. The emer-
gence of the various interactions slows down the diffusions
and produce the subdiffusion. For peptide GS4, the flexibil-

TABLE V. The exponents α f , αt , and α based on hierarchical
plateau analysis, and the exponent α f it based on MSD curve for the
peptides GS4 and A8, as well as for several proteins [15].

αt α f α αfit

GS4 (xPCA) 0.28 0.58 0.25 0.22
A8 (xPCA) 0.49 0.30 0.31 0.30
GS4 (dPCA) 0.26 0.59 0.24 0.20
A8 (dPCA) 0.54 0.48 0.42 0.45
Protein G 0.58 0.26 0.31 0.30
Rab11a (based on PCA) 0.60 0.18 0.25 0.25
Fre-FAD 0.37 0.21 0.22 0.24

ity and the weak interactions make the overall shape of the
landscape rather flat. The local interactions determine the key
timescales of the diffusion. For peptide GS4, the intrachain
interactions (such as the hydrogen bonds) are often sparse
and not correlated, which matches the model with uncorre-
lated traps. These interactions form random traps on the flat
landscape. The diffusion depends on the distribution of single
traps, similar to the typical trapping model. Differently, for
peptide A8, the intrachain interactions produce a global funnel
governed by the specific native state on the landscape. The
funnel topology indicates that there is a global architecture of
various local energy minima, which indicates that the traps
on the landscapes are highly correlated and connected specif-
ically with a limited number of neighbors (not randomly with
arbitrary traps). Under such a circumstance, the connectivity
of traps or the topology of the landscape (rather than the
depth of the traps) takes an essential role to determine the
diffusion of the peptide. These traps are organized together
and a network with hierarchical structures is formed. The
kinetics is determined by the topology of landscape. The depth
of the funnel controls the folding temperature and will not
change the properties of the diffusion. The fractal topology
is a reflection of the funnel, which is consistent with minimal
frustrated principle. Note that the diffusion is related by the
fluctuations on the energy landscape (rather than the energetic
bias of the landscape). There are different features for flexible
and structural peptides, which is not directly consistent with
the intuition about the landscape. Based on these analysis,
we can understand that there are different mechanisms of the
similar subdiffusive kinetics in two peptides.

D. Network picture for the diffusive kinetics

Based on the analysis on hierarchical landscapes, it is likely
to conclude that the subdiffusion of peptide A8 is mainly
attributed to the fractal topology of energy landscape, while
the behavior of peptide GS4 is controlled by random trapping.
Beside the fitting with hierarchical model, a network picture
of the distribution and transition in the conformational space
for these two peptides is valuable to approach the problem
about the subdiffusion mechanism. A8 is expected to show a
remarkable feature of fractal topology, while the transitions
for GS4 look more random. We give the conformational clus-
ter transition network [10] (CCTN) in Figs. 11(a) and 11(b).
CCTN is a network that characterizes the transitions between
different states in dynamics. Each vertice in CCTN represents
a state classified based on dihedral angles. In Figs. 11(a) and
11(b), vertices of larger sizes indicate that they have more
neighbors. The edges in CCTN are undirected. Thicker edges
indicate that the transition frequencies of them are higher.
Similar networks have often been used to describe the struc-
tural dynamics of complex systems [55,56]. Since there are
too many nodes in the whole 6 μs trajectory, for clarity, we
only show the vertices with the top 4% of neighbor degrees.
The edges of discarded vertices are not considered, resulting
in a few isolated vertices in the CCTN figure. The degree dis-
tribution P(d ) is defined as the probability density function of
finding a vertex connected directly with d neighbors. Degree
distributions P(d ) for both peptides are shown in Figs. 11(c)
and 11(d). P(d ) is normalized and it can be well fitted by a
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FIG. 11. Conformational cluster transition networks (CCTN) for
(a) GS4 with 859 vertices and 7691 edges, and (b) A8 with 438
vertices and 1868 edges. The CCTN of GS4 is a uniform network,
while that of A8 has some centralized clusters. The normalized
degree distributions P(d ) of the CCTN for (c) GS4 and (d) A8 are
shown. Lines are fitted by a log-normal distribution. The mean value
μ and the standard deviation σ are fit parameters.

log-normal distribution as

P(d ) = 1√
2πσd

exp

{
− [ln(d ) − μ]2

2σ 2

}
. (13)

Based on our simulations, 859 vertices and 7691 edges
are identified in the CCTN of GS4, while 438 vertices and
1868 edges are identified in the CCTN of A8, where some
vertices with fewer neighbors are discarded. According to the
log-normal fitting of the degree distribution, the mean value μ

and the standard deviation σ for GS4 are 1.68 and 0.89, while
for A8 are 1.29 and 0.99, respectively. GS4 has an obviously
larger μ than A8 and their σ are very close. That means the
CCTN of GS4 has more linkers and the vertices of it have
more neighbors to connect. The network of GS4 looks more
uniform compared to that of A8. At the same time, for GS4, the
sizes of vertices are similar and there are no huge vertices. It
means there are no dominant conformations in kinetics. This
is consistent with GS4’s trajectory and energy landscape in
Fig. 4. GS4 folds and unfolds very quickly in trajectories. Its
Qee oscillates quickly, which means different conformations
are easily connected by low-energy barriers. The flexible,
unstructured property of GS4 means there are not too many
restrictions on the transitions between any two states. The en-
ergy topology of GS4 is like the irregular network in Fig. 1(a).
Larger μ of GS4 indicates there are many vertices with lots
of neighbors. These high-d vertices make transitions between
different conformations simple and easy. Decentralized tran-
sitions weaken the fractal mechanism in the subdiffusion of
GS4. This implies that trapping may play a more important
role according to the hierarchical plateau analysis. On the
other hand, the CCTN of A8 is classified to some centralized

clusters. Instead of many high-d vertices in GS4, A8 has a few
big vertices and small vertices are connected by them. The
energy topology of A8 is like the fractal network in Fig. 1(b).
The largest, centralized vertice in Fig. 1(b) corresponds to the
complete helical conformation. Different unfolded states can-
not be connected directly and they need a helical conformation
as a hub between them. For example, an unfolded state with
first HB broken cannot directly move to an unfolded state
with third HB broken. It should fold to a complete helical
structure at first and then unfold. A8 usually takes tens or
hundreds of nanoseconds to unfold and fold for one time.
Unfolded states are separated by helical conformation in the
trajectory of A8 as shown in Fig. 4(b). This leads to some big
clusters in the CCTN of A8. These larger vertices correspond
to more complete helical structures. The peptide A8 would
like to evolute around these big vertices during most of the
time, so the peptide remembers previous conformations for
long time and slow relaxation is produced. The CCTN of
A8 is more like a scale-free network, which shows a strong
property of fractal nature. This visualization gives us direct
impressions about the organization of the conformations and
the possible kinetics, which are qualitatively consistent with
the above analysis on hierarchical landscape.

To further exemplify the importance of two kinds of in-
gredients in the diffusion, we carry out some controlled
simulations based on the network picture. The subdiffusion
driven by fractal topology may give different properties for
GS4 and A8, if we exclude the influence of trapping factor
and keep fractal topology of energy landscape unchanged.
Here we categorize the conformations of peptides into some
finite states. The method of classification is the same as that
of CCTN. Then a transition probability matrix Ti j (�t ) is
obtained according to the transition probability from state
i to state j, after a lag time �t . This matrix describes the
transitions between any two states in dynamical process. To
exclude the trapping factor, we average the nonzero matrix
element (except diagonal matrix element) of each row in
the transition probability matrix. It means that for a certain
conformation, the next conformations to transit have the same
probability and the same waiting time. The energy barriers for
this conformation have the same escape time and the trapping
factor is excluded. However, the reachable conformations are
not changed, which means the fractal topology of energy
landscape is not changed. With such a setup, the lifetimes
of the traps are unchanged (since the lifetime is related to
the total outgoing probability), that is, the thermodynamic
feature is unchanged. Meanwhile, the local diffusions de-
pend only on the local connectivity between traps (namely,
the topology of the landscape). In our setup, some of the
transition probabilities even increase compared to the natural
case. This matrix is composed of fractal topology only. If the
diffusion property obtained from the topology-only transition
probability matrix is similar to that obtained from PCA, we
can say that its source of subdiffusion is the fractal topology
of the energy landscape. To confirm the different sources
of subdiffusion for GS4 and A8, we take the topology-only
transition probability matrix of both peptides and apply them
to a random starting state. After continuously applying the
matrix, we get trajectories and the lag time dependence of
MSD from it.
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FIG. 12. The relation between mean square of displacement and
the lag time calculated based on topology-only transition probability
matrix for the peptides GS4 (open black sqaure) and A8 (open red
circle). Local exponents are shown near the curves.

The MSD of the controlled kinetics for these two peptides
are given in Fig. 12, which is plotted with double logarithmic
coordinates. The time that MSD of GS4 reaches a stable state
(about 500 ps) here is much shorter than that (about 5000 ps)
in PCA (in Fig. 7). This demonstrates the importance of the
trap distribution, and some deep traps contribute essentially
to the slow diffusion (subdiffusion). Meanwhile, the MSD of
A8 increases with lag time, similar to its result of PCA. The
subdiffusive exponent α obtained by topology-only transition
probability matrix and PCA are compared in Table VI. We
can see that the subdiffusive exponent α of GS4 obtained by
the topology-only transition probability matrix is 0.02, which
is far less than that (0.22) obtained by PCA, while the α of
A8 obtained by topology-only transition probability matrix
is 0.32, close to that (0.30) by PCA. Based on the above
studies, the landscape of GS4 has a weak fractal topology.
After excluding the trapping factor, the GS4 quickly reaches
its thermodynamic equilibrium. Here the equilibrium time is
about 500 ps, which is much smaller than the time for the pep-
tide to go to equilibrium in realistic simulations. This implies
the importance of the traps on the diffusive kinetics. More in-
terestingly, after removing the variance of traps, the diffusion
is largely different from the result based on direct simulations.

TABLE VI. Subdiffusive exponents α fitted by power law for
GS4 and A8, based on topology-only transition probability matrix
and in the subspace determined with PCA.

α of transition probability matrix α of PCA

GS4 0.02 0.22
A8 0.32 0.30

This further demonstrates that the effect of traps is irreplace-
able to describe the diffusion of the peptide GS4. For peptide
A8, the situation is different. The long-time diffusion is almost
the same as that in direct simulations. The removed trapping
effect does not affect the long-time relaxation. This implies
the importance of the landscape topology in the diffusion of
peptide A8. These results further prove that the subdiffusion
of A8 is mainly attributed to the fractal topology of the energy
landscape. On the other hand, the source of subdiffusion for
GS4 is not fractal topology. The comparison with the con-
trolled kinetics clearly supports the different mechanisms for
diffusions in various peptide systems.

IV. CONCLUSIONS

The subdiffsive dynamics of GS4 and A8 have been con-
firmed and, more importantly, their sources are different. The
subdiffusion of GS4 is mainly caused by the depth distribution
of various traps, while the subdiffusion of A8 is attributed to
the fractal topology of the landscape. These provide some
insight to understand the subdiffusive kinetics of globular
proteins and IDPs. This may help us to understand how the
subdiffusion emerges in systems with various interactions and
the diverse kinetic behaviors of complex protein systems.
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