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For prebiotic chemistry to succeed in producing a starting metastable, autocatalytic and reproducing system
subject to evolutionary selection it must satisfy at least two apparently contradictory requirements: Because such
systems are rare, a search among vast numbers of molecular combinations must take place naturally, requiring
rapid rearrangement and breaking of covalent bonds. But once a relevant system is found, such rapid disruption
and rearrangement would be very likely to destroy the system before much evolution could take place. In this
paper we explore the possibility, using a model developed previously, that the search process could occur under
different environmental conditions than the subsequent fixation and growth of a lifelike chemical system. We
use the example of a rapid change in temperature to illustrate the effect and refer to the rapid change as a
“quench”borrowing terminology from study of the physics and chemistry of glass formation. The model study
shows that interrupting a high-temperature nonequilibrium state with a rapid quench to lower temperatures can
substantially increase the probability of producing a chemical state with lifelike characteristics of nonequilibrium
metastability, internal dynamics and exponential population growth in time. Previously published data on the
length distributions of proteomes of prokaryotes may be consistent with such an idea and suggest a prebiotic
high-temperature “search” phase near the boiling point of water. A rapid change in pH could have a similar
effect. We discuss possible scenarios on early Earth which might have allowed frequent quenches of the sort
considered here to have occurred. The models show a strong dependence of the effect on the number of chemical
monomers available for bond formation.
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I. INTRODUCTION

Estimates of the likelihood of natural formation of an initial
genome in “genome first” models of prebiotic evolution ex-
hibit such small numbers that the production of such a starter
genome by natural nonbiotic processes appears to be nearly
impossible (“Eigen’s paradox”) [1]. Statistical estimates of
the likelihood of formation of random prion or amyloidlike
combinations of amino acids [2–5] are presumably somewhat
higher, though quantitative estimates do not appear to be avail-
able. However, even the latter scenario would face the problem
that, in an environment in which many combinations of amino
acids form and then deteriorate (a “dynamical chemical net-
work” [6]) it appears quite likely that a promising combination
would deteriorate before it could be fixed and begin to grow
and reproduce.

Here we explore the possibility that rapid “quenches”
of a dynamical chemical network (possibly of polypeptides,
though our models are not chemically specific) either by
rapid temperature reduction or by change in pH, might sta-
bilize systems with lifelike characteristics, thereby increasing
the probability of their formation and growth. Such rapid
quenches might occur, for example when material is rapidly
ejected from an ocean trench, though other scenarios can
be envisioned. Experiments based on that idea have been
reported [7–9] and did demonstrate that quenching results in
enhanced polypeptide formation.

Before we became aware of Refs. [7–9], the idea of a
rapid quench as a generator of lifelike systems was suggested
independently to us by our previous studies of the statistical

distribution of polymer lengths in the proteomes of 4555
prokaryotes [10]. Some representative data from that paper
are shown in Fig. 1.

The key point is that the length distribution varies quite
smoothly across the range of lengths up to about 2200
monomers, whereas, if we use measured peptide bond ener-
gies and room temperature we find equilibrium distributions
corresponding to essentially all very long polymers (the yel-
low bar in the figure), or, with a slight adjustment of the bond
energy parameter, all dissociated amino acids (the blue bar). It
is hard to see how the length distribution observed could have
ever been close to an equilibrium one at room temperature. If
the ambient temperature were higher, then the length distribu-
tion could be more uniform (as shown, e.g., in the green bars
in Fig. 1), but in such an environment peptide bonds would be
continually breaking and reforming in a dynamical chemical
network [6]. Using the proteome population data in another
way on the same system we calculated the quantity

RT =
√∑

L

[NL − NL(β�)]2

/
(
√

2V ρ) (1)

as a function of β� as a measure of how far from equilibrium
the observed polymer length distribution {NL} was from equi-
librium at a temperature T = 1/kBβ. Here ρ is the volume
density of polymers and V is the system volume. With lmax

defined as the maximum observed polymer length, RT is a
Euclidean distance in the lmax dimensional space of the lmax

tuples {NL} normalized to lie between 0 and 1. NL(�β ) is
the equilibrium distribution when the system is exposed to a
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FIG. 1. Data on prokaryote Corynebacterium variable Deutsche
Sammlung von Mikroorganismen und Zellkulturen (DSM) 44 702
which has organism code cva in the KEGG database [12] (labeled
“Data,” purple bars) compared to equilibria at different values of β�.
Green bars labeled “Loc. Eq.” show the equilibrium arising from the
local temperature derived from the energy E and the particle density
N/V giving β� = −2.99 for this case. Blue bar at left labeled
“Therm. Eq.” shows the equilibrium associated with an ambient ex-
ternal temperature of 293 K corresponding to β� = −3.78. Orange
bar labeled “Bond energy + SD” shows the population distribution
which would arise at ambient external temperature if the value of
� were shifted from its average observed value to that value plus
the observed standard deviation of the empirical distribution of bond
energies giving β� = −2.28. (The orange bar is not visible because
it is identical to the blue bar.) “Bond energy − SD” (yellow bar)
shows the population distribution which would arise at ambient ex-
ternal temperature if the value of � were shifted from its average
observed value to that value minus the observed standard deviation of
the empirical distribution of bond energies giving β� = −5.28. Note
the dramatic sensitivity of the equilibrium distribution corresponding
to ambient temperature arising from varying the bond energy over its
range of uncertainty and the similarity of the observed distribution
to an equilibrium distribution arising from the much higher “local”
temperature (green bars) derived from the energy and the particle
density. The values −2.2 and 0.875 kcal/mol for the average and
standard deviation, respectively, of the protein bond energies are
from [11]. Figure is adapted from [10].

thermal bath with an external temperature 1/kBβ. � is
the binding energy of the covalent bonds connecting the
monomers of the model. For peptides it is negative, and we
treat the case of negative � here.

The result from that paper, shown in Fig. 2, indicates
that the distribution observed would be close to equilib-
rium (as indicated by the small value of RT ) with a thermal
bath at a temperature around 400 K (using the value � =
−2.2 kcal/mol, taken from Ref. [11]), for the peptide bond
energy, negative because the bond is unstable in aqueous
solution. We suggested that this might be an indication that
the precursor to the proteome formed at that high temperature,
and then became fixed by rapid quenching to a lower temper-
ature closer to current ambient temperature as anticipated in
the experiments reported in Refs. [7–9].

FIG. 2. RT as a function of β� for the prokaryote Corynebac-
terium variable DSM 44 702 which has organism code cva in the
KEGG database [12]. This is the same prokaryote for which data is
shown in Fig. 1. From Fig. 5 of Ref. [10]. Here RT , defined in Eq. (1),
is a measure of disequilibrium, β = 1/kBT , where T is the absolute
temperature and � is the binding energy of a monomer-monomer
bond (peptide bond in this application). The dashed vertical line is at
β� = − ln 20, the predicted value of the minimum arising from the
hypotheses described and tested in this paper.

We also noted that the evaluation of a so-called local mea-
sure RL, defined in detail in the next section [Eq. (8)], of
the distance of the observed length distribution from isolated
equilibrium (see also [10]) and also obtained from the pro-
teome data, was close to the minimum value found from the
data displayed in Fig. 2. [RL is defined by an equation identical
to (1) except that the equilibrium distribution is determined by
use of the total energy of the polymer system as well as the
total polymer density and the temperature 1/kBβ is not fixed,
but is determined by maximization of the entropy, given the
energy and the density. Please see [10] and the next section for
more details.] That suggested to us that the precursor formed
in an isolated, nearly equilibrium system at around 400 K
and the population distribution was then fixed by quenching.
Finally we noted that the value of 400 K, given the value of
the average peptide bond energy � reported in Ref. [11] gave
a value of β� quite close (vertical dashed line in the figure) to
− ln b when b, the number of available monomers, takes the
value b = 20, the well-known number of amino acids used in
forming the proteins of the biosphere. In the so-called “Gibbs
limit” of our equilibrium expressions for equilibrium length
distributions, as defined in Ref. [10] and also in the Appendix
to this paper, that value of β� would give an average value of
δNL/δL of zero, thus allowing a wide and rapid exploration
of the polymer state space at that temperature. (Here δNL

and δL denote finite increments.) Thus we suggested that
quenches from that temperature were more likely to lead to
the formation of a rare, autocatalytic system with lifelike
properties, such as disequilibrium, metastability, high rates
of reaction, and exponential population growth, after quench
because more possibilities were explored in high-temperature
states at that temperature. Finally we suggested that, at large
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b, the temperature at which the average value of δNL/δL is
zero would be such that β� ≈ − ln b.

In this paper, we report model simulation results which
test these ideas by explicitly modeling the conjectured
quenches with our Kauffman-like model previously reported
in Ref. [13]. The model is an abstract, or one may say coarse-
grained, description of the real proteome system. The only
entropic effects which are included are those associated with
the combinatorial degeneracies associated with the availabil-
ity of a more than 1 monomer in polymer formation. That
abstraction permits us, in the model, to focus attention on
the effects of such degeneracies, which are the root cause
of Eigen’s paradox as discussed above. Since these com-
binatorial, that is, informational, aspects of the entropy are
associated with the formation and dissociation of covalent
bonds which are significantly stronger than the hydrogen
bonds and van der Waals forces which determine more de-
tailed aspects of biopolymer chemistry, we say that our model
is coarse grained in energy, implicitly averaging over such
smaller energy effects (which of course are essential for more
detailed modeling of life). Our simulation resources limit us
to computations up to 7 (=b) types of monomers. (Some
statements about the large b limit will turn out to be possible
by analytical means.) However, as we will discuss in detail in
Sec. IV, several aspects of the above conjectures turn out to
be consistent with results from the simulated quenches.

In the next section we describe the model of reference
[13] and indicate how quenches were simulated and what
was measured in the simulation data. The third section states
our four conjectures concerning the expected results of the
simulations based on the qualitative discussion above. Sec-
tion IV summarizes the results of the simulations compared
with those expectations. Section V contains conclusions and
a brief discussion of the conditions in ocean trenches and
ridges which might result in huge numbers of the envisioned
quenches occurring over millions of years and resulting in a
substantial probability of fixing a rare, autocatalytic network
with lifelike properties.

II. MODEL AND SIMULATION METHODS

The model used for quench simulations is fully described
in Ref. [13]. As in Ref. [14] and elsewhere [15,16], artificial
chemistries associated with abstracted polymers are generated
consisting of strings of digits representing monomers. The
polymers undergo scission and ligation. The parameter p con-
trols the probability that, in a given realization, any possible
reaction involving polymers up to a maximum length lmax is
included in the network. (We have regarded the small values
of lmax imposed by computational limitations to be a flaw,
but the recent discovery [17] of ubiquitous “microproteins”
in contemporary organisms may suggest that our simulations
of short polymers are more relevant to prebiotic chemistry
than previously thought.) Each reaction in the network is
randomly assigned one enzyme from the species present in
the network. The number of enzymes assigned per reaction
here is different from the very large number of enzymes per
reaction in the model of Ref. [13]. The choice here was made
to more closely describe the situation in real proteomes. A
more complete account of the dependence of the model on the

number of enzymes will appear later [18]. From the resulting
chemical networks we select, as we did previously [14], those
which are “viable,” by which we mean that there is at least
one reaction path from a “food set” of small polymers to at
least one polymer of maximum length. The probability that
a network is viable is then found as the ratio of the number
of realizations of the network which are viable divided by the
total number of realizations.

As in Ref. [14] but differently from the model described
by us in Ref. [19], we assume here that the system is “well
mixed” and no effects of spatial diffusion are considered. To
any “polymer” (string) of length L we attribute an energy
−(L − 1)� where � is a real number which is the bonding
energy between two monomers. The total energy E of any
population {nm} of polymers in which nm is the number of
polymers of type m is E = −∑lmax

L=1(L − 1)NL�. Here the
NL = ∑

m of length L nm is the same set of macrovariables used
in Refs. [14,19]. The total number of polymers N is N =∑lmax

L=1 NL.
In the simulations described here and motivated by the

discussion in the Introduction, we take � to be negative. That
means, consistent with experiments on peptide bond forma-
tion in aqueous media, that the energy of each bond is positive,
meaning that it costs energy to make a bond. Here β is as-
sumed to be positive so that the relevant parameter β� < 0.
The configurational entropy associated with a coarse-grained
prescription of the state given by the numbers of molecules
NL for each length L between L = 1 and L = lmax is found by
maximizing the total configurational entropy for any set {NL}
as given by the general Boltzmann definition S/kB = ln W
(valid whether the system is in equilibrium or not) with respect
to the {NL} subject to the constraint

∑lmax
L=0 NL = N . Here W is

the number of sets of polymers possible consistent with the
set {NL} given that there are b different monomers available
at each monomer site in all the polymers. This is a standard
problem in statistical physics [20] with the result

S/kB =
∑

L

{ln[(bL + NL − 1)!] − ln(NL!) − ln[(bL − 1)!]}

(2)

for the general form of the entropy (whether the system is in
equilibrium or not. Also see our paper [14] for more details.)
In our simulations the polymers are not in equilibrium but, in
addition to the nonequilibrium distributions calculated from
kinetics, we also calculate the distributions {NL} associated
with local equilibrium and equilibrium with a temperature
bath at temperature T continuously during the simulations.
Those distributions are found by maximizing the entropy
given above with respect to the variables {NL} subject to differ-
ent constraints depending on whether the equilibrium attained
is that resulting from an open system in contact with a thermal
bath at fixed temperature T = 1/kBβ or, on the other hand,
is sufficiently isolated to permit it to attain local equilibrium
consistent with the current value of the total energy E . In
the former, open, case, the maximization is carried out taking
account of the constraint on the number of particles with a La-
grange multiplier μ which is the chemical potential, whereas
in the second, closed or local case, the maximization is carried
out taking both constraints (energy and particle number) into
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account with Lagrange multipliers μ and β = 1/kBT , which
are determined from the inputs N and E (as described in detail
in Ref. [13]). In both cases, NL is found to have the form

NL = bL − 1

exp [−βμ − β�(L − 1)] − 1
. (3)

This expression is formally equivalent to that found for a Bose
gas in elementary quantum statistical mechanics although this
model has no explicitly quantum features and no quantum
effects are suggested or implied (see Refs. [14,20]). In the
“Gibbs limit” in which bL � NL � 1 all these expressions
reduce to the familiar classical Boltzmann equilibrium for-
mulas as discussed in Ref. [20] and in the Appendix to this
paper, for example. That limit applies in the present case
for proteins in most biological contexts. But for RNA, for
which b = 4, it is only valid for large L and corrections to the
Boltzmann equilibrium formulas are non-negligible for many
of our simulations. To determine the isolated equilibrium state
we compute β and μ from the known energy E and polymer
number N by solution (on the fly during the simulations) of
the equations

E = −
lmax∑
L=1

(L − 1)NL� (4)

and

N =
lmax∑
L=1

NL, (5)

whereas to determine the equilibrium state resulting from
equilibrium with a temperature bath we fix β and determine μ

by solution, again on the fly, using Eq. (5). Note that, in this
formulation and throughout the paper, references to “equilib-
rium” refer to maximization of the configurational entropy,
constrained only by the number of polymers and the external
temperature (when it is specified) or the total energy. Thus
we mean maximization given that all the polymer configura-
tions in the model are “accessible,” whereas in some work in
chemical statistical mechanics, further constraints are applied,
arising from the assumption that some states are kinetically
“inaccessible.” Such kinetic inaccessibility does occur in our
models, through the kinetic model described next, but it does
not enter our definition of the equilibrium states. We note that
although the energy is fixed in the determination of the local
equilibrium state, we do not use a microcanonical ensemble
to describe it, but a canonical one, which is well known to be
an excellent approximation to the microcanonical ensemble
when the number of particles in the system is large [21]. The
latter condition is somewhat problematic for a few of our
simulated systems in which N is not very large, but for most
of them N � 1.

During the dynamics simulation, the temperature enters
the dynamics through the factors kd in the following kinetic
master equation.

dnl/dt =
∑
l ′,m,e

[
vl,l ′,m,e

(−kd nlnl ′ne + k−1
d nmne

)
+ vm,l ′,l,e

( + kd nmnl ′ne − k−1
d nlne

)]
. (6)

Here nl is the number of polymers of species l , vl,l ′,m,e is
proportional to the rate of the reaction l + l ′ e

→m, e denotes
the catalyst, l and l ′ denote the polymer species combined
during ligation or produced during cleavage, and m denotes
the product of ligation or the reactant during cleavage. This
model for the dynamics, defined by the master equation (6), is
stochastically simulated using the Gillespie algorithm [22]. A
parameter p (in [0,1]) controls the sparsity of reactions in the
network. With probability p, each reaction rate has a finite
value vl,l ′,m,e or vm,l ′,l,e but the rate is zero with probabil-
ity (1 − p) for each possible reaction. The values of vl,l ′,m,e

or vm,l ′,l,e are fixed (from a uniform distribution in [0,1])
during the dynamical simulations but the values of the param-
eters kd are not. The latter are fixed by the detailed balance
condition

k2
d = nm/(nl nl ′ ), (7)

where, in the simulations reported here, the equilibrium distri-
butions {nl} in the last expression are always taken to be those
associated with equilibrium with an external thermal bath with
a fixed parameter β. We started all the simulations reported in
this paper with a “food set” of 500 randomly selected [from
the b(b + 1) available] monomers and dimers. Some results
do depend on the choice of the starting food set. However, we
are assuming, as in much work on the origin of life, that the
problem is to understand how lifelike systems emerge from
collections of small, interacting molecules, so that starting
from monomers and dimers will give relevant insights. During
the simulations, the simulated systems are “fed” by maintain-
ing the population of dimers and monomers above a specified
minimum usually taken to be 500. (Thus the system is “open”
[23].) Because a population of food of 500 or greater is not
generally consistent with the expected equilibrium population
distribution, the systems are thus continually pushed out of
equilibrium by the feeding. On the other hand, the adjustment
of the reaction rates implemented by the factors kd described
by Eqs. (6) and (7) cause the dynamics to continually push
the system back toward equilibrium. The system is thus con-
tinually driven toward equilibrium with the external thermal
bath by the dynamics and out of equilibrium by the feeding.
When p is near 1, only the feeding keeps the system away
from equilibrium. When p is less than 1, kinetic blocking also
has the effect of keeping the systems from equilibrium. For
these reasons many simulated systems do not achieve either
local equilibrium or equilibrium with the external bath. We
have previously checked in detail that the feeding alone holds
our simulated systems away from equilibrium even when p
is near 1. Note that “feeding” is a qualitatively reasonable
representation of the actual biological processes that occur
in organisms in which small molecule constituents acting as
food continually supply a living system with materials for
maintenance and growth. As in our previous work, includ-
ing that described in Refs. [13,14], we assume that lifelike
chemical systems will be metastable states far from equilib-
rium and select and count such states to obtain a quantitative
indication of how likely our models are to result in lifelike
states.

As in Refs. [10,13] we compute two Euclidean distances
RL and RT in the lmax dimensional space of sets {NL} which
characterize how far the system of interest is from the two
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kinds of equilibria described above:

RL =
√∑

L

{NL − NL[β(E , N ), μ(E , N )]}2/(
√

2N ) (8)

for distance from the locally equilibrated state and

RT =
√∑

L

{NL − NL[β,μ(β, N )]}2/(
√

2N ) (9)

for distance from the thermally equilibrated state. The normal-
ization factors in these equations differ from that in Eq. (1)
because, in Eq. (1) we took account of polymer dilution and
used experimental data on polymer volume density instead
of total polymer number N . The normalizations are chosen
in each case so that the resulting quantities RT and RL lie in
the interval [0,1] permitting the model values to be compared
with the experimental ones. Alternative measures of the de-
gree of disequilibrium in the context of study of polypeptide
systems have been proposed [24] and we have used alternative
formulations in Refs. [14,19]. The formulation used in this
paper and in Refs. [10,13] has the advantage of discriminating
between local equilibrium, which would be achieved by the
system in isolation and the global or thermal equilibrium with
an external thermal environment, which would be eventually
achieved if the system were in contact with an external, equi-
librated “bath.” The latter distinction has provided valuable
insights into the nature of the nonequilibrium states found
in our quench simulations. A similar Euclidean measure of
disequilibrium in the context of prebiotic evolution was also
suggested in Ref. [25]. More details of the simulation methods
are described in Ref. [13].

The physical significance of RL and RT is that RL measures
the distance in the population space of the current simulation
point from the point where it would be if the system had
self-equilibrated consistent with its total internal energy E but
not with any external temperature bath, whereas RT measures
the distance in the population space of the current simulation
point from the point where it would be if the system had
equilibrated to an external temperature bath at temperature
T = 1/kBβ. One generally expects self-equilibration to oc-
cur faster than equilibration to an external temperature bath.
The temperatures of the corresponding equilibria are often
different in condensed matter systems; for example, electron
temperatures, both in plasmas [26] and in solids (e.g., [27]),
can be different from ion or lattice temperatures, respectively,
and the internal temperature associated with the distribution
of nuclear spin directions in NMR experiments [28] can be
different from the lattice temperature (and negative in the
latter case).

In the results cited in Sec. IV the code implementing this
model was modified to permit an abrupt change in the param-
eter β� during the simulation of systems in contact with an
external thermal bath. In the report of results which follows,
we change the value of β� from a small negative value to a
large one. The values are negative because the free energy of
bond formation of peptide bonds in water is negative [11] as
noted above and the choice of small to large negative values
will correspond, in the case that � does not change, to a
quench from high to low temperature. We thus refer in the

discussion to quenches from high to low temperature, but note
that the relevant parameter in the model is the product β� (the
two factors always occur together) and a similar change in that
parameter might be induced by altering �, for example, by a
rapid change in pH [29].

III. HYPOTHESES

If the model described in the preceding section adequately
describes the coarse-grained features of the relevant prebiotic
chemistry, then the conjectures concerning the origin of pre-
biotic chemistry in quenches of interacting amino acids from
high to low temperature described in the Introduction imply
that we should expect the following simulation results within
the model:

(1) Running at initial high temperature β�i and then
quenching to β� f , one should find a minimum, during the
low-temperature part of the run, in

RT (β�) =
√∑

L

[NL(β� f ) − NL(β�)]2/
√

2N (10)

as a function of β� at β� = β�i. Here NL(β� f ) is the
value of NL found from the kinetic simulation with external
temperature β� f and NL(β�) is the equilibrium expression
for NL(β�) at the temperature β�. We do consistently find
such a minimum, though the minimum value of RT varies as
discussed later. We denote the value of β� at the minimum
by β�min. Then the hypothesis states that β�min = β�i. We
will present numerical evidence that, within the model, this is
approximately true when p is sufficiently large.

The significance of this is that if an experimental system,
such as one of the proteomes we studied previously, exhibits
such a minimum in RT (β�) with NL(β� f ) replaced by the
experimental values of NL, then the β� at which a minimum
in RT (β�) occurs is a signature of the temperature at which
the system formed before quench. Thus, since the proteomes
had such a minimum at around 400 K, our simulations would
support the idea that the system formed from a quench at a
high temperature around 400 K (see Fig. 2).

(2) The high temperature at which equilibrium should oc-
cur most easily should be the one which gives

(1/lmax)
∑

L

δNL/δL(β�) = 0. (11)

(Here δNL and δL denote finite increments. In implementation
we take δL = 1.) We call the solution to this equation β�flat.

To explain the motivation for this hypothesis further, we
refer to the discussion of Fig. 1 in the Introduction to this
paper. There we pointed out that very small changes in the
assumed binding energy of peptide bonds produced very large
changes in the equilibrium polymer length distribution if the
temperature were near ambient. So at those low temperatures
the equilibrium distribution would be very likely to be either
almost all monomers or almost all polymers of maximum
length (the blue and orange bars in Fig. 1). If the lengths
were distributed in that fashion in prebiotic conditions, then
the kinds of interactions possible would be highly constrained
if the system were near equilibrium. That, in turn, would
greatly slow the rate at which polymer configurations were
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naturally explored by the kinetics, slowing, in turn, the natural
search (in a dynamic network as envisioned in Ref. [6]) for the
rare combinations which turn out to be lifelike. However, the
actual distribution of protein lengths in prokaryotes is usually
like that shown for one of them by the purple bars in Fig. 1
and such a distribution can be envisioned to permit the kind of
natural search required. Therefore we sought, in formulating
hypothesis (2), a condition on the initial temperature which
would require that the equilibrium length distribution be rea-
sonably flat so that, if the system were near equilibrium in the
high-temperature phase before quench, it would be capable of
the kind of natural search envisioned in Ref. [6] and by us.
Equation (11) realizes that aim by requiring that the average
discrete derivative of NL with respect to L be zero. However, if
the temperature is high and gives a relatively flat distribution
as required by Eq. (11), then, in the high-temperature phase
of the simulation before quench the system will most easily
come close to equilibrium. That would say that if, at high
temperatures, one computes RT (β�i ) in our model (with both
β� arguments in the definition =β�i), then one should find
the smallest RT at the value of β�i for which (11) is true, as
postulated in hypothesis (2).

(3) The most lifelike states after quench should occur when
the initial high-temperature state coincides with the minimum
described in (2). To characterize this prediction quantitatively
requires a more detailed statement of the definition of “lifelike
states” as we will discuss in the next section.

(4) The solution to (1/lmax)
∑

L δNL/δL(β�) = 0 will be
at ln b = −β� in the large b limit and that is the appropriate
limit for the proteome systems.

IV. RESULTS

Before describing the results of tests of the hypotheses of
Sec. III we show an example of how RT characteristically
behaves in Gillespie simulation time during a subset of our
simulated quenches. In Fig. 3 the black circles show aver-
age values of RT over 30 runs on the same network in a
simulation at a high temperature (β� = −0.1), well above
ambient temperature. The high-temperature systems start far
from the equilibrium associated with the external temperature,
because all simulations start with just a randomly selected
food set, but quite rapidly approach a state near equilibrium.
Here, as in most cases and even without significant kinetic
blocking, our simulations do not go all the way to equilibrium
because they are continually being “fed” by maintenance of
the food set population. The red triangles show what happens
when the simulations are repeated starting with the same high
temperature with a quench at time zero to a lower temper-
ature (β� = −4). The systems attain a high value of RT

after quench because the equilibrium point has moved in the
species space, but the instantaneous populations have not. The
systems then move closer to equilibrium at the lower temper-
ature but do not achieve it. To see if the quench has produced
systems farther from equilibrium than a simulation entirely at
the lower temperature would do, we also show, in the green
crosses, the results of a simulation on the same systems when
the external temperature remains at the low value (β� = −4)
throughout. The green curve flattens at a higher value of RT

than the high-temperature one (black symbols) but below the

FIG. 3. Average over 30 runs on different networks of the value
of RT versus Gillespie simulation time. Gillespie times have been
shifted by a constant so that the quench always occurs at Gillespie
time = 0. Some data from times earlier than Gillespie time (as
shifted) less than −0.15 which arise from noisy initial transients
have been omitted. Error bars indicate standard deviations over the
ensemble. Total simulation time was fixed to be 3 × 106 reaction
steps and quench was applied at 3 × 105 reaction steps. Parameters
are p = 0.1280, b = 4, lmax = 7. The inset shows the data from
the corresponding runs (same initial random number seeds and net-
works) when no quench is performed so that the entire run is at low
temperature. The Gillespie time intervals are much larger in those
low-temperature runs. The horizontal green line in the inset is the
average value in the final steady state in the low-temperature runs
and its extrapolation to the short Gillespie times in the quenched runs
is shown as the horizontal green line in the main figure.

quenched values (red symbols) indicating that the quench has
produced systems farther from low-temperature equilibrium
than it would simulating from the lower temperature from the
start. However, the effect is relatively small in these examples.
A more comprehensive set of data evaluating the effect of
quenching on disequilibrium appears in Fig. 9.

In Fig. 4 we show the total polymer populations as a func-
tion of the number of reaction steps for the same ensemble
of realizations of the model. The quench has a much bigger
effect on this variable: The final number of polymers is much
larger throughout times after the quench than it is for the
comparable run at low temperature throughout and also bigger
than the final number from the run at the higher temperature
throughout. Of equal interest, the quenched systems continue
to grow rapidly after quench, whereas both the low- and high-
temperature runs show very little population growth near the
end of the runs. Part of the growth in the total number of
polymers after quench is due to the increased rate of scission
relative to ligation at the lower bath temperature.

In these examples we thus have preliminary evidence
that three properties deemed lifelike, namely, disequilibrium
(measured by RT ), population size, and population growth
rate, are enhanced by quenching from high temperatures. Note
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FIG. 4. Average over 30 runs on different networks of the value
of N , the total number of polymers, versus Gillespie simulation
time. Error bars indicate standard deviations over the ensemble.
Parameters are p = 0.1280, b = 4, lmax = 7. The inset shows the data
from the corresponding runs (same initial random number seeds and
networks) when no quench is performed. The horizontal green lines
are the average value in the steady state of the low-temperature runs,
as explained in more detail in the caption to Fig. 3.

that, in the model, the temperature always occurs in the com-
bination β� so that identical results could also be achieved by
a sudden change in � as, for example, might be achieved by a
sudden change in pH.

The “error bars” in the figures indicate standard deviations
in the distribution of results over this ensemble and suggest,
consistent with our detailed results, that some realizations can
experience much higher values of disequilibrium and growth
rate after quench.

In the following data we show results bearing on the
validity of the hypotheses in which we consistently fixed
the parameters β� f = −4, lmax = 7, and, where not spec-
ified otherwise, b = 4. The value of β� f was chosen to
approximately match the value for peptide bonds under am-
bient conditions. The values b = 4 and lmax are approaching
the limit imposed by constraints on available simulation
resources. Networks had reactions with one enzyme per re-
action. Results are presented for a series of p values in the
model, since the p value turns out to be significant.

Regarding hypothesis (1), we first illustrate data in Fig. 5
from a typical simulation showing a sharp well-defined mini-
mum in RT [from (10) as a function of �β, much as found for
proteomes as illustrated in Fig. 2]. We show average values
over at least 40 realizations per point of the corresponding
minima, termed β�min, as a function of β�i for a series of
p values in Fig. 6. The data get closer to the hypothesis as
p increases and β�i becomes less negative corresponding to
higher temperatures and a more connected chemical network.

To explore hypothesis (1) further we fit the function
�βmin = f (�βi ) = f (0) + f ′(0)�βi + (1/2) f ′′(0) (�βi )2,

FIG. 5. RT from Eq. (10) calculated from a dynamic simulation
with b = 4, lmax = 7, p = 0.1280, β�i = −0.1, and β� f = −4.
Compare Fig. 2 which was obtained from proteome data.

i.e., the first terms in a Taylor series in �βi, to the data in
Fig. 6 for four p values between 0.05 and 0.15 with results
indicated by the smooth curves in Fig. 6. Hypothesis (1) states
that we will find f (0) = 0, f ′(0) = 1, f ′′(0) = 0. Results are
shown in Table I. For the larger values of p the values of
f (0), f ′(0) are consistent with the hypothesis. At the relevant
high temperatures the magnitude of the �β values are smaller
than 1 and give a small contribution from the quartic term.

FIG. 6. Simulated values of β�min versus β�i for various p
values. The final temperatures are set so that β� f = −4. Each data
point comes from an average over 40–500 realizations. The simula-
tion used values b = 4, lmax = 7. The smooth curves show the result
of fitting these data, for each value of p to a quadratic function of
β�i as explained in the text.
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TABLE I. Polynomial fit parameters for the data in Fig. 6.

p f (0) f ′(0) f ′′(0)/2

0.1500 −0.09019 ± 0.04496 1.01408 ± 0.10566 0.33341 ± 0.04801
0.1280 −0.09674 ± 0.04552 1.01314 ± 0.11502 0.33139 ± 0.05181
0.0905 −0.13961 ± 0.04393 0.92138 ± 0.10938 0.30185 ± 0.04991
0.0640 −0.27957 ± 0.04638 0.63970 ± 0.11963 0.19924 ± 0.05271
0.0226 −0.63764 ± 0.01819 0.12222 ± 0.04276 0.03128 ± 0.01943

Thus these data are nearly consistent with the hypothesis for
the larger values of p and the relevant �β values.

To explore the dependence of this result on b we carried
out a similar analysis for b = 2, 3, and 5 and show the results
for the fitting parameters as a function of p for five p values
between 0.05 and 0.30 with results shown in Fig. 7. As b
gets larger the quadratic term gets smaller, indicating that
the hypothesis works for larger and larger values β�i and
consistent with the suggestion that at the biologically relevant
value of b = 20 it will continue to be valid up to values of
β�i = − ln 20.

Note that when b gets larger, even a relatively small p
gives a slope near 1. We conclude that for large b systems
such as the one in the proteomes with b = 20 it is very likely
that β�i = β�min in agreement with hypothesis (1). Thus
our previous inference that the value for β�min taken from
the proteome data was an indicator of the temperature from
which the proteome had been quenched on the early Earth is
consistent with our model.

To test hypothesis (2) we calculated solutions to Eq. (11)
numerically for values of b = 2, 3, 4, 5, 6, 7. Hypothesis (2)
states that the value of β�i at which

RT (β�i ) =
√∑

L

[NL(β�i ) − NL(β�i )]2/
√

2N (12)

is minimum (termed β�min) should be at the same value
of β�i, termed β�flat at which (11) is true. [Note that, in

FIG. 7. Values of the slope (left) and curvature (right) of fits to
the data in Fig. 6 and similar data for b = 2, 4, and 5 to quadratic
functions of β�i as a function of p as explained in the text. Error
bars indicate standard errors.

Eq. (12), both arguments β� are at β�i (the “hot” value)
unlike Eq. (10). Hypothesis (2) is a statement only about the
“hot” phase.] There is a complication here because NL(β�i )
depends on μβ which, in turn, depends on the total number
N of polymers present in the current state of the system. To
determine β�min we used that current value of N at each value
of β�i in Eq. (12) and then used the N value at β�min to give a
value for βμ to use in solution of Eq. (11) for β�flat. The val-
ues of β�min and �βflat are compared for b = 2, 3, 4, 5, 6, 7
and p = 0.0226, lmax = 7 in Fig. 8. The trends in the two
quantities are the same and the values are close to one another
but not identical. As b gets larger they get closer. We conclude
that hypothesis (2) is likely to be a very good approximation
when b is large, as in the proteomes.

Regarding hypothesis (3), we first tested for the enhance-
ment of RT , termed �RT in the cold phase, relative to the
value obtained in the same network with the same starting
conditions when the temperature was low throughout the
run. The hypothesis states that �RT should be largest when
β�i − β�flat is zero. We show results for three p values
in Fig. 9. In all cases, the enhancement rises sharply as
β�i → β�flat confirming hypothesis (3) for the lifelike prop-
erty of disequilibrium. Qualitatively, the enhancement occurs
because at the high temperature, the systems get close to the

FIG. 8. β�flat and β�min versus b. β�min is determined by
running simulations with a series of temperature β�i and finding
minimum RT (β�i ). The error bars are determined when a β�i gives
a RT (β�i ) that is within 10% difference of RT (β�min).
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FIG. 9. Enhancement of RT as a function of β�i − β�flat for
various values of p. β� f = −4, lmax = 7, b = 4. Each point is from
between 20 and 50 simulations with smaller numbers of simulations
for larger values of p. Error bars indicate standard deviations.

internal equilibrium population distribution imposed by their
total energy and retain a distribution of polymer lengths close
to that value after quench. The enhancement increases with
p, possibly because the high-temperature phase equilibrates
more effectively before quench as p increases. However, for
very large p the effect of the stabilization of nonequilibrium
states by quenching is expected to become less effective be-
cause the denser network will allow equilibration even in the
low-temperature state.

To study the effects of quenching on other, possibly life-
like, properties we applied a series of filters to the ensembles
of systems obtained by quenching and show results in Fig. 10.
(Quenching from the high to low environmental temperature
does not enhance RT significantly for the range of p values
used here, but does enhance RT at larger p values as indicated
in Fig. 9.)

In part (c) of Fig. 10 we show results of imposing an
additional filter which excludes results in which the reaction
rate per polymer in the final steady state is below a fixed value.
This “dynamics filter” is different than the one imposed on
our results in Refs. [13,14,19]. To make the cut we require
that the total number of reactions per polymer in the final
steady state divided by the Gillespie time elapsed during that
steady-state part of the run be larger than a fixed value which,
in the data displayed in Fig. 10, we chose to be ten reactions
per unit of Gillespie time. (Roughly, one unit of Gillespie time
corresponds to the average rate of ligation and scission.) There
is a very large enhancement of reaction rate due to quenching.

Finally, in part (d) of Fig. 10 we show the effects of
further filtering to isolate the final steady states showing en-
hanced to polymer population growth rates. In that cut, we
eliminated systems in which the logarithmic derivative of the
total number of polymers with respect to Gillespie time was
less than 1.

FIG. 10. (a) Probability of finding RT > 0.35 with (Quenched)
and without (Normal) quenching. (b) Same with RL and RT >

0.35. (c) Probability of finding RT > 0.35 and a high reaction rate.
(d) Probability of RT > 0.35, a high reaction rate, and a high growth
rate. The threshold for the reaction rate cutoff is ten reactions per
unit of Gillespie time per polymer. The growth rate cutoff eliminates
those systems for which d ln N/dt < 1 in units of inverse Gillespie
time. For the quenched simulations, β�i = β�flat and β� f = −4.
For the unquenched simulations β�i = β� f = −4. b = 4, lmax = 7,
for both cases. From data on 50–700 realizations with more simula-
tions for the smaller values of p. Error bars show standard deviation
from the average over the simulations for each parameter set.

We made a study of the dependence of the observed
RT quench enhancement on the initial and final temperature
parameters β�i and β� f for the case b = 4 with results
shown in Fig. 11. High initial temperatures (|β�i| small) and

FIG. 11. Enhancement in RT arising as a consequence of a qe-
unch as a function of the initial and final values β�i and β� f of the
parameter β�. For all these quenches p = 0.0761, b = 4, lmax = 7
and the quench was applied at reaction step = 105. Each data point
is an average over 400 simulations (80 networks and 5 realizations
per network).
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FIG. 12. At right: Values of RL, RT found in 1200 simulations
of the model with b = 4, lmax = 7 and p = 0.0905, β�i = −0.01,
β� f = −4. At left: Results with the same parameters and networks
but with β� = −4 throughout the runs (no quench) as a control.
The box indicates the region in which real proteomes were found in
Ref. [10]. The color scale indicates the average polymer length in the
final, quenched state.

relatively high final temperatures (|β� f | also small but larger
than |β�i|) are favored. In the case in which |β�i| is small
though larger than |β� f |, there is a wide range of |β� f |
which is predicted to give substantial RT enhancement in the
quench. However, in the envisioned application, final values
of β� f are expected to be as large as −4 and in that case,
the range of |β�i| which gives a large enhancement is pre-
dicted to be quite narrow. Such estimates can be useful to
experimentalists exploring the parameter space to determine
the conditions under which lifelike systems are most likely to
be produced by quenching.

We explored the distribution of RL − RT values in the final
simulation states in systems running at low temperatures with
the corresponding distributions when the final state is at the
same final temperature but has been quenched from a high
temperature. Results are shown in Fig. 12 for b = 4, lmax =
7, and p = 0.0950, β�i = −0.01, β� f = −4. Remarkably,
more states with longer average polymer lengths appear in the
high RT part of the RL-RT plane. These states are quite close
to the region of the RL-RT plane where the values for real
proteomes are found [10] as indicated by the box in Fig. 12

FIG. 13. β�flat as a function of b and N/blmax . The red line is the
relation β�flat = − ln b.

and the results indicate that the quench has stabilized the
bonded, long polymers.

Hypothesis (4) is a statement about equilibrium. The val-
ues of β� at which (1/lmax)

∑lmax
L=1 δNL/δL = 0 are evaluated

numerically from b = 2 to b = 20 various values of N/blmax in
Fig. 13. They converge to the ln b = −β� when N/blmax � 1
as shown analytically in the Appendix. For proteins in a
proteome, N is of the order of 106 and blmax ≈ 202000 = 4 ×
102000 so the limit is easily realized.

V. DISCUSSION AND CONCLUSIONS

In summary, the simulations reported here on a previously
developed model are consistent with the idea posed in our
earlier paper, namely, that the polymer length distributions
observed in existing proteomes might suggest that early life
was associated with a higher temperature environment and
that the lifelike systems generated in that environment could
have been stabilized by a rapid quench to lower temperatures.
In doing those simulations we introduced new features in
the simulations (but not in the model): Quenches from high
to low temperature were incorporated and the dependence
of the resulting low-temperature steady states on the initial
temperature, the final temperature, the number of available
monomers b, and the maximum polymer length was explored.
Of particular note is the strong dependence of the results on
the initial, high temperature which needs to be quite precisely
tuned to minimize RT to achieve maximum enhancement of
lifelike states in the final, low-temperature environment. We
understand this qualitatively as arising because the low RT in
the high-temperature state permits rapid bond breaking and
formation allowing a full exploration of the state space by
the dynamics. The sharpness of the region associated with
the minimum in RT arises from the abrupt transition, in the
corresponding equilibrium state, from an equilibrium state of
nearly all monomers to a state of nearly all maximum length
polymers as a function of temperature. That was illustrated for
proteome data from the biosphere in Fig. 2 and is also man-
ifested in our simulations. An example from the simulations
was shown in Fig. 5. (This is closely associated mathemat-
ically with the Bose-Einstein transition in low-temperature
physics. However, we are working with a finite system, mean-
ing that there are no true phase transitions; we are ultimately
concerned with nonequilibrium states and the physics is en-
tirely different and not directly associated with any quantum
effects.) Though we are only able to explore it up to b = 7 we
are able to plausibly extrapolate to the protein relevant value
of b = 20 to confirm that the model is approximately consis-
tent with our earlier conjecture [10] that, from the observed
length distributions in the proteome data, we could infer that
the prebiotic formation of the first proteomes formed at a
temperature of about −�/(kB ln b). The previously proposed
relation for the optimum initial high temperature (minimizing
RT ) of ln b = −β� is approximately consistent with the nu-
merical data extrapolated to large b.

Though we have applied our analysis using the ideas de-
scribed here to proteome data, the same considerations and
model might also apply in principle to synthesis of RNA in
an RNA-world scenario for the origin of life. The phosphate
bonds in RNA are similarly of higher energy in water than
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the separated nucleotides (so in our formulation � < 0 as for
proteins). Biology only uses four nucleotides in RNA so we
would set b = 4. The maximum length of RNA in biological
systems is much longer than it is for proteins, so the expan-
sion parameter N/blmax used in the expansion in the Appendix
is likely to be small. However, experimental production of
collections of nucleotides without any proteins has proved
problematic in attempts to experimentally produce models
for RNA-world scenarios and in contemporary biology RNA
generally does not seem to occur without accompanying pro-
teins though RNA replicases have been found which could, in
principle, catalyze biochemical reactions without proteins in
an RNA world. On the other hand, relatively isolated systems
of proteins such as amyloids and prions exist. These features
made it difficult to find data relevant to the RNA-world hy-
pothesis with which to compare the results of our model and,
for those and other reasons, we have not yet fully explored
the possibility of the applicability of our results for the b = 4
case to nucleic acids in prebiotic chemistry. Note that all of
the high temperatures associated with optimal conditions for
bond formation in the hypotheses of Sec. III will not coincide
as closely in our model when b = 4 as they do when b = 20.
That would suggest that the high temperature most favorable
to quenching of solutions of amino acids to form polypeptides
may be more precisely defined than it would be for formation
of RNA from nucleotides. Thus, at the optimal high tempera-
ture, our quenching mechanism might work better for proteins
than for RNA.

We believe that these results may have implications for
possible scenarios for the origin of life and also for possible
laboratory experiments exploring conditions which could lead
to lifelike chemistry in nonbiological contexts. With regard to
the former we note that in ocean trenches [30] liquid water
at temperatures well above the boiling point under ambient
conditions is continuously being emitted and spilled quite
rapidly into cooler water. Such encounters of very hot alkaline
water emerging from an ocean trench, for example in a “black
smoker,” with acidic ocean water at temperatures near 0 ◦C
have been suggested [31] as possible prebiotic sites where
electrochemical processes could lead to the generation of
energy carrying small molecules, particularly FeS, that could
provide energy for peptide bond formation. In such an envi-
ronment, we envision that formation of polypeptide networks
behaving as in our models might occur and grow. If such pro-
cesses continued from a very early stage in the Earth’s history,
then a very high rate of continuous quenches could proceed
over many hundreds of millions of years. That a few of those
very numerous quenches could have resulted in trapping of
nonequilibrium dynamic systems out of equilibrium leading
in one case to life initiation seems to us at least as plausible as
many alternative scenarios which have been proposed.

An advantage of the scenario discussed here is that bonds
can be broken and reformed at a high rate in the high-
temperature phase, thus allowing a wide exploration of the
state space, and then be rendered more stable by quenching.
Most of those low-temperature states will not be lifelike, but
if this event occurs many millions of times, some of them
may be. The function of the quench in the envisioned scenario
is that it could trap those states out of equilibrium with the
lower temperature ambient environment associated with the

quenched state, thus possibly permitting a promising lifelike
configuration which would be rapidly transformed in the high-
temperature state to evolve and grow in the lower temperature
quenched environment. Our simulations are probably under-
estimating the magnitude of such a trapping effect, because
they do not take explicit account of the possibility that the
quench could stabilize lifelike states because of the existence
of free-energy barriers to the hydrolysis reaction leading to
scission of peptide bonds. Such barriers are known to lead to
the survival of some peptide bonds for as long as centuries in
the absence of enzymes [32], though a lower limit of more like
35 days is likely. Building a model to take explicit account
of the existence of such barriers is a high priority for future
work and is under way. In preliminary work in this direction,
we are making the distribution of reaction rates v temperature
dependent to take account of activation free energies.

A similar quenching phenomenon might occur in tidal
pools, where the daily cycles of drying and wetting are accom-
panied by cooling and heating. The temperature differences
are not expected to be as large, but an advantage is that the pro-
cess may be repeated many times on the same system. Bond
breaking is also sensitive to pH of the aqueous environment
[29] and a similar cycling of pH might lead to similar effects
in both the ocean trench and tidal pool contexts. All these pos-
sibilities require further theoretical and experimental study.

With regard to laboratory experiments, the experiments
of Yin et al. [33] in which solutions of amino acids are
dried at high temperature and then redissolved in water for
analysis approximate some of the conditions envisioned here
for prebiotic evolution. Matsuno et al. [7–9] did laboratory
experiments in which solutions of amino acid monomers
were quenched to low temperature and pressure and length
enhancements in the polypeptides produced were observed.
Our preliminary analysis of the experiments described in
Refs. [33] and [7–9] gives low values of RL and much larger
values of RT nearer 1, in qualitative agreement with our sim-
ulation results. However, the effects in the experiments are
larger than in the simulations: The experimental RL values
are smaller and the experimental values of RT are nearer 1
than they are in the simulations. There are several possible
reasons for the discrepancy including the primitive character
of the model, effects of unrealistically small b, or the lack
of barriers to dissolution of the bonds in the model. Because
the experiments of [33] and [7–9] share a similar quantitative
discrepancy with the simulations, it is unlikely that the failure
to model the details of the drying part of the experiment of
[33] is the source of the discrepancy. A more detailed analysis
of these experiments using the measures employed in this
paper will appear later.
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APPENDIX: LOW DENSITY EXPANSION
OF THE EQUILIBRIUM MODEL

Following methods closely related to standard derivations
[34] of the virial expansion for gases of interacting atoms, we
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obtain an expansion for N/blmax in the fugacity z = eμβ for the
total number of particles in equilibrium as follows: Rewrite
Eq. (5) as

N/blmax =
lmax∑
L=1

(bL−lmax − b−lmax )z

(eεl β − z)
, (A1)

where εL = −�(L − 1). Expand for small z:

N/blmax =
lmax∑
L=1

∞∑
n=0

zn+1e−(n+1)εLβ (−1)n(bL − 1)b−lmax (A2)

or reversing the orders of summation

N/blmax =
∑

n=0∞
zn+1Fn(β�). (A3)

The sums on L in Fn are geometric giving

Fn(β�) =
⎛
⎝b(1 − elmax[ln b+(n+1)β�] )

1 − eln b+(n+1)β�

− 1 − e(n+1)�βlmax

1 − e(n+1)β�

⎞
⎠(1/blmax ). (A4)

To obtain an expansion for z as a function of ρ = N/blmax from
this one inverts order by order in the standard way. The n = 0

term with b � 1 gives N/bLmax ≡ ρ = ze�β(lmax−1). That is the
“Gibbs limit.” Proceeding similarly for δNL/δL we take δL =
1 and evaluate

δNL/δL =
(

(blmax − 1)z

e�β(lmax−1) − z
− (b − 1)z

1 − z

)
=

∞∑
n=0

Gnzn+1

(A5)
with

Gn = [e−β�(n+1)(elmax[ln b+β�(n+1)] − elmax[β�(n+1)] ) − b + 1].
(A6)

Keeping only the n = 0 term and setting the result to zero we
have

e−β�(elmax(ln b+β�) − elmaxβ�) − b + 1 = 0 (A7)

with solution for β�flat,

β�flat = −[1/(lmax − 1)] ln

(
blmax − 1

b − 1

)
(A8)

giving, when b � 1, β�flat = − ln b consistent with
hypothesis (4).
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