PHYSICAL REVIEW E 102, 062414 (2020)

Solitary waves dynamic for Davydov a-helical protein model:
Effects of localized and periodic inhomogeneities
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We describe the dynamic of excitons through single inhomogeneous «-helical proteins with off-diagonal and
diagonal couplings. Inhomogeneities considered are either localized or periodic. Intensive numerical simulations
carried show stable structures and allow us to single out important features of excitons dynamic. In the absence of
inhomogeneities, the interplay between off-diagonal and diagonal couplings leads to two distinct types of solitary
waves. Bright solitary waves correspond to an off-diagonal coupling constant lower than a critical diagonal
coupling constant, while dark solitary waves are obtained in the opposite case. Inclusion of inhomogeneities
profoundly affects the profiles, amplitudes, and energies transported by the waves. For relatively small strength
of inhomogeneities, only the profiles of the waves significantly change, the other properties remaining almost
unchanged. Large strength inhomogeneities sensitively twist the profiles and increase amplitudes and energies of
the waves. Our study suggests that small strength inhomogeneities allow a coherent transport of energy and the
biological functions remain unchanged, but large strengths of inhomogeneities affect the biological functioning
of the a-helical protein chains. Hence, large strengths of inhomogeneities may amplify the energy of the molecule

and could be used to treat some diseases.
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I. INTRODUCTION

Proteins are an important class of biological macro-
molecules present in all living organisms. There are a myriad
of proteins that play different biological functions such as
hormones, antibodies, transporters, and antibiotics, to name
a few. The task of each protein is intimately related to its
structure, the latter being classified as primary, secondary,
tertiary, and quaternary. The secondary structure is important
as it allows us to explain many activities of the protein. It
refers to highly regular local substructures. Two main types
of secondary structure, the «-helix and the 8 strand or 8 sheet
were suggested in 1951 by Pauling, Corey, and Branson [1].
It has been shown that «-helices are more stable, robust to
mutations and designable than S-strands in natural proteins
[2]. Designing functional all «-helices proteins is likely to be
easier than designing proteins with both helices and strands as
suggested by a recent experiment [3].

A biological role for vibrational excited states was first
proposed by McClare in connection with a possible crisis
in bioenergy [4]. Davydov applied Mcclare’s proposal to a-
helix protein molecules to explain the conformational changes
responsible for muscle contraction induced by the energy
donating reaction of the adenosine-triphosphate (ATP) hydrol-
ysis [5,6]. He suggested that the amide-I energy could stay

*Corresponding author: yanickondouar@yahoo.com
belobodidier @acas-yde.org

2470-0045/2020/102(6)/062414(9)

062414-1

localized through the nonlinear interactions of the vibrational
excitation with the deformation in the protein’s structure
caused by the presence of the excitation. The excitation and
the deformation cancel each other and form a soliton (lo-
calized wave that lasts very long keeping its original main
properties). In the strict sense, solitons are localized exact
solutions of integrable nonlinear partial differential equations
that collide elastically. Solitary waves are localized solutions
of non integrable partial differential equations. The bioenergy
may be transported along the protein molecules in virtue of
the motion of the soliton. This mechanism may be described
classically as follow. The vibrational energy of the amide-I
(C = 0) stretching oscillators that is localized on the helix
chains acts through a phonon coupling effect and deforms the
structure of the amino acid residue, the deformation of the
amino acid residues reacts again through a phonon coupling.
The outcome of the latter couplings is to trap the amide-I
vibrational quanta and prevent its dispersion, hence forming a
soliton through this process. This effect is called self-trapping
of the amide-I vibrational quantum (or exciton). Davydov’s
first main assignment was to point out a specific vibrational
band that is found in proteins and that is ideal for the storage
and propagation of energy. His second main contribution to
the field of bioenergy was to realize that the amide-I energy
depends on the strength of the hydrogen bond that may exist
between the oxygen of one peptide group and the nitrogen of
another [7-11]. Thus, Davydov took into account the coupling
between the amide-I vibrations (intramolecular excitations
or excitons) and deformations of amino acid residues (or
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acoustic phonons) to model the dynamic of «-helix proteins.
To understand the significance of Davydov’s solitons through
the relevant biochemical problem, we note the following: (i)
biological energy is released in units of 0.42 eV [11,12] by
the hydrolysis of adenosine triphosphate (ATP) to adenosine
diphosphate (ADP); (ii) a basic biological resonance unit is
the amide-I bond (“C = O”) which has a quantum of energy
[a quantum of excitation (zero-point vibrational energy) in
the amide-I bond] of 0.205 eV [9,11]. Most importantly, the
amide-I bond is found in every peptide group of every protein.
This universality of amide-I bonds in proteins led to the idea
that these bonds might be pivotal in the storage as well as
in the transport of the biological energy released from the
hydrolysis of ATP. Spines in «-helix are good examples of
soft molecular chains as required by the Davydov’s model.
The original Davydov’s model considers only on channel or
spine and further assumes that excitations are moved along
the chain by dipole-dipole interactions among amide-I bonds.
The continuous approximation was used to transform the rel-
evant discrete equations of motion to a continuous nonlinear
Schrodinger equation. It is well known that the continuous
nonlinear Schrédinger equation sustains both single solitons
and multisoliton solutions [13]. As an alternative to the origi-
nal Davydov’s soliton, Takeno proposed the concept of vibron
solitons [14]. Unlike vibron solitons that result from a non-
linear coupling of vibrons with lattice vibrations, Davydov’s
solitons find their applications to excitons with transfer by ex-
change interactions. Simple models consider only one strand
of a-helix, whereas more complete modelings suggest the
existence of at least three spines for a better energy transport.
This has been the main focus of the works in Refs. [15-17],
where the molecule was pictured as a set of three hydrogen
bonding spines [18-21]. For the purpose of clarity, we focus
in this paper on the propagation of a vibration, presumably
amide-I, along a single spine in an a-helical protein.

In real life, proteins are interacting with many other
molecules. The presence of such other organisms like drugs,
carcinogens, mutants and dyes in specific sites of the «-
helical protein sequence may alter the structure of proteins,
hereby inducing defects called inhomogeneities. Defects or
inhomogeneities change the localized structure of the o-
helix. These changes cause the soliton to slow down or stop
disrupting the energy and information transfer through the
protein. Solitons important parameters, namely the energy,
amplitude, velocity, position and phase are expected to be
altered by the presence of inhomogeneities in the system.
The effects of mass inhomogeneities on the energy transfer
through solitons motion in a-helical proteins were studied by
Simo [22] who showed that such a system is governed by a
standard elliptic type equation. He concluded that in the case
of heavy mass-induced impurities, oscillatory motion may be
accounted by dn-type solitons. The effect of nonlinear inho-
mogeneities in the form of modified exchange interactions
between sites was addressed in terms of solitons under pertur-
bation in Ref. [23]. Applying the sine-cosine method, Merlin
and Latha proved that the presence of inhomogeneities causes
soliton splitting and hence a disorder in the protein molecular
system [23]. In Ref. [24], a model accounting for inhomoge-
neous a-helical proteins including excitations, dipole-dipole
interactions between nearest and next-nearest neighbors and

interspine coupling was introduced. The authors found that
above a critical value of the inhomogeneity, the energy is no
longer transported with good efficiency due to fluctuations
in the soliton. Therewith, it has been shown that localized
inhomogeneities do not alter the velocity nor the amplitude of
the soliton during propagation [25]. Recently, the dynamical
behaviors of solitonic interactions and the influence of the pro-
tein inhomogeneity on shape-changing collisions of solitons
were discussed by direct numerical simulations of a three-
coupled variable coefficients nonlinear Schrodinger equation
[26]. Nevertheless, most of these works used analytical meth-
ods to describe the physical effects of the inhomogeneities
in biological molecules. However, instabilities may be em-
bedded into analytical solutions leading to their destructions
such that they may not be observed in real experiments. Such
limitations are circumvented by comparing analytical results
to numerical ones that are more reliable. Therefore, in this
paper we study numerically the effects of inhomogeneities
in an intra spine based on the kundu’s model [27] which
advantages are the presence of both diagonal and off-diagonal
couplings in a-helical protein chains. The presence of the
off-diagonal coupling allows to detect two types of nonlinear
solitary waves that may be propagate through the protein
chain. We recall that, the Davydov’s model used in the current
work remains valid at temperatures lower than 220 K [28].
The recent experiment carried by Pang et al. [28] confirmed
the existence of bright solitons as energy carriers in protein
chains (the study used the collagen molecule as a sample of
a-helix protein chain) at 320 K suggests that under similar
experimental conditions, our analysis that considers the Davy-
dov’s model may be valid at temperatures lower than 220 K.

The rest of this paper is organized as follows. in Sec. II,
we describe the model and derive the equation of motion.
Numerical simulations are performed in Sec. III, both in the
absence and presence of inhomogeneities. This allows us to
underline the effects of inhomogeneities of different types on
the dynamic of the exciton. Section IV is devoted to conclud-
ing remarks.

II. THE MODEL

We consider a model described by Kundu [27] and include
a site-dependent inhomogeneity f,,. This inhomogeneity arises
in the «-helix chain by means of a defect or a drug molecule
in the energy site of the amide-I bond. The inhomogeneity
considered here is a site-dependent one which modifies the
interaction exchange between neighboring sites, characterizes
dipole-dipole interactions along the hydrogen bonding spine.
In this work, the inhomogeneity is introduced phenomeno-
logically. The Hamiltonian associated with the model which
is the standard Su-Schriffer-Heeger hamiltonian Hgsy can be
written as [27,29-31]
1 P?
Hssy = 3 ; [ﬁ" + K(Bn — ,Bn+1)2i|

+ Y (U fo = @By — Bur)N@) 10 + ayang)}

= X Y (Bur1 — Bu-)alan. e))
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FIG. 1. Spatiotemporal evolutions of densities of solitary waves. (a) @ =9.92 x 107>N and x = 61.76 x 1072N (a < ). (b) a =
78.92 x 1072 N and x = 61.76 x 107'2N (& > x). Interplay between off-diagonal coupling () and diagonal coupling (x ) affects the profile
of solutions. Other parameters are k = 1.8, p = 1.0, K = 19.36N,J = 1547 x 107 J,and M = 1.9 x 107> Kg.

In Eq. (1), B, represents the displacement of the nth H —
N — C = O unit from its equilibrium position and a, (aZ) is
the annihilation (creation) operator of a spinless vibron [a
quantum of excitation (zero-point vibrational energy) in the
amide-I bond] in a Wannier-type orbital localized at site n.
J accounts for the dipole-dipole coupling of amide-I vibra-
tion while « is the off-diagonal coupling. P, stands for the
conjugate momentum of the vibrational coordinate g, and
M represents the reduced mass of one peptide unit. K is the
elastic coefficient of the hydrogen bonds while x accounts for
the diagonal coupling constant [17].

Let us define the dynamical equations that govern the sys-
tem. To this end, we consider state vectors that we define
as tensor products of a normalized one-exciton state and a
coherent phonon state accounted by |®(¢)) with the form

| () = |pe) ® [¢pn)- 2)

In Eq. (2), |¢.) and |@,n) represent the exciton state and the
phonon state, respectively, and are given by

be) =D gu(t)a}|0)., 3)

|fpn) = exp [Z (crgl — az;sof,)} 10} @)

q

where |0), is the ground state of the exciton, while |0}, is the
ground state of the phonon in the space &y, such that for all
q, (pq|0)pk1 = 0. The star (*) in Eq. (4) and below stands for
complex conjugation. It is well known that in the Davydov’s
model, the Hamiltonian is a sum of independent oscillators of
pulsation w, related to a, by the equation

I LT L (5)
! 2n 1 2iMw,

uq and 7, being real numbers. The functions ¢, and ¢} are
related to the system parameters by the following equation:

EY P B =Y @y e (©)

q

Assuming that the expectation values of §,(¢) and P,(¢) are
u,(t) and m,(t), respectively, the probability of founding one
quantum of excitation at the site n reads

1Ol -+ (01,1 {01, {Ol,y - - - Olylpe))* = lgal®. (D)

Considering that state vectors are normalized to unity leads to

the condition
Z |§0n|2 =L (8)
n

Application of the Ehrenfest theorem for the operators g, and
P, along with the time-dependent Schrédinger equation

d 1
E(qse'(d)ph' ﬁn |¢e)|¢ph> = E(q>(t)|[/3nr HSSH”q)(t»v (9)
d 1
E<¢e|<¢ph|Pn P} |Ppn) = l._h<(b(t)|[PmHSSH]|cD(t))s (10)

d
ih—|®) = Hssu| D), 11
ih— |®) = Hssu|P) (1D
yield the following coupled equations of motion
.. d
lh_‘Pn(t) = J(‘anrlfn + §0n71fn71) + a(/anrl - ﬁn)¢n+1

dt
+a(13n - ,Bn—l)(pn—l - X(,Bn-H - ﬂn—l)‘pn’
(12a)

d2
Mﬁﬂn(t) = K(.Bn-H + Bo—1 —28,) + a(‘/’,f+1<.0n + <P:f<,0n+1)

— (@} Pu1 + @71 00) — X (Pus1* = l@uil?).
(12b)

When the function ¢, and 8, change smoothly over one bound
of the chain, the continuum approximation may be applied
[6]. This approximation is valid for long wavelengths at the
low temperature limit. The continuum limit offers the advan-
tage of being more tractable for analysis and allow in some
special cases to get analytical solutions. Hence, we replace
the discrete functions ¢, (), B,(t), f,(¢) by their continuous
counterparts ¢(x, t), B(x, t), f(x, t), respectively, with x = ne
where € = 4.5 A [7] is the lattice parameter which is nothing
else but the distance between two consecutive peptide bonds.

Using Taylor series ex213ansions Ontl = @ T €py + %Z(pxx +
ceey :Bnil = ,3 + éﬂx + %ﬂxx + ey fnil = f + Efx + %fxx +
..., where the suffix x represents the partial derivative with
respect to x, Egs. (12) become

2
itht = J|:2f(p - 6fx§0 + %(fxx(p + 2fx‘px + 2f§0xx)j|
—2(a + x)epro, (13a)

d
MB, = E[Kezﬂx + 2e(a — )lol*. (13b)
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FIG. 2. Phase profile change due to interplay between off-diagonal and diagonal couplings. &. (a) & = 9.92 x 107> N and x = 61.76 x
1072 N (a < x). (b)) @ =78.92 x 1072 N and x = 61.76 x 107'2N (a > x). Other parameters as described in the caption of Fig. 1.

We consider traveling wave solutions of Eq. (13b) as excita-
tions that propagate along the chain with velocity v, i.e.,

Bx,t) =qx—vt), &=x—nt. (14)

Inserting Eq. (14) into Eq. (13b) gives after a few algebra and
return to the original variables x and ¢,

€Be = —2p(a — x) | p(x,1) %, (15)

with p = ﬁ, z= - and vy = e(%)% is the longitudinal
sound velocity in the chain [23]. Substituting Eq. (15) into
Eq. (13a) and using the transformations ¢(x, t) — u(£) and
u(¢) - W(x,1t), one derives the continuous equation of mo-
tion

i, + BoWox + 281V PV + B0 + B30, = 0. (16)

Equation (16) describes the dynamics of inhomogeneous «-
helical proteins in the continuum limit, which is a perturbed
nonlinear Schrodinger equation. Parameters in Eq. (16) are
given by o= —JE>f, Bi =2p(x>— &), fo=—JQf —
efy + %fm), B3 = —Je>f,. The set of parameters used to
describe amide-I modes and the relationship to vibronic en-
ergy transport are defined as [17,32,33] K = 19.36 N/m,
X =61.76 x 10712N, J = 1547 x 1072 J, and M = 1.9 x
10725 Kg. The value of a will be discussed throughout the
analysis. Equation (16) has been derived in Ref. [24] for
which the authors considered biquadratic, cubic and periodic
inhomogeneities and analytically studied their effects on the
dynamics of a bright solitary wave.

III. NUMERICAL ANALYSIS AND SOLITONIC
SOLUTIONS

It is significant to note that numerical methods play an
important role, since there is often no analytical solution
for nonlinear partial differential equations used to model

a)k=1.8
3.57 (@)
>
2
o 3.56
c
w

3.55 '

500 1000 1500 2000

t

many phenomena in physics, biophysics especially proteins
dynamics. Moreover, in the few cases where analytical solu-
tions are available, imperfections embedded in the medium
may destabilized them. It is therefore necessary to check
the stability of analytical solutions as only stable solutions
may be observed in experiments. The stability analysis of
solutions is fully addressed by means of direct numerical
integrations of the underlying nonlinear partial differential
equations. Equation (16) is a derivative nonlinear Schrédinger
model quite difficult to solve analytically, especially when
spatial inhomogeneities are taken into account. It has been
integrated numerically using the fourth-order Runge-Kutta
computational scheme [36]. The spatial grid is [—10, 10]
with 512 points and spatial resolution dx = 0.0391. The time
step is taken as At = 2.33 x 10~!!. We used the F-expansion
method [34,35] to find an approximate analytical expression
of the solution of Eq. (16) at initial time. The solution used as
initial condition for numerical simulations in almost all cases

is the hyperbolic function Wy (x, 0) = \/ — ﬁ@ﬁz —k2By) —

% %[tanh(kx) + icosh™!(kx)] (k is arbitrary real constant),

is evolved up to 2000 Az which correspond to 46.6 ns. To
better understand the effects of inhomogeneities, we first con-
sidered the ideal situation where there is no inhomogeneity. In
all simulations, a small amount of initial random perturbation
is added to unveil any instabilities embedded in solutions.
The height of the random perturbation is 0.001 that of the
maximum amplitude of the initial condition.

A. Solitary waves without inhomogeneity

One advantage of the above initial condition is that it takes
different profiles as the shape of the inhomogeneity changes.
As we consider approximate solutions, the localized ones are
solitary waves in a broader sense. In this part, there is no
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FIG. 3. Energy of the dark solitary wave is slightly greater than energy of the bright solitary wave. (a) @ = 9.92 x 107N and x =
61.76 x 1072 N (o < x). (b)a = 78.92 x 102N and x = 61.76 x 107'2N (a > ). Other parameters as described in the caption of Fig. 1.
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FIG. 4. Waves widths shrink due to large values of k. (a) & = 9.92 x 107> Nand x = 61.76 x 102N (@ < ). (b)a = 78.92 x 107> N
and x = 61.76 x 107'2N (a > x). Other parameters as described in the caption of Fig. 1.

inhomogeneity, i.e., f(x) = 1. The above hyperbolic initial
condition is inserted in the numerical code at ¢+ = 0. The spa-
tiotemporal evolutions are plotted in Fig. 1. When o < x we
obtain a bright solitary wave [Fig. 1(a)] while a dark solitary
wave corresponds to o > x [Fig. 1(b)]. This means that the
interplay between the off-diagonal coupling constant («) and
the diagonal coupling constant () deeply affects the shape
of the exciton dynamic propagating through the «-helical
chains. In experiments, it is possible to choose the shape of
the exciton-phonon coupling by adjusting the values of « and
x . Furthermore, the initial conditions in Fig. 1 persist with-
out destruction though the insertion of small initial random
perturbation. This confirms that the bright and dark solitary
waves of Fig. 1 are stable, hence may be observed in real
experiments. The experimental observation of solitons either
bright or dark ones in «-helix protein chains may be done
by measuring the infrared spectrum of absorption and Raman
scattering of the protein under investigation and by identi-
fying the presence of some specific bands that account for
the presence the solitons as in Refs. [28,37,38]. Especially in
Ref. [28], a bright soliton has been observed using the method
in Ref. [38]. Recently, bright solitary waves were predicted
in o-helical proteins for small values of « by means of the
modulational instability mechanism [17,21]. Unlike the works
in Refs. [17,21] where no close form analytical solutions were
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provided, we propose here an analytical solution at initial time
to describe the dynamic of the exciton through the proteins.
The numerical stability of the phases of the bright [Fig. 2(a)]
and the dark [Fig. 2(b)] solitary waves, in addition to densities
stability in Fig. 1, suggests that our initial condition remains
valid for long time behavior. Hence, our hyperbolic initial
condition is a good candidate for theoretically modeling the
dynamic of exciton in «-helical protein chains. A parallel
between Figs. 3(a) and 3(b) shows that the energy of the
dark solitary wave is substantially greater than that of the
bright solitary wave. Hence, when the off-diagonal coupling
constant is larger than the diagonal coupling constant, the
energy propagating through the «-helical protein is larger.
Another striking feature of & is that it deeply alters the widths
of the solutions which decrease with increasing values of k.
This behavior is confirmed by a comparison between Fig. 4
(k = 15) and Fig. 1 (k = 1.8). In the following, we show that
inhomogeneities profoundly affect the dynamic of the exciton
in single a-helical proteins.

B. Effects of inhomogeneities on a-helical proteins

In this part of the work, we analyze the influence of
inhomogeneities of different forms on the dynamics of the ex-
citon through protein chains. Direct numerical integrations of
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FIG. 5. Inhomogeneities profoundly change the profiles of solutions as compared to the unperturbed case of Fig. 1(a). Each type
of inhomogeneity has its specific impact on the profile of solutions. (a) Localized inhomogeneity f(x) = 1+ Pycosh™!(x), P, = —0.8,
(b) localized inhomogeneity f(x) = 1 + Rtanh(x), R = 0.6, (c) periodic inhomogeneity f(x) = 1 + P, sin(x), P, = 0.12,a = 9.92 x 107 12N,
and x = 61.76 x 107'2N(a < ). Other parameters as described in the caption of Fig. 1.
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FIG. 6. The energy of the wave slightly decreases with inhomogeneities. (a) Localized inhomogeneity f(x) = 1 4+ Pycosh™!(x), P, =
—0.8, (b) localized inhomogeneity f(x) = 1 + Rtanh(x), R = 0.6, (c) periodic inhomogeneity f(x) = 1 4+ P, sin(x), P, = 0.12. « = 9.92 x
1072N, and x = 61.76 x 102N (a < x). Other parameters as described in the caption of Fig. 1.

Eq. (16) are carried by inserting spatial dependent expressions
of the function f(x) which accounts for inhomogeneities. A
localized inhomogeneity may correspond to the intercalation
of a compound between neighboring atoms similar to the
insertion of a drug molecule which the a-helical protein has to
unwind, leading to the distortion of the helix at the intercalated
sites. Periodic inhomogeneities stand for periodic repetitions
of defects or molecules along the «-helical protein chain [24].

We start by considering the case where o < x. For
the localized inhomogeneity of the the form f(x) =1+
Pycosh™!(x) with k = 1.8 and P, = —0.8, Fig. 5(a) shows
a stable dark solitary wave solution rather different from its
bright solitary wave counterpart obtained in Fig. 1(a) in the
absence of the inhomogeneity ([f(x) = 1]. Using the local-
ized inhomogeneity of the form f(x) = 1 + Rtanh(x) with
R = 0.6 yields a stable kink like profile solution displayed

(a
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0.0095 -
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in Fig. 5(b). Generally, solutions of the kink type materialize
the deformations of a biological helix and not the transport
of energy in this one. Nevertheless, it is not excluded to
consider biological implications related to the transport of
energy in «-helical proteins by means kink type solutions.
The same type of solutions were obtained by Yakada et al.
through the generalized Riccati equation mapping method
for the modeling of signal transmission through an electrical
lattice [39]. A periodic inhomogeneity f(x) = 1 4+ P; sin(x)
with P = 0.12 has been used to obtain a periodic solution pre-
sented in Fig. 5(c). Comparing Figs. 5(a)-5(c) with Fig. 1(a)
shows that inhomogeneities deeply alter the profile of the
spatiotemporal evolution of the exciton through the a-helical
protein chain. A result similar to the one in Fig. 5(c) was
predicted through analytical calculations in Ref. [23]. It was
suggested that such periodic oscillations are likely to induce
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FIG. 7. Profiles changes induced by inhomogeneities as compared to the unperturbed case of Fig. 1(b). (a) Localized inhomogeneity f(x) =
1 + Pycosh™!(x), Py = —0.8, (b) localized inhomogeneity f(x) = 1 + Rtanh(x), R = 0.6, (c) periodic inhomogeneity f(x) = 1+ P, sin(x),
P =0.12.0 =78.92x 1072N, and x = 61.76 x 107'2N (a > x). Other parameters as described in the caption of Fig. 1.
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FIG. 8. Energy decreases in the presence of inhomogeneities. (a) Localized inhomogeneity f(x) = 1 + Py cosh™!(x), Py = —0.8, (b) local-
ized inhomogeneity f(x) = 1 + Rtanh(x), R = 0.6, (c) periodic inhomogeneity f(x) = 1+ P, sin(x), P, = 0.12. @ = 78.92 x 1072 N, and
x =61.76 x 1072 N (& > y). Other parameters as described in the caption of Fig. 1.

disorder in the smooth functioning of the protein molecular
system. The phase of the solutions in Fig. 5 not shown here
are identical to the one in Fig. 2(a). We present in Fig. 6
time evolutions of the energies of the solutions in the pres-
ence of different types of inhomogeneities. It appears that
the periodic inhomogeneity does not affect the energy carried
by the waves [see Figs. 6(c) and 3(a)], while the localized
inhomogeneities slightly decrease the energies carried by the
waves [see Figs. 6(a), 6(b), and 3(a)].

We now turn our attention to the case where o > x. We
draw in Figs. 7 and 8 the spatiotemporal evolutions of the den-
sities and time evolutions of the energies, respectively, of the
waves in the presence of inhomogeneities of different types.
For the localized inhomogeneity f(x) =1+ F cosh™'(x),
though the spatiotemporal evolution of the density remains

(a

0.025

1% (x,t)|?

0.005

10
2000

10

unchanged [see Figs. 7(a) and 1(b)], the energy carried by the
wave substantially decreases [see Figs. 8(a) and 3(c)]. The
periodic inhomogeneity f(x) = 1+ P, sin(x) and the local-
ized inhomogeneity f(x) = 1 4+ Rtanh(x) significantly alter
the profiles of the waves, but leave energies almost unchanged
[see Figs. 8(b), 8(c), and 3(c)]. As stated above, when f(x) =
1 4+ Rtanh(x) a kink solitary wave is obtained instead of the
dark solitary wave of Fig. 1(b) where f(x) = 1 [see Figs. 7(b)
and 1(b)]. Once again, a periodic profile is obtained for
f(x) =1+ P;sin(x) [see Figs. 7(c) and 1(b)].

It is worth noting that in the above discussions, the
off-diagonal parameter and different types of inhomogeneities
affect the profiles of the waves as well as the energies they
carry. The influence of the strengths of the inhomogeneities
have not been analyzed yet. Increasing the strengths of

(b)
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FIG. 9. Large inhomogeneities profoundly change the profiles of solutions as compared to the unperturbed case of Fig. 1(a). (a) Localized
inhomogeneity f(x) = 1 + Pycosh™!(x), P, = —8, (b) localized inhomogeneity f(x) = 1+ Rtanh(x), R = 3, (c) periodic inhomogeneity
fx)=14+Psinx), P, =5.¢=9.92 x 102N, and x = 61.76 x 1072 N (a < x). Other parameters as described in the caption of Fig. 1.
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FIG. 10. Substantial increase of energy induced by large inhomogeneities. (a) Localized inhomogeneity f(x) = 1 + Pycosh™'(x), P, =
—38, (b) localized inhomogeneity f(x) = 1 + Rtanh(x), R = 3, (c) periodic inhomogeneity f(x) = 1 + P, sin(x), P, = 5.« = 9.92 x 10712N,
and x = 61.76 x 1072 N (a < x). Other parameters as described in the caption of Fig. 1.

the absolute values of the inhomogeneities substantially
modify the profiles of the waves in addition to increasing the
energies they carry. This can be seen in the spatiotemporal
evolutions of densities plotted in Fig. 9 and time variations of
energies of Fig. 10. Indeed, a parallel among Figs. 1(a) and
9(a) [f(x) =1+ Pycosh™'(x), Py = —8], Fig. 9(b) [f(x) =
1 4+ Rtanh(x), R = 3], and Fig. 9(c) [f(x) = 1 + P, sin(x),
P, = 5], respectively, shows an important change of the
profiles accompanied by higher amplitudes induced by large
maxima absolute values of inhomogeneities. Furthermore,
the energies also increase due to large absolute values
of inhomogeneities as confirmed by comparing Fig. 3(a)
with Fig. 10(a) [f(x) =1+ Pycosh~'(x), Py = —8],
Fig. 10(b) [f(x) =1+ Rtanh(x), R = 3], and Fig. 10(c)
[f(x) =1+ P;sin(x), P, = 5], respectively.

Considering in the case where the absence of inhomo-
geneities means normal biological functioning of the «-helical
protein chains, Figs. 5, 7, and 9 mean that inhomogeneities
significantly modify the biological functioning of the proteins
which could now be understood as malfunctioning. A similar
result was also predicted in Refs. [24,25] where cubic,
biquadratic, and periodic inhomogeneities were considered
with a bright solitary wave. Conversely, inhomogeneities
may be intercalated along the «-helical protein chain at will
with high precision. In this case, Figs. 6, 8, and 10 show that
the energy propagating through the protein will profoundly
increase. Hence, inhomogeneities may be used to amplify the
energy transferred through the a-helical protein chain. Such
a targeted amplification of energy may be used to treat some
diseases.

IV. CONCLUSION

In this work, we have considered a single stranded «-
helical protein chain in which the parameter o describes the
change in the hopping due to relative transversal displace-
ments of two adjacent amide-I units while the exciton-phonon

coupling strength is accounted by the parameter x. A per-
turbed nonlinear Schrodinger equation that includes site
dependent inhomogeneities has been derived by successive
applications of the D2 Ansazt, the continuum limit approx-
imation and the adiabatic approximation. We seek initially
the influence of « on the dynamic of the exciton then that of
inhomogeneities. Intensive numerical simulations were per-
formed using the fourth-order Runge-Kutta method to search
the effects of the model parameters on the dynamic of the
exciton propagating through the molecule starting from an
hyperbolic initial condition. It appears that, in the absence
of inhomogeneities, the interplay between the off-diagonal
coupling constant () and the diagonal coupling constant ()
deeply affects the shape of the exciton dynamic propagating
through «-helical chains. A stable bright solitary wave is
observed when « < x while a stable dark solitary wave cor-
responds to o > x. Large values of k shrink the width of the
waves. The presence of different types of inhomogeneities in
single «-helical proteins significantly modifies the profiles of
the solitary waves as well as their amplitudes and energies. For
relatively small strength inhomogeneities, the bright solitary
wave (o < x) obtained in the absence of inhomogeneities is
converted to a dark solitary wave [f(x) =1+ P cosh™1(x)],
a kink solitary wave [f(x) = 1 + Rtanh(x)] and a periodic
wave [f(x) =1+ P;sin(x)]. For « > x, the dark solitary
wave obtained in the absence of inhomogeneities remains
unchanged for f(x) =14+ Py cosh™!(x) but is transformed to
a kink solitary wave [f(x) = 1 + Rtanh(x)] and a periodic
wave [f(x) = 1 + P; sin(x)]. In both cases (¢ < x and o >
X ), energies carried by the waves slightly decrease due to the
inclusion of inhomogeneities of different types. However, for
relatively large values of inhomogeneity strengths, the profiles
of the solitary waves are deeply distorted and the energies
carried significantly increase. In relation to the biological
functioning of the «-helical protein chain, small strength in-
homogeneities allow a coherent transport of energy through
the molecule under waves of different profiles. This means
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that the biological functions are unchanged. Conversely,
large strengths of inhomogeneities as they deeply distort the
waves, worsen the biological functioning of the molecule.
Nevertheless, since the energies significantly increase with
large inhomogeneities, the latter may be used to amplify the
energy transported through the «-helical protein chain. In
such a case, inhomogeneities may be helpful to treat some
diseases.

In real life, the «-helix protein is a three-stranded chain
molecule. The model used in this work neglects the couplings

amount the three chains. Actually, the «-helix structure is a
very common feature found in many molecules such as glob-
ular proteins (the «-helix structure is predominantly found on
the protein surface) and fiber proteins to name just a few. For
a better understanding of the whole dynamic, the couplings
between the three chains are no longer negligible and must
be taken into account in the analysis. The forthcoming work
to be carried elsewhere will address the dynamic of a three-
stranded chain of proteins in the presence of site dependent
inhomogeneities.
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