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Noisy signal propagation and amplification in phenotypic transition cascade of colonic cells
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Like genes and proteins, cells can use biochemical networks to sense and process information. The differenti-
ation of the cell state in colonic crypts forms a typical unidirectional phenotypic transitional cascade, in which
stem cells differentiate into the transit-amplifying cells (TACs), and TACs continue to differentiate into fully
differentiated cells. In order to quantitatively describe the relationship between the noise of each compartment
and the amplification of signals, the gain factor is introduced, and the gain-fluctuation relation is obtained
by using the linear noise approximation of the master equation. Through the simulation of these theoretical
formulas, the characters of noise propagation and amplification are studied. It is found that the transmitted noise
is an important part of the total noise in each downstream cell. Therefore, a small number of downstream cells
can only cause its small inherent noise, but the total noise may be very large due to the transmitted noise. The
influence of the transmitted noise may be the indirect cause of colon cancer. In addition, the total noise of
the downstream cells always has a minimum value. As long as a reasonable value of the gain factor is selected,
the number of cells in colonic crypts will be controlled within the normal range. This may be a good method to
intervene the uncontrollable growth of tumor cells and effectively control the deterioration of colon cancer.
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I. INTRODUCTION

Signal transduction plays an important role in cell-to-cell
communication, thereby affecting cell survival, proliferation,
differentiation, and death behavior. For example, through
protein-protein activation, the cytoskeleton and nucleus can
transmit signals from the cell surface to various intracellular
destinations, thereby causing phenotypic changes [1]. Ras-
MAPK (mitogen-activated protein kinase) signal transduction
pathway can activate gene expression and change cell growth
characteristics [2,3]. The famous Michaelis-Menten equation
behaves like a molecular switch [4–6], and it acts as a key sig-
nal amplifier in the regulation of cell proliferation or apoptosis
[7]. All in all, the signaling transduction is closely related to
tissue growth and differentiation, protein synthesis and secre-
tion, the composition of intracellular and extracellular fluid,
metabolic processes, and so on [8].

The signal transduction pathway also controls and main-
tains normal physiological balance. In a healthy organism, the
process of cell growth and differentiation is strictly controlled.
But under pathological conditions, it loses control and causes
further damage signals, or the growth of malfunctioning cells.
The proliferation of damaged or dysfunctional cells is often
a key factor in the development of diseases such as cancer,
infectious diseases, inflammation, arteriosclerosis, arthritis,
and neurodegenerative diseases.

Noise permeates all levels of biological systems [9–12].
Due to the intrinsic noise originating from the random oc-
currence of biochemical reactions or the extrinsic noise
generating from the microenvironment, the biochemical
process in a single cell may fluctuate [13,14]. Therefore, the
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signal transduction system is inherently noisy [6,15,16]. The
stochastic nature of the input signal during the signal trans-
duction process in living cells had already been revealed using
single-molecule detection technique [5,15–22].

In order to explore how the signal system operates under
stochastic fluctuations, a great deal of work has been done in
the past 20 y. As early as 2000, the noise in signal transduction
was discussed, and the results showed that large amplification
would cause strong random fluctuations in the output signal
[23,24]. Research on the ultrasensitive signal cascade oper-
ating near saturation showed that even if the noisy cascade
length is large, the output signal fluctuation will be bounded
in magnitude, and the noise can be attenuated [22]. Paulsson’s
series of work showed that cells can exploit signal noise
to reduce the random variation in regulatory processes [25],
signal noise can attenuate the concentration noise in a regu-
lated component [26], and the noise generated in a reaction
can propagate in signal transduction networks [27]. In 2005,
Shibata and Fujimoto proposed the gain-fluctuation relation
in order to theoretically deal with the relationship between
noise and the signal amplification in the process of intra-
cellular signal transduction [6]. In 2008, the gain-fluctuation
relation was applied to some typical signal systems, and it
was found that the noise in the signal transduction system
restricted the chemotaxis of cells and caused their behavior
variability [15]. Using the standard �-extension technique
to study the stochastic fluctuations in the protein synthesis
cascade, the results show that for any given protein species,
the contribution of upstream protein fluctuations to its noise
should be additive [28]. The interaction network between
genes and proteins shows that positive feedback as a central
element can buffer the propagation of noise while maintaining
sensitivity to long-term changes in the input signal [29]. In
2012, an abstract model of the Myc/E2F/MiR-17-92 network
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was analyzed, suggesting that the negative (positive) feedback
mechanism in coupled feedback loop can dynamically buffer
noise impact, not just suppress or amplify the noise [30].
Based on the combination of global sensitivity analysis and
stochastic simulations, a systematic method to characterize
noise propagation in the cascade was developed [7]. Later,
another intuitive but fully quantitative method was proposed
to analyze how noise affects the phenotype of cells. It was
found that noise can simultaneously enhance the sensitivity
in one behavioral region and reduce the sensitivity in another
[13]. In 2014, using information theory to evaluate the channel
capacity of the complex promoter architecture and comparing
it with the baseline provided by the two-state model, the
results show that, except in certain cases, adding internal
states to the promoter generally reduces the channel capacity
[31]. One year later, the theoretical analysis of switchlike
promoters revealed that the ability of the circuit to attenuate
noise is a trade-off between the strength of suppression and
that of the promoter [32]. In 2017, analysis based on single-
cell microscopy showed that noise can interact synergistically
with oscillatory dynamics, thereby enhancing the sensitivity
of signal processing [33].

Quantifying biochemical processes at the cellular level is
becoming the central task of modern molecular biology [13].
Like genes and proteins, cells can also use biochemical net-
works to sense and process information [29].

Therefore, interesting questions are pointed out: How does
the noise of cells in biochemical networks relates to the am-
plification of signals? What is the main source of total noise
in cells? To address these issues, we choose a unidirectional
phenotypic transition cascade in a colonic crypt [34–36] as
an example of a stochastic computation system. As in the
gene expression cascade, the upstream cells are used as input
signals, the downstream cells are used as output signals, and
a gain factor [6,14–17,27,29,37] is introduced to obtain the
gain-fluctuation equation, which can quantitatively describe
the propagation of the noise in the phenotypic transition
cascade. Moreover, the noise amplification ratio [7,30,31] be-
tween the output signal and the input signal is obtained.

Gillespie’s algorithm [38] is a classic approach for stochas-
tic simulation of chemical systems [32]. It is usually used
to test whether the theoretical results are correct, because
this algorithm can give statistically accurate simulations. In
our work, all data are compared with those of the Gillespie
algorithm.

The paper is arranged as follows. We start by constructing a
unidirectional phenotypic transition cascade in a colonic crypt
in Sec. II. In Sec. III, the gain-fluctuation relation for theoreti-
cally analyzing how noise relates to the signal amplification in
the phenotypic transition cascade of colonic crypt is derived
by using the linear noise approximation of the master equation
[39,40]. By virtue of these theoretical formulas, the effect of
the gain on noise propagation and amplification is studied in
Sec. IV. We end with conclusions and discussions in Sec. V.

II. UNIDIRECTIONAL PHENOTYPIC TRANSITION
CASCADE IN A COLONIC CRYPT

Consider a model of differentiations of cell states in a
colonic crypt. There are three compartments containing stem

FIG. 1. A schematic diagram of differentiations from SCs to
TACs and then to FDCs in a colonic crypt.

cells (SCs), transit-amplifying cells (TACs), and fully dif-
ferentiated cells (FDCs) [35–37], as shown in Fig. 1. SCs
undergo renew, death, and differentiate into TACs with the
probabilities per unit time a1, b1, and α12, respectively. And,
TACs undergo renew, death, and differentiate with the prob-
abilities per unit time a2, b2, and α23, respectively. FDCs
come from the differentiation of TACs and are removed with
the probability per unit time b3. In order to maintain the
cell population under the equilibrium in the crypt, the tran-
sition rates among the different phenotypes are taken as α12 =
α0 + k1N1/(1 + m1N1) with an inherent transition rate α0, and
α23 = β0 + k2N2/(1 + m2N2) with an inherent transition rate
β0, in which ki and mi(i = 1, 2) are non-negative constants,
where ki represents the speed of response of the feedback and
mi represents feedback saturation. With the increasing of the
population SCs (or TACs), its differentiation rate is increased
until to a maximum value. So, this feedback mechanism is
named the saturating feedback. Here we take the dimension-
less parameters a2 = 0.5, b1 = b2 = 0.1, b3 = 0.323, α0 =
0.1, β0 = 0.2, k1 = m1 = 0.1, k2 = m2 = 0.01 [34–36,41].

In the deterministic description, the time evolution of the
cell population can be written

dN1

dt
= a1N1 − b1N1 − α12N1

dN2

dt
= a2N2 − b2N2 + α12N1 − α23N2

dN3

dt
= −b3N3 + α23N2, (1)

where N1, N2, N3 are the numbers of SCs, TACs, and FDCs,
respectively. Taking dNi/dt = 0(i = 1, 2, 3), the steady states
Ns

i are obtained as follows:

Ns
1 = α

k1 − m1α

Ns
2 = β + Dm2 +

√
(β − Dm2)2 + 4Dk2

2(k2 − m2β )

Ns
3 = α23

b3
Ns

2, (2)

with α = a1−b1−α0, β = a2−b2−β0, D = α12Ns
1 . Here α and

β denote the inherent net (per-capita) growth rates of SCs and
TACs, respectively. D is the differentiation rate of stem cells
at the steady state. In order to ensure that the number of each
cell population at steady state is a valid value, α and β should
satisfy the following conditions:

0 < α <
k1

m1
, 0 < β <

k2

m2
. (3)
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III. GAIN-FLUCTUATION RELATION

A. Fokker-Planck equation

The joint probability distribution P(N1, N2, N3, t ) of pop-
ulation kinetics Eq. (1) obeys the following master equation
[39,40]:

∂P

∂t
=

3∑
i=1

[(
E−1

i − 1
)

aiNi + (
E1

i − 1
)

biNi

+
∑
j �=i

(
E1

j E−1
i − 1

)
α jiNj +

∑
j �=i

(
E1

i E−1
j

)
αi jNi

]
P,

(4)

where Ei and Ej are the step operators acting on Ni and
Nj , respectively. For a function f (Ni, Nj ) with two integer
arguments, the step operator E±m

i (or E±m
j ) increases Ni (or

Nj) by an integer ±m, i.e., E±m
i f (Ni, Nj ) = f (Ni ± m, N j ),

E±m
j f (Ni, Nj ) = f (Ni, Nj ± m).
The master equation cannot be solved accurately, so it is

necessary to adopt a systematic approximation method. By
using van Kampen’s �-expansion method, the subpopula-
tion is approximated by setting Ni(t ) = �xi(t ) + �1/2ξi(t ) for
large system size �, and the joint probability distribution is
written by P(N1, N2, N3, t ) = �−3/2�(ξ1, ξ2, ξ3, t ). Collect-
ing the terms of �0 in the expansion of Eq. (4) forms a linear
Fokker-Planck equation,

∂

∂t
� = −

3∑
i,k

Aik
∂

∂ξi
(ξk�) + 1

2

3∑
i,k

Bik
∂2�

∂ξi∂ξk
, (5)

where A is the drift matrix and B is the diffusion matrix.
A and B depend on the stoichiometry of the transitions
and the macroscopic rates. The matrix elements Aik are
defined by

Aik = ∂

∂xk

(
aixi − bixi −

∑
j �=i

αi jxi +
∑
j �=i

α jixi

)
, (6)

the matrix elements Bik are defined by

Bii = 2

(
aixi +

∑
j �=i

α jix j

)
,

Bik = −(αikxi + αkixk ) (k �= i). (7)

B. Normalized fluctuation-dissipation formula

For stationary variances, the linear noise approximation is
summarized by

AC + (AC)T + �B = 0, (8)

where matrix C contains both the variance Cii which charac-
terizes the fluctuation in population of the i th phenotype and
the covariance Cik which represents the degree of correlation
between the noise in the i th subpopulation and that in the
k th subpopulation. Equation (8) is named the fluctuation
dissipation relationship.

To quantify the noise propagation in phenotypic transition
cascades around the steady state, Eq. (8) is normalized as

MV + (MV)T + D = 0, (9)

with

Vik = Vki = Cik

〈Ni〉〈Nk〉 , Mik = Aik
〈Nk〉
〈Ni〉 , Dik = �Bik

〈Ni〉〈Nk〉 .
(10)

Angle brackets indicate average values. In the mean-field
theory, the stationary population number can be replaced by
its mean value, namely Ns

i = 〈Ni〉. Equation (9) is named the
normalized fluctuation-dissipation formula.

By using Eq. (7) and Eq. (10), and taking into account
Ni(t ) = �xi(t ) + �1/2ξi(t ), we have

Dii = 2
[
ai〈Ni〉 + ∑

j �=i α ji〈Nj〉
]

〈Ni〉2 ,

Dik = −
(

αik

〈Nk〉 + αki

〈Ni〉
)

(k �= i). (11)

C. The reaction flux elasticity

To measure how the balance between production and elim-
ination of Ni is affected by Nk , the reaction flux elasticity
[27,35–37] is defined by

Hki =
〈
∂ ln (J−

i /J+
i )

∂ ln Nk

〉
, (12)

where J+
i = ai + ∑

j �=i α jiNj is the pure production rate of
phenotype i and J−

i = bi + ∑
j �=i αi jNi is the pure elimination

rate of phenotype i. Equation (12) also can be rewritten as

Hki = −
〈

Nk

J+
i

∂

∂Nk
(J+

i − J−
i )

〉
. (13)

Here, J+
i − J−

i is the net production rate of phenotype i.
Taking into account Eq. (1), we have H13 = H21 = H31 =

H32 = 0, H33 = 1, and

H11 = α

a1

(
1 − m1

k1
α
)
,

H22 = 1

b2 + α23

[
α12〈N1〉
〈N2〉 + k2〈N2〉

(1 + m2〈N2〉)2

]

H12 = − 〈N1〉
a2〈N2〉 + α12〈N1〉

[
α12 + k1〈N1〉

(1 + m1〈N1〉)2

]
.

H23 = − 1

α23

[
α23 + k2〈N2〉

(1 + m2〈N2〉)2

]
. (14)

It can be seen that H11, H22 > 0 and H12, H23 < 0, because
all parameters and mean values 〈Ni〉 are positive. Based on
Eq. (13) and Eq. (14), it is shown that SCs or TACs can nega-
tively regulate their own net production rates, while upstream
cells can positively regulate the net production rates of their
downstream cells. The former is because as their number in-
creases, more and more SCs or TACs will differentiate, while
the latter is because TACs (or FDCs) mainly come from the
differentiation of SCs (or TACs).
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D. The gain factor

In the signal transduction system, the noise amplification
can be quantified by gain g, which is defined as the ratio of the
relative change of the output signal to that of the input signal
[6,14–17,27,29,37]. In the phenotypic transition cascade, we
take the upstream cells as input signals and the downstream
cells as output signals. So, the input and output signals are
affected by the reaction process, which is different from the
signal transduction system. Therefore, when the populations
change very little, we redefine the gain factor based on the
reaction flux as

gik =
∣∣∣∣
〈
�Nk /Nk

�Ni/Ni

〉∣∣∣∣ =
∣∣∣∣
〈
∂ ln Nk

∂ ln Ni

〉∣∣∣∣
=

∣∣∣∣
〈
∂ ln(J−

k

/
J+

k )

∂ ln Ni

〉〈
∂ ln Nk

∂ ln (J−
k /J+

k )

〉∣∣∣∣ =
∣∣∣ Hik

Hkk

∣∣∣. (15)

The sign of the absolute value ensures that the gain coefficient
is positive, because it is known from Eq. (14) that the value of
H12 or H23 may be negative. In our work, there are two gain
factors as following:

g12 =
∣∣∣H12

H22

∣∣∣ ≡ g1, g23 =
∣∣∣H23

H33

∣∣∣ ≡ g2. (16)

They are called the first-order signal factor and the second-
order signal factor, respectively.

E. Gain-fluctuation relation

Under the steady state, 〈J+
i 〉 = 〈J−

i 〉 = 〈Ji〉, so that the
average lifetime is determined by the subpopulation divided
by the total rate of elimination,

τi =
〈

Ni

J−
i

〉
=

〈
Ni

J+
i

〉
=

〈Ni

Ji

〉
. (17)

For the three compartments SCs, TACs, and FDCs in a colonic
crypt, their average lifetimes are, respectively,

τ1 = 1/a1, τ2 = 1/(b2 + α23), τ3 = 1/b3. (18)

Thus, the drift matrix A and its normalized form M at the
steady state are rewritten, respectively, as

Aik = 〈Ni〉
〈Nk〉
igki, Mik = Aik

〈Nk〉
〈Ni〉 = gki
i, (19)

where 
i = 〈 ∂
∂Ni

(J+
i − J−

i )〉, which is the net production
probability per unit time at the steady state, represents the
change rate of net production rate with its own number, and
reflects the influence of the i th phenotypic state on its own
growth.

Substituting Eq. (11) and Eq. (19) into Eq. (9), we get

3∑
j=1

Vjig ji = − 1

〈Ni〉τi
i
, (20)

3∑
j=1

(Vjk
ig ji + Vi j
kg jk ) =
[

αik

〈Nk〉 + αki

〈Ni〉
]

(k �= i).

(21)

Expanding Eq. (20) and Eq. (21) with Vi j = Vji (i, j =
1, 2, 3), g12 ≡ g1, and g23 ≡ g2, we can obtain the correlation
between fluctuations in the i th phenotype and in the j th phe-
notype, that is normalized covariance Vi j (i = 1, 2, 3; i �= j),
as following:

V12 = V21 = −V11g1

2


1 + 
2
+ α12/〈N2〉


1 + 
2
, (22)

V13 = V31 = −V12g2

3


1 + 
3
, (23)

V23 = V32 = −V13g1

2


2 + 
3
− V22g2


3


2 + 
3
+ α23/〈N3〉


2 + 
3
.

(24)

Then, we can obtain normalized variations Vii (i = 1, 2, 3), as
following:

V11 = − 1

〈N1〉τ1
1︸ ︷︷ ︸
intrinsic noise

, (25)

V22 = − 1

〈N2〉τ2
2︸ ︷︷ ︸
pure intrinsic noise

+
(

−α12/〈N2〉

1 + 
2

g1

)
︸ ︷︷ ︸

conversion noise between SCs and TACs

+ V11

2


1 + 
2
g2

1︸ ︷︷ ︸
transmitted noise fromSCs

, (26)

V33 = − 1

〈N3〉
3τ3︸ ︷︷ ︸
pure intrinsic noise

+V11

2


1 + 
2


2


2 + 
3


3


1 + 
3
g2

1g2
2︸ ︷︷ ︸

transmitted noise from SCs

+ V22

3


2 + 
3
g2

2︸ ︷︷ ︸
transmitted noise from TACs

+
(

− 
2


2 + 
3


3


1 + 
3

α12/〈N2〉

1 + 
2

g1g2
2

)
︸ ︷︷ ︸

conversion noise between SCs and TACs

+
(

−α23/〈N3〉

2 + 
3

g2

)
︸ ︷︷ ︸

conversion noise between TACs and FDCs

. (27)

Vii represents the total noise in the i th phenotypic
state. Equations (25)–(27) are gain-fluctuation relationship,

which indicates that the noise propagation along the sig-
nal cascade can be characterized by the gain factor
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FIG. 2. Gain factors gk (k = 1, 2) as a function of α. The other parameter values are given in the text. All the parameters are measured in
hours−1.

gk (k = 1, 2), the characteristic time of the signal response
�il = 
i/(
i + 
l ), (i = 2, 3; l = 1, 2, 3, and l �= i). It is
also shown that the noise in the upstream cells can propagate
to the downstream cells. And, the contribution of the fluctu-
ation in the upstream cell to that in the downstream cell is
additive. That is to say, the noise of the downstream cell can
be expressed as a linear function of the noise of the upstream
cell. The total noises in the i th phenotypic state include the
intrinsic noise of the i th phenotypic state, the transmitted
noise from the upstream phenotypes, and the interconversion
noise.

F. Noise amplification rate

In the phenotypic transition cascade, we take upstream
cells as input signals and downstream cells as output signals.
When the upstream cell (i.e., the i th phenotype) fluctuates
with the standard deviation σii, and the downstream cell (i.e.,
the j th phenotype) fluctuates with the standard deviation σ j j ,
the ratio of relative noise intensity gives the noise amplifica-
tion rate [6,29,30] as follows:

Ai j = σ j j/〈Nj〉
σii/〈Ni〉 . (28)

In the fluctuation-dissipation formula [Eq. (8)], Cii means
the variance of fluctuations in the i th phenotype. Therefore,

Cii = σ 2
ii . (29)

Substituting Eq. (29) into Eq. (28) and considering Eq. (10),
the noise amplification rate is redefined as

Ai j =
√

Vj j

Vii
. (30)

Because the phenotypic transition cascade in colonic crypts
is unidirectional, there are three noise amplification rates in
our work as following:

A12 =
√

V22

V11
≡ A1, A23 =

√
V33

V22
≡ A2,

A13 =
√

V33

V11
≡ A3. (31)

IV. SIMULATIONS AND RESULTS

A. The character of gain factors

The parameter α represents the inherent net (per-capita)
growth rate of SCs. From Eq. (2), we can see that α affects
the numbers of three cell populations. It is one of the key
parameters in the phenotypic transition cascade of colonic
crypts, so the parameter α is selected as the control variable.

The gain factors gk (k = 1, 2) as a function of α are given
in Fig. 2. It is shown from Fig. 2(a) that g1 increases with
the increase of α. In the whole parameter range, 0 < g1 � 1,
which means the relative change of the output signal is smaller
than that of the input signal. Therefore, the noise is attenuated
from SCs to TACs. Figure 2(b) shows that g2 decreases rapidly
as α increases. In the whole parameter range, g1 � 1, which
means the relative change of the output signal is greater than
that of the input signal. Therefore, the noise is amplified from
TACs to FDCs.

B. Effects of gain factors on covariance

It can be seen from Eq. (22) that V12 seems to have a linear
relationship with g 1. However, g 1 is closely related to the
numbers of SCs N1 and TACs N2. Therefore, it is difficult to
directly judge the relationship between them based on these
expressions. It can be seen from Eq. (23) and Eq. (24) that
V23 and V13 are the same.

The three-dimensional graphs of α, gk (k = 1, 2) and
normalized covariance Vi j (i = 1, 2, 3; i �= j) are shown in
Figs. 3(a) and 3(c). The corresponding projection of each
graph on the gk − Vi j plane is shown in Figs. 3(b) and 3(d).
It can be shown that V12, V13, V23 > 0. So, there is a positive
correlation between the fluctuations in any two of three phe-
notypic states. The responses of V12, V23, and V13 to changes in
g1 or g2 are similar. Each curve in Fig. 3(b) is approximately a
parabola with upward opening, and its lowest point is approx-
imately at g1 = 0.6. It means that when the first-order signal
factor is 0.6, the correlation between any two fluctuations in
three phenotypic states is the weakest. Each curve in Fig. 3(c)
is an asymmetric deformed parabola with an upward open-
ing, and its lowest point is approximately at g1 = 1.4. It is
suggested that when the second-order signal factor is 1.4, the
correlation between any two fluctuations in three phenotypic
states is the weakest.
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FIG. 3. Effects of gain factors gk (k = 1, 2) on normalized co-
variances Vi j (i = 1, 2, 3; i �= j). (a), (c) Three-dimensional figures of
α, gk, and Vi j ; (b), (d) corresponding projection figures on the gk-Vi j

plane. Lines are theoretical predictions according to Eqs. (22)–(24).
Hollow markers are from simulations using the Gillespie method
[39]. The other parameter values are given in the text. All the pa-
rameters are measured in hours−1.

C. Effects of gain factor on fluctuations

The three-dimensional graphs of α, gk (k = 1, 2) and nor-
malized variance Vii(i = 2, 3) are shown in Figs. 4(a) and 4(c).
The corresponding projection of each graph on the gk-Vii plane
is shown in Figs. 4(b) and 4(d). It can be seen from Fig. 4(b)
that as g1 increases, the normalized variance of TACs V22 first

FIG. 4. Effects of gain factors gk (k = 1, 2) on normalized vari-
ances Vii(i = 2, 3). (a), (c): Three-dimensional figure of α, gk , and
Vii; (b), (d): Corresponding projection figures on the gk-Vii plane.
Lines are theoretical predictions according to Eqs. (26) and (27).
Hollow markers are from simulations using the Gillespie method
[39]. The other parameter values are given in the text. All the pa-
rameters are measured in hours−1.

decreases, reaches the minimum nearly at g1 = 0.65, and then
increased to 0.12.

The shape of V33 is similar. V22 and V33 reach their min-
imums almost synchronously at g1 = 0.65. In particular, for
each g1, the value of V33 is greater than that of V22, which
means that the relative fluctuation of FDCs (i.e., the noise in
FDCs) is stronger than that in TACs.

With the increase of g2, the normalized variance of TACs
V22 or FDCs V33 first decreases, reaches the minimum nearly
at g1 = 1.40, and then rapidly increases to 0.12 or 0.16, as
shown in Fig. 4(d). Comparing the two curves, we can find
for the most of g2, the value of V33 is greater than that of V22.
So, in most cases, the noise in FDCs is stronger than that in
TACs.

Thus, with the increase of g1 or g2, the changes of V22

and V33 are synchronous. Therefore, we can adjust g1 or g2

to obtain the smallest noises in TACs and in FDCs, thereby
regulating their population under control. Relatively speaking,
g1 is better than g2 in regulating the noise of TACs or FDCs.

D. Effects of gain factor on noise propagation

Using Eqs. (25)–(27), the effect of gain factors
gk (k = 1, 2) on noise propagation in three cell states are
discussed by Eq. (25) shows that the total noise in SCs is only
pure intrinsic noise, because there is no random fluctuation
environment provided by other compartments. Equation (26)
or Eq. (27) shows that the total noise of TACs or FDCs can
be decomposed into intrinsic noise, transmitted noise, and
conversion noise. The pure intrinsic noise (Niτi
i)−1 of TACs
(i = 2) or FDCs (i = 3) depends on its low numbers Ni, the
average lifetime τi, and the net production probability per unit
time at the steady state 
i. The transmitted noise of TACs
comes from the intrinsic noise of SCs, and the conversion
noise of TACs is caused by the differentiation from SCs to
TACs. The transmitted noise of FDCs includes two parts:
One comes from the intrinsic noise of SCs, and the other
comes from the total noise of TACs. The conversion noise
of FDCs is also composed of two parts: One comes from the
differentiation from TACs to FDCs, and the other comes from
the differentiation from SCs to TACs, respectively.

The corresponding simulation result is shown in Fig. 5. As
g1 increases, the intrinsic noise of TACs decreases, the trans-
mitted noise from SCs increases, and the conversion noise
between SCs and TACs is almost zero, as shown in Fig. 5(a).
With g2 increases, the intrinsic noise of TACs increases, the
transmitted noise from SCs decreases, and the conversion
noise between SCs and TACs is almost zero, as shown in
Fig. 5(c). Therefore, whether it is g1 or g2, the total noise of
TACs depends on both intrinsic noise and transmitted noise.

As g1 increases, the intrinsic noise of FDCs, the conver-
sion noise between SCs and TACs, and the conversion noise
between TACs and FDCs are relatively small, so each one can
be ignored, as shown in Fig. 5(b). In addition, the transmitted
noise from SCs increases, and the transmitted noise from
TACs decreases. Similarly, as g2 increases, the intrinsic noise
of FDCs, the conversion noise between SCs and TACs, and
that between TACs and FDCs are so small that each can be
ignored, as shown in Fig. 5(d). In addition, the transmitted
noise from SCs decreases, while that from TACs increases.
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FIG. 5. Effects of gain factors gk (k = 1, 2) on noise propagations in cell states cascade in colonic crypt. Lines are theoretical predictions
according to Eqs. (26) and (27). Hollow markers are from simulations using the Gillespie method [39]. The other parameter values are given
in the text. All the parameters are measured in hours−1.

Therefore, whether for g1 or g2, the total noise in FDCs mainly
depends on transmitted noise from SCs and TACs.

Consequently, the transmitted noise is an important com-
ponent of the total noise in each downstream cell. If the
cell population is not too small, it will only cause the small
intrinsic noise. Due to the transmitted noise coming from the
upstream cell, the total noise is not necessarily small.

E. Effects of gain factor on noise amplification

The three-dimensional graphs of α, gk (k = 1, 2) and noise
amplification rate Ai(i = 1, 2, 3) are shown in Figs. 6(a) and
6(c). The corresponding projection of each graph on the gk-Ai

plane is shown in Figs. 6(b) and 6(d). It is found from Fig. 6(b)
that the values of A1 and A3 are both less than 1, which
indicates that the noise from SCs to TACs or to FDCs is
attenuated. With the increase of g1, the values of A1 or A3

increase, which means that the attenuation strength is weak-
ened, and finally the noise of TACs or of FDCs is the same
as that in SCs. Meanwhile, the value of A2 is greater than 1,
which suggests that the noise from TACs to FDCs is amplified.
With the increase of g1, the amplification intensity decreases
to the minimum at g1 = 0.56, then increases to the maximum
at g1 = 0.71, and finally decreases to 1.

It is found from Fig. 6(d) that the values of A1 and A3 are all
less than 1, which indicates that the noise is attenuated from
SCs to TACs and FDCs. With the increase of g2, the value of
A1 or A3 first decreases linearly, and then decreases rapidly
nearly at g2 = 1.42, until to the minimum 0.2, which means
that the attenuation intensity first decreases slowly, and then
suddenly decreases to a minimum.

Meanwhile, the value of A2 is greater than 1, which indi-
cates that the noise is amplified from TACs to FDCs. And,
the amplification intensity increases to the maximum at g2 =
1.28, then decreased to the minimum at g2 = 1.42, and finally
increased until to 1.14.

FIG. 6. Effects of gain factors gk (k = 1, 2) on noise amplifi-
cation rates Ai(i = 1, 2, 3). (a), (c) Three-dimensional figure of α,
gk , and Ai(i = 1, 2, 3). (b), (d): Corresponding projection figures
on the gk-Ai plane. Lines are theoretical predictions according to
Eq. (31). Hollow markers are from simulations using the Gillespie
method [39]. The other parameter values are given in the text. All the
parameters are measured in hours−1.
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Therefore, with the increasing of g1 or g2, the noise is
always amplified from TACs to FDCs, and attenuated from
SCs to TACs or to FDCs. Reasonable selection of gain factors
can effectively adjust the noises of TAC and FDC.

V. CONCLUSIONS AND DISCUSSION

Signal transduction plays an important role in communi-
cation between cells. It can affect cell survival, proliferation,
differentiation, and death behavior. Like genes and proteins,
cells can use biochemical networks to sense and process
information [29]. In order to quantitatively describe the re-
lationship between the noise of cells in biochemical networks
and the amplification of signals, we choose a unidirectional
phenotypic transition cascade in a colonic crypt [34–36] as an
example of a stochastic computation system. Taking upstream
cells as input signals and downstream cells as output signals,
the gain-fluctuation equation is obtained by introducing gain
factors. Through the simulation of these theoretical formu-
las, the characters of noise propagation and amplification are
studied.

Different from most works based on the gene level, our
work is based on the cellular level in studying the characters of
noise propagation and amplification. Different from the gene
expression cascade, the input and output signals in our work
are affected by biochemical reaction process, rather than a
simple numerical change. So, the results are very interesting.

On the one hand, because of the influence of the transmitted
noise, the total noise would be large even if the number of
cells is large. The influence of the transmitted noise may be the
indirect cause of colon cancer. Therefore, no matter whether
the number of cells is large or small, the influence of noise on
biological system dynamics behavior should be considered.
On the other hand, the total noise of the downstream cells
always has a minimum value. Therefore, we can intervene in
the uncontrollable growth of tumor cells and effectively con-
trol the deterioration of colon cancer by selecting a reasonable
value of the gain factor. The above conclusions may provide
a theoretical basis for clinical control or treatment of colon
cancer.

Our work is mainly focused on the unidirectional transition
cascade in which upstream cells can transform into down-
stream cells, but not vice versa. For a bidirectional transition
cascade, such as the interconversion between three cell states
in breast cancer lines [42] or the transitions between two
species in a bacterial community with exploitative competi-
tion [43], the interconversion between different cells provides
a more complicated random environment. It would be highly
interesting to investigate the characters of noise propagation
and amplification in our future works.
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