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Mechanism underlying dynamic scaling properties observed in the contour
of spreading epithelial monolayer

Toshiki Oguma, Hisako Takigawa-Imamura , and Takashi Miura
Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Japan

(Received 6 July 2020; accepted 14 October 2020; published 4 December 2020)

We found evidence of dynamic scaling in the spreading of Madin-Darby canine kidney (MDCK) cell
monolayer, which can be characterized by the Hurst exponent α = 0.86 and the growth exponent β = 0.73, and
theoretically and experimentally clarified the mechanism that governs the contour shape dynamics. Dynamic
scaling refers to the roughness of the surface scales, both spatially and temporally. During the spreading of
the monolayer, it is known that so-called leader cells generate the driving force and lead the other cells.
Our time-lapse observations of cell behavior showed that these leader cells appeared at the early stage of
the spreading and formed the monolayer protrusion. Informed by these observations, we developed a simple
mathematical model that included differences in cell motility, cell-cell adhesion, and random cell movement.
The model reproduced the quantitative characteristics obtained from the experiment, such as the spreading
speed, the distribution of the increment, and the dynamic scaling law. Analysis of the model equation shows
that the model can reproduce different scaling laws from (α = 0.5, β = 0.25) to (α = 0.9, β = 0.75), where the
exponents α and β are determined by two dimensionless quantities determined by the microscopic cell behavior.
From the analytical result, parameter estimation from the experimental results was achieved. The monolayer
on the collagen-coated dishes showed a different scaling law, α = 0.74, β = 0.68, suggesting that cell motility
increased ninefold. This result was consistent with the assay of the single-cell motility. Our study demonstrated
that the dynamics of the contour of the monolayer were explained by the simple model, and we propose a
mechanism that exhibits the dynamic scaling property.
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I. INTRODUCTION

The shape of mammalian cell colonies varies, depending
on the cell type and its environment. In the field of oncology,
there is known to be a correlation between shape and ma-
lignancy of cancer, and suitable strategies for treatment can
be inferred from analyzing the shape of cancer cell colonies
[1]. To quantify the shape of these colonies, fractal analysis is
often used. It has been reported that a high fractal dimension
D reflects a heterogeneous contour shape, and that fractal
dimension and cancer malignancy are likewise correlated [2].
Cancer cells show higher proliferation rates, higher motilities,
and weaker cell-cell adhesion than benign cells [1]. These
differences are thought to affect collective cell behavior and
contribute to the roughness of contour shapes in cancer.

Cell movements are promoted by chemical or physical cues
such as signal molecules and mechanical forces, in response
to which cells modulate their downstream cytoskeleton by
altering the subcellular localization of small G proteins such
as RhoA, Rac1, and Cdc42 [3–5]. In collective cell migration,
highly motile cells are often observed at the edge of the
epithelial monolayer in vitro. Known as leader cells, these
are characterized by having high Rac1 activity, thick actin
filaments, and large cell bodies with spreading lamellipodia
[6,7]. Leader cells can generate a driving force to spread
the epithelial tissue and are often observed at the tips of
monolayer protrusions [8–10]. However, the relationship
between leader cells and the overall contour shape remains
controversial. Mark et al. suggested that sharp curvature

promoted the appearance of the leader cells [11]. On the
other hand, several studies have suggested that leader cells
are determined by different mechanisms, such as mechanical
force [12,13] and the Dll4-Notch1 pathway [14], and then
form monolayer protrusions.

It is known that many curves in nature, such as the earth’s
surface in cross section and the interface of clouds, form self-
affine fractal structures [15]. The self-affine fractal structures
do not show self-similarity, such as Koch’s curve and the
Menger sponge. However, a similar curve can be obtained
through statistical rescaling that involves changing the hor-
izontal coordinates by a, while the vertical coordinates are
changed by b, and a = bα holds. The exponent α is called
the Hurst exponent, and self-affine fractal structure is char-
acterized by the Hurst exponent. The fractal dimension D is
also used to quantify the roughness of the structure. It can
be measured using the box-counting method [16,17]. It is
known that α and the fractal dimension D satisfy α + D = 2
for a curve in two-dimensional space [16,18]. The simplest
example of self-affine fractal structure is a Brownian curve,
which is the trajectory of a particle undergoing Brownian
motion plotted over time. Its fractal dimension is D = 1.5 and
its Hurst exponent is α = 0.5.

For a growing interface, the local roughness w(l, t ) is de-
fined as the standard deviation of the height of the interface,
within a closed range of length l:

w(l, t ) = 〈
√

〈[h(x, t ) − 〈h〉l ]2〉l〉, (1)
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where 〈· · · 〉l denotes the average value in the closed range.
The quantity h(x, t ) is the “height” of the interface at the
location x, and it represents the shape of the contour. Such a
system is said to exhibit dynamic scaling when the following
relationships are satisfied [17,19]:

w(l, t ) ∼
[

lα for l � l∗

tβ for l � l∗
, (2)

where the length l∗ increases as time evolves. The former
equation confirms that the interface forms a self-affine fractal
structure, and the latter means that the heterogeneity of the
entire interface is scaled by the time. The exponent α is the
Hurst exponent of the interface, and β is called the growth
exponent.

Dynamic scaling has been identified in various phenomena,
including bacterial colonies on agar [20,21], propagating slow
combustion of paper [22], and growing interfaces in a turbu-
lent liquid crystal [23]. In collective migration of vertebrate
cells, the contours of cell colonies of HeLa and Vero cell
lines were also found to exhibit dynamic scaling, with α =
0.50 and β = 0.32 [24,25]. Some partial differential equa-
tions that show the properties of dynamic scaling are well
known, including the Edwards-Wilkinson (EW) equation,
the Kardar-Parisi-Zhang (KPZ) equation, and the Kuramoto-
Sivashinsky (KS) equation. The EW equation is a stochastic
partial differential equation with diffusion and spatiotem-
porally independent noise terms [26], the KPZ equation is
similar to the EW equation but includes a nonlinear term [27],
and the KS equation is a partial differential equation with
the diffusion, nonlinear, and spatially fourth derivative terms
[28]. Intriguingly, both the KPZ and KS equations are known
to have the same Hurst and growth exponents, α = 1/2 and
β = 1/3. The sharing of similar scaling exponents between
different phenomena and solutions is a property known as
universality. In particular, the universality characterized by
α = 1/2 and β = 1/3 is called KPZ universality [27,29].

While various experimental systems that show dynamic
scaling have been reported, to our knowledge, the underlying
mechanisms that generate dynamic scaling laws are rarely
considered [21]. In the current study, we aimed to uncover
the mechanisms that lead to dynamic scaling properties in
the contour of the epithelial monolayer, through experimental
observations, numerical simulation, and analysis. In experi-
ments, we observed the spreading of the Madin-Darby canine
kidney (MDCK) cell monolayer and found that its time evolu-
tion followed a dynamic scaling law that was distinct from the
KPZ universality. Our observations and mathematical model
showed that the proportion of leader cells and cell-cell adhe-
sion both play critical roles in the dynamics of the contour.
From analytical consideration, we find that α and β are de-
termined by the intensity of the random movement relative to
differences of cell motility.

II. MATERIALS AND METHODS

A. MDCK cell culture

MDCK II cells were cultured using Eagle’s minimal es-
sential medium (MEM; Nacalai tesque) containing 10% fetal
bovine serum (FBS) and 100 U/ml penicillin-streptomycin

(Nacalai tesque), and maintained in a 5% CO2 controlled
atmosphere at 37 ◦C.

B. Fabrication of PDMS sheets

Polydimethylsiloxane (PDMS) sheets, used to create a
cell-free regions, were prepared in the following manner: A
well-mixed PDMS (Sylgard 184, Toray) precursor solution,
with a 10:1 ratio of prepolymer to curing agent, was poured
onto a flat polystyrene plate to a thickness of 1 mm and then
cured in a drying oven at 80 ◦C for 2 h. After curing, 8-mm
PDMS disks with 3- or 4-mm holes were created using biopsy
punches (Maruho).

C. Cell patterning

The PDMS sheets were placed on the surface of a 27-mm
glass-bottom dish (IWAKI), and the holes in the sheets were
filled with MEM (without air bubbles), along with 2 ml
of MDCK cells suspended in medium (2.5 × 105 cells/ml).
Samples were incubated at 37 ◦C and 5% CO2 for 48–
72 h, until cells reached confluence within the holes of the
sheets, and then the PDMS sheets were gently removed and
samples were washed with MEM twice. The medium was
changed with fresh medium containing CellTracker green
CMFDA (5-chloromethylfluorescein diacetate) dye (5 μM;
Invitrogen) and Hoechst33342 (1 μg/ml; Dojindo). After
4 h of incubation, the time-lapse observation was performed.
The collagen-coated dishes were prepared with 27-mm glass-
bottom dishes and type I-c collagen solutions (100 μg/ml;
Nitta Gelatine).

D. Time-lapse microscopy

The time-lapse observations were performed using a Nikon
A1 confocal microscope with a 10× or 20× objective lens.
The cells were maintained in a 5% CO2 controlled atmosphere
at 37 ◦C. Images were acquired every 20 min (for Fig. 3) or
30 min (for Figs. 2, 6, and S5 [30]) until 18 h had elapsed after
the PDMS sheet removal.

E. Measurement and quantification of cell spreading

The fluorescence microscopy images were numerically
converted and analyzed quantitatively using IMAGEJ (National
Institute of Health), PYTHON, and MATHEMATICA (Wolfram).
The images were binarized to capture the shape of the mono-
layer, with the threshold values for binarization determined
and set manually. We defined the centroid as the center of
gravity of the cell monolayer in the initial image. The dis-
tance D(θ ) from the centroid to the contour was measured
along 2000 directions, with constant intervals. The mean front
distance was calculated as 〈D(θ )〉(t ) = ∑

θ D(θ )/2000. The
Hurst exponents were calculated as the slopes of the fitted
lines in the log-log plot of w(l, t ) and l within the range of
l ∈ [2�x, 10�x]. Here, �x was defined by 2π〈D(θ )〉/2000.
The growth exponents were calculated as the slope of the fitted
lines in the log-log plot of w(lmax, t ) and t . The values shown
in Figs. 2(b), 2(c), 2(e), 6(a), and S5(c) [30] are averages of
the experimentally obtained values.

The rate of expansion in our observation may be rela-
tively small compared to previous studies of fractal analysis
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[21,23,24]. Whether or not the expansion is sufficient to
explore the self-affine fractal and scaling property can be
evaluated from the range of heterogeneity of the contour. At
t = 18 h, the value of w(l, t ) reached about 80 μm (Fig. 2),
which is almost the same order of magnitude as the hetero-
geneity reported by Huergo et al. [24]. Therefore, we consider
that the contour is sufficiently heterogeneous and that it is
reasonable to discuss the scaling law.

F. Cell tracking

We labeled cell nuclei with Hoechst33342, and images
were obtained from 1 to 18 h after PDMS removal and
analyzed with IMAGEJ, using the TrackMate plugin [31] to
manually track the centers of cell nuclei. We considered cells
whose nuclei were located within 30 μm of the contour to be
at the edge of the monolayer. The contours were determined
from the bright-field images and manually traced with seg-
mented lines.

G. Cell staining

MDCK cells were washed with phosphate-buffered saline
(PBS), fixed with 4% paraformaldehyde for 10 min, and
permeabilized in 0.1% Triton X-100/PBS for 10 min. After
washing, cells were stained with Alexa Fluor 555 Phalloidin
(1:40; Invitrogen) and Hoechst33342 (1:2000; Dojindo). Cells
were incubated for 30 min at room temperature before obser-
vation. Fluorescent and phase-contrast images were acquired
using a BZ-X810 fluorescence microscope (Keyence) with
20× objective lens.

H. Numerical simulation

The numerical simulations were performed using MATHE-
MATICA and JULIA, and we used the explicit Euler scheme for
calculating the time evolution.

I. Single-cell tracking assay

MDCK cells were seeded onto the 27-mm glass-bottom
dish (2.5 × 104 cells/ml). The cells were incubated at 37 ◦C
and 5% CO2 for 24 h until the cells adhered to the bottom of
the dish. Hoechst33342 (1:2000) was added to the dish and
incubated for 30 min. Images were acquired using a Nikon
A1 confocal microscope at 5-min intervals over a span of 2 h.
The centers of cell nuclei were manually tracked using the
TrackMate plugin, and statistical analysis was performed in
MATHEMATICA, using Student’s t-tests to compare experimen-
tal groups.

III. RESULTS

A. Epithelial monolayer spreading

To investigate how the epithelial monolayer spread,
MDCK cells were cultured in the closed circular area con-
fined within the PDMS sheet. Time-lapse observations were
performed after the removal of the PDMS sheet boundary
(Fig. 1(a), Movie 1 in the Supplemental Material [30]).

While the contour of the epithelial monolayer was initially
smooth and round, our observations revealed that it became

FIG. 1. Overview of the experimental method and measurement
procedures. (a) Observation of MDCK migration. MDCK cells were
seeded in the region confined by the PDMS sheet. After cells reached
confluence, the PDMS sheet was removed and time-lapse observa-
tions were performed. (b) Measurement of the contour shape. The
MDCK monolayer was visualized by CellTracker green, and the
microscopy images were transformed into binarized images. The
distances D(θ ) from the center to the edge of the monolayer were
measured. The orientation of the points along the contour was de-
fined as θ (0 < θ < 2π ). The angle φ = l/〈D〉(t ) was defined from
the unit of measurement l . Scale bar = 1000 μm.

rougher and more uneven over time, as cells migrated to the
cell-free area. The epithelial cells kept contact with each other
(Movie 1 in the Supplemental Material [30]). To quantify this,
we measured the distance from the center to the edge of the
monolayer, D(θ ), where θ indicates the orientation of mea-
surement points along the contour (0 < θ < 2π ) [Fig. 1(b)].
We chose 2000 points for measuring D(θ ), to accurately re-
produce the contour boundary during migration. The initial
circumference (after the PDMS removal) was 1.26 × 104 μm.
We found that the average 〈D(θ )〉 increased linearly, at a
rate of 11.2 μm/h, and the standard deviation of D(θ ) also
increased [Figs. 2(b) and 2(c)]. These results suggested that
the epithelial monolayer spread at a constant speed with in-
creasing heterogeneity of the contour.

We characterized the local roughness w(l, t ) of the circular
geometry as follows:

w(l, t ) = 〈
√

〈[D(θ, t ) − 〈D〉φ]2〉φ〉 φ = l

〈D〉 , (3)

where t (h) is the time after PDMS removal and 〈· · · 〉φ denotes
the average value in the area φ. The local roughness w(l, t ) is
the standard deviation of the distance D(θ ) in the range of φ.

To examine whether the power law in (2) holds for the
cell spreading, log-log plots were used to assess the rela-
tionship between local roughness w(l, t ) and l at different
time points [Fig. 2(d)]. Within the range of small l , ln w(l, t )
linearly increased along with increasing ln l , indicating that
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FIG. 2. Dynamic scaling law in the spreading of MDCK mono-
layer, obtained from experimental observations. (a) Contour of the
MDCK monolayer, as it evolved from the initial smooth shape to the
rough shape. (b) Time evolution of the average values of D(θ ). Dots
indicate the measured values, with the fitted line shown as dashed
(n = 6). (c) Time evolution of w(lmax, t ), the standard deviation of
D(θ ) (n = 6). (d) Measurement of the Hurst exponent. The plot
shows the experimental results at different time points, and the black
dashed line is the fitted line for 2�x � l � 10�x (μm) at 18 h. From
this, the Hurst exponent was calculated as α = 0.858. (e) Log-log
plot of w(lmax, t ) and t . Dots represent the measured values, and the
black dashed line is the fitted line (n = 6). The growth exponent was
calculated as β = 0.725.

the power law w(l, t ) ∼ lα holds, which suggests the contour
of the epithelial monolayer is a self-affine fractal structure.
We also found the range of l that showed a linear rela-
tionship to expand over time, which is consistent with the
well-known observation that l∗ increases with time under the
dynamic scaling law [17,29]. We determined the Hurst ex-
ponent to be α = 0.858 for t = 18. For large l , the value of
w(l, t ) approaches w(lmax, t ), where lmax = 2π〈D〉. As shown
in Fig. 2(e), ln w(lmax, t ) and ln t show a linear relationship,
indicating that the power law w ∼ tβ holds. The growth ex-
ponent was β = 0.725. Thus, our observations revealed that
the time development of the MDCK monolayer contour sat-
isfied the dynamic scaling law. We repeatedly measured the
exponents in different monolayers, and obtained values of
α = 0.859 ± 0.012 and β = 0.728 ± 0.061, which were not
much different from the data shown in Fig. 2.

B. Cell behavior at the edge

To understand the dynamics of the evolving contour shape
as the monolayer spreads, we observed and quantified the
behavior of cells near the monolayer edge. Cell nuclei were
visualized and tracked from t = 1 to t = 18 (Fig. 3(a), Movie
2 in the Supplemental Material [30]). Among cells initially

located in the edge region, 58% of these remained near the
edge during the entire observation time, while 42% migrated
toward the monolayer center. These internalizations were ob-
served to result from the merging of monolayer protrusions.
The decrease in the number of cells around the edge was com-
pensated for by proliferation and the intercalation of internal
cells. We reversely tracked cells near the edge at t = 18 and
found that 77% of these were also near the edge at t = 1. In
addition, the kymograph of the edge cell migration showed
that movement toward the initially cell-free region first started
among edge cells and then the inner cells followed (Fig. S1
[30]). These results suggested that the dynamics of the contour
shape were primarily driven by the movements of cells at or
near the edge.

Since leader cells are known to play an important role in
the formation of monolayer protrusion, we next focused on
their behavior and dynamics. Leader cells are characterized by
their large lamellipodia, large cell bodies, and high motility.
Cells with these characteristic shapes were observed as early
as t = 2 [Fig. 3(b)]. As shown in Fig. 3(c) and Movie 3 in the
Supplemental Material [30], we performed reverse tracking
of the leader cells from t = 18 to t = 1. Leader cells were
clearly distinguished by their locations and large cell bodies
at t = 18. They were consistently at the edge throughout the
observation period, formed the monolayer protrusions, stayed
located at the tip, and had higher velocities than other cells
(Fig. S2 [30]). The fact that leader cells remained located at
the tip of the protrusion reflected their spontaneous high motil-
ity and suggested that the high motilities of the leader cells
were maintained throughout the observation period. These re-
sults indicate that leader cells emerged at an early stage of the
migration at the edge, and that their properties did not change.

C. Mathematical model and numerical simulation

Informed by the experimental results, we modeled the dy-
namics of the contour of the MDCK monolayer. We assumed
that the contour dynamics arise from the movements of cells
at the edge, and these cells have different motility. The model
also assumes, based on a known property of epithelial cells,
that cells interact through intercellular adhesion [Fig. 4(a)].
We described the dynamics of cells at the edge by means
of temporally continuous and spatially discrete differential
equations as follows:

d

dt
ri(t ) = Mi + (Ti − Ti+1) + σηi(t )ri/|ri|, (4)

where ri(t ) represents the coordinates of the cell i at time t ,
Mi is active, directional movement, and Ti describes passive
movement due to the elastic force from cell-cell adhesion. The
third term on the right-hand side represents random move-
ment, with the constant σ indicating the intensity of noise,
while ηi(t ) is spatially and temporally independent Gaussian
white noise. At the cellular scale, the inertia force may be
ignored.

The directional motility term Mi was given by

Mi =
[
vl ri/|ri| (if the cell i is a leader cell)
v f ri/|ri| (otherwise), (5)
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FIG. 3. Behavior of the cells at the edge of the monolayer. (a) Cell tracking at the monolayer edge. Nuclei were visualized with
Hoechst33342 (left panels, blue signals). Cells that remained near the edge from t = 1 to t = 18 are indicated by red circles. Those cells
that dropped and intercalated from the edge by t = 18 are indicated by green and yellow circles, respectively. Among 45 cells initially located
at the edge, 19 cells dropped, while 11 cells divided (right panel). Those 11 cells newly intercalated to the edge, and therefore 77% of the
edge cells at t = 18 are originated from the cells at the edge at t = 1. Scale bar = 100 μm. (b) Snapshot of the edge at t = 2. Large cells that
stretch their lamellipodia were observed (indicated with yellow arrows). The upper panel is a phase-contrast image, and the lower panel is a
fluorescent image; the nuclei and F-actin are represented in blue and red, respectively. Scale bar = 20 μm. (c) Behavior of leader cells during
collective cell migration. Circles indicate leader cells, which were distinguished by their locations and large sizes. Lines in the middle panel
show the trajectory of the cells from t = 1 to t = 10 and in the bottom panel show that from t = 10 to t = 18. Scale bar = 200 μm.

where vl and v f are the velocities of the leader and follower
cells, respectively (vl > v f > 0). The ratio of leader cells to
all edge cells is pl , and the distribution of leader cells was
randomly determined.

Assuming that intercellular interaction Ti linearly in-
creases with the intercellular distance, Ti was given by

Ti = ρ(ri − ri−1), (6)

where ρ is the stiffness of elastic interaction.
We set the initial shape of the monolayer as a circle with

a radius of 2000 μm. The total number of cells at the edge
was set to N = 2000, aligned with a regular interval. For sim-
plicity, the cell number change and rearrangement at the edge
were omitted. The numerical results are shown in Fig. 4 and
Movie 4 in the Supplemental Material [30]. The parameter pl

was estimated from the actual distribution of cells displaying
large lamellipodia [Fig. 3(b)], and vl and v f were set such that
the growth speed of the average diameter was consistent with
the values obtained experimentally.

We found that the model (4) described and captured the
process of cell sheet expansion well, as it was able to repro-
duce many of the properties observed in our experiments, as
shown in Figs. 4(b) to 4(e). The time evolution of 〈D(θ )〉 was

linear, with a slope of 11.2 μm/h. The values of w(lmax, t )
shown in Fig. 4(c) were similar to those in Fig. 2(c). The
log-log plot of w(l, t ) against l showed a linear relationship
for small l [Fig. 4(d)], and the Hurst exponent was calcu-
lated as α = 0.849. The log-log plot of w(lmax, t ) against t
also showed a linear relationship [Fig. 4(e)], and the growth
exponent was calculated as β = 0.729. In addition, the time
evolution of Max[D(θ )], Min[D(θ )], and the distribution of
the increment for θ were also similar to the experimental
results (Fig. S3 [30]). Taken together, these results show that
the model (4) explained the dynamic scaling law seen in the
contour of the MDCK monolayer.

D. Analysis of mathematical model

In this section, we show that the Hurst and growth expo-
nents were analytically estimated, then evaluate the effects of
the cell-cell adhesion, the difference in cell motility, and the
noise intensity in this system.

Assuming that N is sufficiently large, it can be regarded
that the elastic force affects only the radial direction, thus the
model was simplified to a one-dimensional flat model with
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FIG. 4. Numerical simulation of the monolayer spreading.
(a) Diagram of the mathematical model. Circles represent the cells
at the edge, with the dark circles representing leader cells, and the
light circles follower cells. The coordinates of the cell center are
denoted by ri. Cells at the edge have different types of motility
Mi, and interact with neighboring cells through cell-cell adhesion
Ti. [(b)–(e)] Results from the numerical model corresponding to
Figs. 2(b) to 2(e). (b) Time evolution of the average of the distance
D(θ ). (c) Time evolution of the standard deviation of D(θ ) (global
roughness). (d) Log-log plot of the local roughness w(l, t ) against l .
(e) Log-log plot of the global roughness w(lmax, t ) against t . Parame-
ters: vl = 94 [μm h−1], v f = 2 [μm h−1], pl = 0.1, ρ = 6.67 [h−1],
and σ = 3 [μm h−1/2].

periodic boundary as follows:

d

dt
hx(t ) = fx + ρ(hx+1(t ) + hx−1(t ) − 2hx(t )) + σηx(t ).

(7)

Here hx(t ) is the distance from the center to the cell x [for
simplicity, set hx(0) = 0], and fx is the motility of the cell x
that takes vl or v f . In probability pl , the cell takes the higher
motility fx = vl . The numerical calculation of the flat model
(7) reproduced the characteristic dynamics with the dynamic
scaling law generated by the circular model (4) (Fig. S4 [30]).

The exponents in the model (7) take different values de-
pending on the parameters. When vl = v f , the model (7) is
essentially the EW model, which includes the Gaussian white
noise and the diffusion term. It is known that the EW model
shows dynamic scaling α = 0.50 and β = 0.25 [17,26]. On
the other hand, if σ = 0, we call model (7) a “fixed-noise”
model, and it shows dynamic scaling with α = 0.9 and β =
0.75. This model exhibits dynamics driven by diffusion and
the fixed noise, which arise from the spatial heterogeneity of
the motilities.

Considering the discrete Fourier expansions of hx(t ), fx,
and ηx(t ), the Fourier coefficients are denoted by ĥk (t ), f̂k , and
η̂k (t ), respectively. The random variable f̂k follows Gaussian

distribution denoted as (vl − v f )
√

pl (1 − pl )N̂ (0, 1) (see
the Supplemental Material A [30]). The complex Gaussian
white noise η̂k (t ) satisfies

∫ t
s η̂k (t ′)dt ′ = N̂ (0, t − s), where

N̂ (0, 1) is a complex random variable that follows N (0, 1
2 ) +

iN (0, 1
2 ) (see the Supplemental Material B [30]). We then

obtained the differential equation for ĥk (t ) with k � 1 from
(7) as follows:

d

dt
ĥk (t ) = f̂k −

(
4ρ sin2 πk

N

)
ĥk (t ) + σ η̂k (t ). (8)

ĥk (t ) was explicitly derived using the Ito integral as follows
(see the Supplemental Material C [30]):

ĥk (t ) = f̂k

ak
(1 − e−akt ) − σ

∫ t

0
ea(s−t )dB̂s. (9)

B̂s is Brownian motion in the complex plane, and ak =
4ρ sin2 πk

N . Equation (9) indicates that the Fourier coefficient
ĥk (t ) follows the complex Gaussian distribution with the mean
f̂k

ak
(1 − eakt ) and the variance σ 2

2ak
(1 − e−2akt ). The expected

value for the power spectrum |ĥk (t )|2 is given by

E [|ĥk (t )|2] = | f̂k|2
a2

k

(1 − 2e−akt + e−2akt ) + σ 2

2ak
(1 − e−2akt ).

(10)

Next, we introduce the squared local roughness w2(l, t ) as
the average of the variance of hx in m consecutive cells. Using
the intercell distance �x and non-negative integer m, w2(l, t )
is expressed as

w2(l, t ) = w2(m�x, t )

= R(0) − 1

m(m − 1)

m−1∑
l=1

2(m − l )R(l ). (11)

R(l ) is an autocorrelation function of hx. Since R(l ) is ob-
tained by inverse Fourier transform of the power spectrum
|ĥk (t )|2 (Winner-Khinchin’s theorem), we obtained the ex-
pected value of w2(l, t ) as in (11). Figure 5(a) shows that the
analytically derived w2(l, t ) was close to the average of the
numerical calculations of the circular model.

Considering the slope of the log-log plots in Fig. 5(a), we
derived the Hurst and growth exponents as follows:

α = ln

[
1 + 1

3

R(1) − R(2)

R(0) − R(1)

]/
2 ln

3

2
, (12)

β = t

2w2(lmax, t )

∂

∂t
w2(lmax, t ). (13)

We calculated the expected values α = 0.80 and β = 0.74
for the parameters used for the circular model in Fig. 4. This
confirmed that our analysis based on (7) captured the dynam-
ics of the circular model in (4).

Equation (12) also shows that the Hurst exponent is rep-
resented as the ratio of the linear sum of the power spectra.
Therefore, multiplying the power spectrum by a constant
value should not affect the Hurst exponents. By dividing the
power spectra (10) by σ 2/ρ, we found that the Hurst expo-
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FIG. 5. Parameter dependency of the Hurst and growth ex-
ponents. (a) Comparison of numerically and analytically derived
w2(l, t ). Log-log plots of w2(l, t ) against l at t = 18 (left panel) and
of w2(lmax, t ) against t (right panel). The light-gray lines indicate
the numerically obtained values with different sample paths, dots
indicate the average of w(l, t ) for different paths, and the black
line indicates analytically obtained values. (b) Numerically obtained
parameter dependency of the Hurst exponent α on c and ρt . (c) The
parameter dependency of the growth exponent β on ρct and ρt . Dots
indicate the numerically obtained growth exponents, and the line
indicates the plot of (15).

nents were determined by the index c and ρt , where

c = (vl − v f )2 pl (1 − pl )

ρσ 2
. (14)

The plots of the Hurst exponents against log c with different
ρt are shown in Fig. 5(b). When the difference in cell motility
(vl − v f ) is relatively large, c takes a large value and α ap-
proaches α = 0.91, corresponding to the fixed-noise model.
On the other hand, when the random component of the cell
movement (σ ) is relatively large, c is small and α approaches
α = 0.48, corresponding to the EW model.

The growth exponents β were also regarded as a two-
variable function of ρt and c. From the theoretical considera-
tion (see the Supplemental Material D [30]), we can calculate
β as follows:

β = 2(2 − √
2)γ + 1

8
3 (2 − √

2)γ + 4
, (15)

where γ = ρct and we assumed that N and ρt are sufficiently
large. Plots of β against log γ are shown in Fig. 5(c). It was
shown that the random cell movement decreases β. However,
after sufficient time has passed, β always takes a value of 0.75,
corresponding to the fixed-noise model.

E. Confirmation of analytical prediction

As described in this section, we experimentally examined
the dependency of the Hurst and growth exponents derived
from numerical and analytical considerations.

First, the effect of the initial size of the monolayer was
examined. A monolayer of 3-mm diameter was prepared, and

its spreading was observed. The Hurst and growth exponents
were α = 0.837 and β = 0.740, respectively, confirming that
the scaling property of the growing contour was independent
of the number of cells (Fig. S5 [30]). Thus, this result was
reproduced by the same parameters used in Fig. 2.

Next, we investigated how cell behavior affects the scal-
ing property. Since it is known that cell behavior changes
depending on the substrate [32,33], we prepared a collagen-
coated culture dish and performed time-lapse observations
of the MDCK cell monolayer from t = 4 to t = 18. The
results of these observations are shown in Fig. 6(a) and
Movie 5 in the Supplemental Material [30]. We found that the
Hurst and growth exponents both decreased: α = 0.742, β =
0.687. Meanwhile, the averaged expansion speed of 〈D(θ )〉
was increased to 28.7 μm/h, which is 2.5 times higher than
that of uncoated glass dish. In addition, we repeatedly mea-
sured the exponents in different monolayers and obtained
that α = 0.749 ± 0.012 and β = 0.687 ± 0.050, respectively.
These values were not much different from the data shown in
Fig. 6(a).

Using the results of the mathematical analysis [Figs. 5(b)
and 5(c)], we estimated the parameters that would reproduce
the experimental data in Fig. 6(a). We derived the value of γ =
ρct such that the growth exponent β = 0.687 was satisfied in
(15), and we found γ = 17.8. Here, we assumed that while
the difference of the substrate affects the motility of the cell,
the effects on cell-cell adhesion and the proportion of leader
cells are small. Thus, the values of ρ and pl are regarded as
identical to those in the control (Fig. 4): ρ = 6.67, pl = 0.1.
We obtained c = 0.148 and could then determine the val-
ues of σ 2 and (vl − v f )2 pl (1 − pl ) to match the values of
w(lmax, t ). In addition, the time evolution of the mean diam-
eter is 23.8 μm/h, which is equal to vl pl + v f (1 − pl ), so
both vl and v f can be estimated. The values for the estimated
parameters were vl = 123, v f = 18.2, and σ = 31.8.

At the same time, the parameters can also be estimated
by the Hurst exponents using the relationship in Fig. 5(b).
We estimated that c = 0.19 from ρt = 120 and α = 0.749.
The parameter values are obtained in the same manner: vl =
126, v f = 17.9 and σ = 28.8. The estimated parameter sets
from Hurst and growth exponents take close values. This
result shows that the Hurst and growth exponents under
the different conditions are also consistent with our model.
Figures 6(b), S6 and Movie 6 in the Supplemental Material
[30] show the results of numerical calculations using the pa-
rameters vl = 126, v f = 17.9, and σ = 28.8. These estimated
parameters reproduced the experimental results.

Next, we confirmed the consistency between theoretically
estimated and experimentally observed cell motility. The ex-
perimental results [shown in Fig. 6(a)] were reproduced in
our model by assuming that the motility of the follower cell
(v f ) and the intensity of random cell movement (σ ) both
increased about ninefold from the parameters used in Fig. 2.
Figure 6(c) and Movie 7 in the Supplemental Material [30]
show the cell motilities on the different cell culture substrates.
The total path lengths of the single cell for 2 h were measured:
6.4 μm/h for the uncoated glass dish and 30.1 μm/h for the
collagen-coated dish. The motility of the cells on the collagen
increase 4.7-fold. This value is not exactly matched to the
theoretical prediction; however, the order of the values is not
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FIG. 6. The experimental result with 100 mg/L type I collagen-coated dish is also reproduced by the model (3). (a) Experimental results.
Time evolution of averaged D(θ ) (left panel), log-log plot of the local roughness w(l, t ) and l (middle panel), and log-log plot of w(lmax, t )
and t (right panel). Dots indicate the experimentally obtained data and the dashed line is the fitted line for the data. (b) Numerical results
corresponding to panels (a). Parameters: vl = 126 [μm h−1], v f = 17.87 [μm h−1], pl = 0.1, ρ = 6.67 [h−1], and σ = 28.8 [μm h−1/2].
(c) Single-cell movement assay. The trajectories of the cell nuclei are indicated by the colored lines in the uncoated glass dish (left panel) and
the collagen-coated dish (middle panel). Right panel shows the velocity of the cells; 6.36 μm/h in the uncoated glass dish and 30.1 μm/h in
the collagen-coated dish. *** p-value = 3.68 × 10−9; scale bar = 100 μm.

far off. Therefore, the experimental results under the differ-
ent conditions were consistent with the analytically predicted
parameter dependency of the exponents, and the parameters to
reproduce the experiment are quantitatively reasonable. These
results further confirm that the contour formation of MDCK
cells is generally well explained by our model.

IV. DISCUSSION

Our purpose is to clarify the mechanism underlying the dy-
namic scaling law for the contour of epithelial cell monolayer.
In this study, we have proposed a framework that explains the
macroscopic property of the contour from the microscopic cell
behavior. We found that the time evolution of the contour sat-
isfied the dynamic scaling law: α = 0.86 and β = 0.73. From
the observation results, we constructed a simple mathematical
model and demonstrated that the contour shape arose from the
behavior of the cells at the sheet edge. Our mathematical anal-

ysis of the model suggested that the presence of leader cells
is essential for the observed pattern formation. We found that
the Hurst and growth exponents were dependent on the ratio
of the variance of cell motilities to the intensity of the random
cell movement. The theoretical prediction was experimentally
confirmed by changing the cell motilities.

The study of mathematical models of collective cell move-
ment has attracted significant attention over the past decade,
especially within the fields of statistical mechanics and bio-
physics [34]. The models can be categorized into continuous
models and discrete models. In continuous models, the cell
colony is regarded as a continuum. Such models have been
constructed mainly to explain the fingering instability of the
epithelial sheet [11,33,35–38]. On the other hand, in discrete
models, each cell has been represented by polygons or par-
ticles. In the former case, the classical vertex model with
chemotaxis and fluid properties [39] and the active vertex
model [40], which also added the effect as an active fluid, have
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been proposed. In the latter, a particle model mostly included
the cell-cell interactions and the random kinetic components.
The model explicitly introduced leader cells [41], and a model
with the effects of the bending and the surface tension have
been proposed [42]. Such models are preferable for explaining
experimental data, and they allow an analytical understand-
ing of the relationship between the physical quantity and the
dynamics. In a sense, our model can be understood as the
simplest form of the discrete particle model. To understand
the scaling properties, a simpler model is preferable, because
it is necessary to consider the relationship between power
spectra for various wave numbers. The reason we used the
spatially discrete model was to describe the differences of
the motilities among the cells, such as leader or follower
cells. The result that even the simple model explained the
dynamic scaling within the contour shape suggested that the
random cell movement, the deterministic differences in cell
motility, and the effects of intercellular adhesion have critical
implications on the contour of the epithelial monolayer.

The EW and KPZ models are widely known to satisfy the
dynamic scaling law, and it has been reported that the contour
shape of HeLa and Vero cell colonies follows KPZ univer-
sality [24]. However, the MDCK cells observed here did not
follow this universality. Possible reasons for this difference
are the emergence of leader cells. In this study, we found that
the leader cells emerge in the early stage and persist during ob-
servation. The differential motility of leader and follower cells
corresponds to the temporally fixed noise in the model. On
the other hand, the EW and KPZ equations do not contain the
corresponding noise term. The EW equation with temporally
fixed noise has recently been considered by Cagnetta et al.
[43]. They focused on pattern formation of a membrane in the
biological context, and they obtained scaling properties of the
power spectra that are consistent with our results (10).

D(θ ) cannot precisely capture the contour structure when
convoluted contours with overhangs are formed. We con-
firmed, however, that the effects of the overhangs on the
scaling property were small. First, we measured the outer-
most edge of the cell sheet as D′(θ ) from the outside of the
monolayer [Fig. S7(a)] [30], and quantified the fraction of
data points that were affected by overhangs. The number of
affected points increases with time, and the fraction is 11%
at t = 18 h [Fig. S7(b)] [30]. Next, we measured the Hurst
and growth exponents for D′(θ ). The average difference be-
tween D(θ ) and D′(θ ) for each slope is 1.16% for the Hurst
exponents, and 4.40% for the growth exponents (an example
of the results is shown in Fig. S7(c) [30]). Finally, the reli-
ability of the D(θ ) is examined by the consistency between
the Hurst exponents α and the box-count fractal dimensions
D. The box-count method is a procedure that calculates the
fractal dimension from the contour shape itself; theoretically,
α + D = 2. We confirmed that 2.006 < α + D < 2.064 for
six independent assays. These results suggest that the effects
of the overhangs on the scaling property are limited within our
time window.

However, after a long period, the quantitative consis-
tency between our model and the experimental results is lost
because the effect of the increasing number of cells, the over-
hang structure, and merging of the sheet protrusion are not
considered. The global roughness w(lmax, t ) started to devi-

ate from the power law at t = 15 h and gradually increased
beyond t = 20 h (Fig. S8(a) [30]). Therefore, it is vital to
evaluate the reliability of the scaling law obtained herein and
determine whether the length of time we used was appropri-
ate. The log-log plot of w(l, t ) against l with t = 21.5, 23 h
shows a similar curve to that at t = 18 h (Fig. S8(b) [30]).
In addition, the fractal dimension calculated by the box-count
method was D = 1.15 for the contour at t = 96 h (Fig. S8(c)
[30]). The relationship between the box-count fractal dimen-
sion D and Hurst exponent α suggests that the spatial scaling
law α = 0.85 also holds at t = 96 h. These results show that
the spatial scaling law was largely formed by t = 18 h, and
that it was maintained for a long period. From these findings
on the scaling properties, there would be two expansion sys-
tems. First, the contour of the monolayer evolves while the
dynamic scaling law is satisfied, and when it gets sufficiently
rough (at t = 15−20 h in our experiment), it ruffles slowly
and keeps its spatial scaling law owing to the effect of the
overhang and finger collisions. Herein, we discuss and clarify
the mechanism of generating the dynamic scaling laws, and
the length of time we used appears to be reasonable for its pur-
pose. To reproduce the contour structure after a long period, it
is necessary to construct the model that can handle the effect
of the overhang structure and finger collisions [11]. It is still
a great challenge to analytically understand the relationship
between these effects and the scaling properties.

In our model (4), there are five parameters (vl , v f , pl ,

ρ, σ ). The proportion pl was estimated from the distribution
of cells with large lamellipodia [Figs. 3(b) and 3(c)]. The
motilities vl and v f of the leader and follower cells, respec-
tively, were of the same scale as the experimentally measured
spreading speed, and the intensity of the random movement
σ is also expected to have a similar scale. We estimated the
scale of the stiffness ρ from the height of the protrusion. If the
protrusion of the contour originates from a single leader cell,
its height can be estimated as follows:

h0(t ) = (vl − v f )t (I0(2ρt ) + I1(2ρt ))e−2ρt . (16)

Here, I0 and I1 are the Bessel functions of the first kind. For the
contour of t = 4 h, we found 27 protrusions, and their sizes
were 56.44 ± 18.69 μm. By substituting the other parameters
at t = 4 h, ρ is estimated to lie in the range 1.87 � ρ � 7.53;
the values used in the numerical simulation (ρ = 6.67) are
included in this range. These results suggest that the five
parameter values we used are both consistent with the experi-
mental data and reliable.

The growth exponents obtained from analysis of the math-
ematical model, β = 0.74, were almost identical to those
obtained numerically and experimentally, while the Hurst
exponent, α = 0.80, was smaller than those obtained by nu-
merical calculations α = 0.85. The value of w(l, t ) is defined
as the mean of the standard deviation in the closed range l;
however, this value cannot be directly calculated from the
power spectra. Therefore, to estimate the Hurst exponent, the
expected value of the variance was calculated, and the square
root of this value was taken to estimate the value of w(l, t ).
The value of

√
w2(l, t ) is not the same as w(l, t ), since the

mean of the standard deviation in a given interval differ from
the square root of the mean of the variance. On the other
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hand, for the growth exponents, we calculate global roughness
w(lmax, t ) as the standard deviation with respect to the entire
direction. Since this value is equal to the square root of the
variance, it is close to the values obtained numerically.

The expected values of the power spectra (10) converge to
the constant values when ρt → ∞. Since w2(l, t ) is repre-
sented by the linear sum of the power spectra, w2(l, t ) also
converges to constant values. Therefore, it is suggested that
α at ρt → ∞ is determined by c, and that there is a critical
value c∗ such that when c � c∗, the scaling law α = 0.5, β =
0.25 was obtained, and when c � c∗, α = 0.9, β = 0.75 was
obtained. The value of c∗ was estimated from the analyti-
cally obtained relationship between the expected values of
w2(l, t∞).

The equation known as the quenched Edwards-Wilkinson
(QEW) equation [17,44] is a model with the noise term de-
pendent on x and h and the driving force F as follows:

∂

∂t
h(x, t ) = ρ∇2h(x, t ) + F + η(x, h(x, t )). (17)

In this model, when F is sufficiently large and the noise
term is considered to be spatially and temporally indepen-

dent, then the system could be described as the EW equation:
α = 0.5, β = 0.25. However, the transition to a different dy-
namic scaling law α = 1.0 and β = 0.75 occurs when F �
Fc [17,44,45]. The relationship between Fc and the scal-
ing law is similar to the relationship between c∗ and the
scaling law in our model (7), which suggests that our mod-
els could be described as QEW-type models. However, we
expect that more complex theoretical methods are required
to solve this problem, and these remain a topic for future
research.

The code used for this study is available from the corre-
sponding authors upon request.
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