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Time cells might be optimized for predictive capacity, not redundancy reduction or memory capacity
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Recently, researchers have found time cells in the hippocampus that appear to contain information about the
timing of past events. Some researchers have argued that time cells are taking a Laplace transform of their
input in order to reconstruct the past stimulus. We argue that stimulus prediction, not stimulus reconstruction or
redundancy reduction, is in better agreement with observed responses of time cells. In the process, we introduce
new analyses of nonlinear, continuous-time reservoirs that model these time cells.

DOI: 10.1103/PhysRevE.102.062404

I. INTRODUCTION

Recent experiments have revealed the presence of so-called
time cells in the hippocampus, which seem to fire to signal
the timing of a certain event [1]. Time cells fire even when
location information or behavioral information is constant [2]
and are thought to support episodic memory—memory of
what, where, and when an event was experienced [1].

Reference [3] offers a novel explanation of time cells,
which applies to not just temporal signals but also to spatial
signals and others: They claim that time cells are com-
puting a Laplace transform of the input and that the past
input is linearly reconstructed from discrete samples of this
Laplace transform. These model time cells are therefore lin-
ear continuous-time reservoirs, or linear echo state networks
[4–6], which can simulate, predict, and remember limited
types of input. Their nonlinear counterparts can simulate any
type of input with enough nodes (neurons) [7].

Implicit in several descriptions of time cells [1,8,9] is
that the goal of these cells is to reconstruct the past stim-
ulus. This certainly seems like a worthwhile goal for an
organism. However, some classic work suggests that neurons
try to “efficiently code” their stimulus minimize redundancy
[10], and some recent works have suggested that the goal of
some biological subsystems is to predict the future, e.g., as
in Refs. [11,12]. These goals might all sound similar, and
to some extent they are—one needs memory to predict, for
example. But it is also possible to have infinite memory and no
predictive power [13]. Here we compare predictions of each
of these normative principles to ascertain which are consistent
with observed time cell properties. To do so, we extended
the results and the methodologies of Ref. [13] to the case of
some nonlinear and all linear continuous-time reservoirs, thus
extending the work of Ref. [4].

Only maximization of predictive power of time cells when
stimulated with naturalistic stimuli yields neuronal timescales
that behave near to what is seen in experiment [3], sug-
gesting that prediction—not reconstruction or redundancy
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reduction—may be key to understanding the properties of
time cells. This conclusion assumes both that natural video’s
autocorrelation function does not have significant oscillatory
components and that the brain also has “readout neurons”
that simply communicate information about only the present
stimulus. Prediction has already proven key for understanding
other aspects of neural processing [11,12].

The paper starts by describing our setup, in which we
specialize to a stationary stimulus and the normative princi-
ples listed above. We then describe the timescales of model
neurons that minimize redundancy, maximize memory, or
maximize prediction for both simple and more naturalistic
stimuli and show that only maximization of predictive ability
might match experiment.

II. SETUP

The organism is exposed to a continuously varying tempo-
ral signal ←→x , whose value at time t is xt . For ease, we assume
that the stimulus is a scalar with zero mean 〈xt 〉 = 0 and unit
variance 〈x2

t 〉 = 1. This temporal signal is a realization of an
ergodic stationary stochastic process with random variable←→
X symbolizing the whole signal and

−→
X T

t symbolizing the
trajectory that starts at t and ends at t + T . Stationarity implies
that Pr(

−→
X T

t ) is independent of t , and ergodicity implies that
different realizations have identical statistics.

We assume that the autocorrelation function of the input
signal can be written as

R(t ) =
∫ ∞

0
F (λ)e−λ|t |dλ. (1)

All autocorrelation functions can be written in this form if one
extends the integral to exist over the complex plane. In this
manuscript, we study exponential autocorrelation functions
and oscillatory and exponentially decaying autocorrelation
functions. In the latter case, we can use the formulas devel-
oped later by allowing F (λ) to have support on imaginary
numbers with negative real parts.

Three types of input are studied: a particle moving accord-
ing to an overdamped Langevin equation, a particle moving
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according to an underdamped Langevin equation, and a par-
ticle whose position has statistics similar to that of natural
video. In the first case, we approximate the autocorrelation
function R(t ) as a single exponential,

R(t ) = e−λ|t |. (2)

In the second case, we approximate the autocorrelation
function R(t ) as a decaying exponential multiplied by an
oscillatory function,

R(t ) = e−λ|t | cos(ωt ). (3)

In the second case, we turn to Ref. [14], in which it was found
that the power spectrum of natural video is roughly 1

|ω|α for
α between 1 and 2, resulting in power-law autocorrelation
functions with exponents between 1 and 2. In order to study
model time cells under naturalistic conditions, we consider
autocorrelation functions of the form

R(t ) = 1

1 + |t |α . (4)

Some of our results will hold more generally than for just
these three conditions.

The organism is presumed to have model time cells whose
activity changes as a function of sensory signal, so-called
time cells. These neurons might have their response properties
tuned based on one of many normative principles that we
discuss below.

Finally, for what follows, we need to define the entropy
of a random variable Y with realizations y ∈ Y , and the mu-
tual information of a random variable Y and another random
variable Z with realizations z ∈ Z . The entropy H[Y ] is given
by −∑

y p(y) log p(y), and the mutual information I[Y ; Z] is

given by
∑

y,z p(y, z) log p(y,z)
p(y)p(z) . The entropy is the uncer-

tainty, while the mutual information captures the reduction
in uncertainty we achieve by knowing one of the variables
[15]. There are, of course, operational meanings to entropy
and mutual information via Shannon’s theorems, but we do
not need these theorems for what follows.

A. Model of time cells

We are interested in two types of model time cells. The first
type of time cell merely remembers what it saw a time s in the
past. The second type of time cell follows the formulation of
Ref. [3], as it computes a Laplace transform of the input. In
the main text, we will only consider the second type. Results
for the first type, which are qualitatively similar, are in the
Appendix D.

The activity of time cell f (t ) with neuronal forgetting rate
s (an inverse neuronal timescale) at time t is

f (t ) =
∫ ∞

0
e−st ′

x(t − t ′)dt ′, (5)

which can be achieved via a leaky integrator,

df

dt
= −s f + x. (6)

This is a Laplace transform but sampled only at some values
of s. The stimulus ←−xt can be inferred by an approximate

inverse Laplace transform or (nearly equivalently) by an opti-
mal linear estimate.

We imagine that there are N neurons, and that the ith
neuron has a forgetting rate si. We order the neurons without
loss of generality so that {si}N

i=1 is monotonically increasing.
The neural activity of time cell i at time t is denoted fsi (t ).

Although our setup might seem limited in that these recur-
rent networks are “simple”—that is, there are only self-loops
and no connections between neurons—simple linear recurrent
networks are just as powerful as the more complex linear re-
current networks with connections between different neurons.
This fact comes from Ref. [13] and the formulas derived in the
subsection below and is only true when recurrent networks are
linear.

One might expect a qualitatively different story when the
activities are nonlinear functions of past input, but in the
Appendix C we show that linearity is desirable for maximal
predictive capacity. Still, a full understanding of nonlinear
reservoirs will be the subject of future work.

B. Variety of normative principles

There are at least four normative principles that could
explain the properties of time cells: minimization of redun-
dancy [10,16] between neighboring time cells; maximization
of memory capacity, which is a metric for how well one
can reconstruct the past stimulus from the present neuronal
response [17–21]; maximization of the joint entropy of all
neuronal responses, as derived from the efficient coding hy-
pothesis [10], which is sometimes rephrased as redundancy
reduction; and maximization of predictive capacity, which is
a metric for how well one can predict the future stimulus from
the present neuronal response [13].

Each of these normative principles is quantified as follows.
Redundancy, as is typical, is deemed to be the mutual infor-
mation between the output of two neurons. We extend the
definition of discrete-time memory capacity [13] and predic-
tive capacity [13] to continuous-time via

MC =
∫ 0

−∞
m(τ )dτ, PC =

∫ ∞

0
m(τ )dτ (7)

where the memory function m(τ ) is the squared correlation
coefficient between the optimal linear estimate of x(t + τ )
using f (t ), which one can show is

m(τ ) = 〈 f (t )x(t + τ )〉	t 〈 f (t ) f (t )	〉−1
t 〈 f (t )x(t + τ )〉t . (8)

We have assumed that the input is zero-mean and of unit vari-
ance. Although it seems unlikely that an organism is interested
in arbitrarily long pasts, the infinite limit provides good intu-
ition for the more biophysically reasonable, finite-time case.
In the Appendix A, we provide a derivation of the following
closed-form expression for MC:

MC = 1	(C−1 
 DMC)1, (9)

where

Ci j =
∫ ∞

0
F (λ)

2λ + si + s j

(λ + si )(λ + s j )(si + s j )
dλ (10)
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and

(DMC)i, j =
∫ ∞

λ=0

∫ ∞

λ′=0
F (λ)F (λ′)

{
1(

λ2 − s2
i

)(
λ′2 − s2

j

)
×

[
4λλ′

si + s j
− 2λ(λ′ + s j )

si + λ′ − 2λ′(λ + si )

λ + s j

+ (λ + si )(λ′ + s j )

λ + λ′

]}
dλ′. (11)

Furthermore, also in the Appendix A, we show that

PC = 1	(C−1 
 DPC)1, (12)

where Ci j is as before and

(DPC)i j =
∫ ∞

0

∫ ∞

0

F (λ)F (λ′)
(λ + λ′)(λ + si )(λ′ + s j )

dλdλ′. (13)

Note that these formulas also allow for complex λ, if the
integrals or sums are appropriately extended. This is quite
useful for oscillatory input.

These formulas are complicated, but they lead to two main
points. First, the only relevant environmental statistics for MC
and PC are the autocorrelation function of the input. This is
true also for the discrete-time case. Hence, stimulating time
cells with real natural video will, in theory, yield the same MC
or PC as usage of the above formulas with the autocorrelation
function of naturalistic input. Second, the formulas above may
yield more accurate calculations of MC or PC, as we have
traded difficulties associated with too little data for difficulties
of accurate numerical integration and matrix inversion. Which
of these difficulties is more pressing will depend on one’s
application.

We could also consider combinations of the above norma-
tive principles. For instance, one might try to maximize pre-
dictive power while minimizing memory, as in Refs. [11,22–
24]. We discuss this possibility later but shy away from do-
ing a combination of optimization principles in this paper
because it is likely possible to achieve almost any desired op-
timal neural forgetting rate by appropriate choice of Lagrange
multipliers.

III. RESULTS

In what follows, we derive the optimized neuronal
timescales for each of the normative principles for three
types of input: a particle moving according to an overdamped
Langevin equation, a particle moving according to an under-
damped Langevin equation, and a particle whose position has
an autocorrelation function like that of natural videos.

For our linear time cells, as stated earlier, only the auto-
correlation function of the input affects predictive capacity
and memory capacity (see the Appendix A). This is a the-
oretical conclusion that greatly simplifies any effort to find
optimal neuronal forgetting rates, as we only need to estimate
the autocorrelation function of natural input and input such
autocorrelation functions into the formulas given earlier and in
our Appendices. In our two toy examples, the autocorrelation
function takes the form of a single exponential (overdamped)
and an oscillatory decaying exponential (underdamped) with
Gaussian statistics, so that again, only the autocorrelation
function determines memory capacity, predictive capacity,
and also redundancy. Because the autocorrelation function
uniquely determines memory and predictive capacity, the
memory and predictive capacities given here for naturalistic
input are the same as if we had simulated our model time cells
being stimulated with natural video.

A. Redundancy equalization and minimization

It seems desirable to reduce redundancy between neurons
[10]. Two simple examples will illustrate that redundancy
minimization does not typically yield logarithmic scaling, as
anticipated by Ref. [16]. Suppose that x(t ) is a Gaussian
process, which is necessarily true for outputs of overdamped
and underdamped Langevin equations. A straightforward cal-
culation then gives

I
[

fsi (t ); fsi+1 (t )
] = log

√
1

1 − ρ2
, (14)

where ρ2 = 〈 fsi (t ) fsi+1 (t )〉2

〈 fsi (t )2〉〈 fsi+1 (t )2〉 is the correlation coefficient for

zero-mean processes. Some straightforward algebra reveals
that

ρ2 =
(∫ ∞

0

∫ ∞
0 e−sit e−s j t ′

R(t − t ′)dtdt ′)2(∫ ∞
0

∫ ∞
0 e−si (t+t ′ )R(t − t ′)dtdt ′)(∫ ∞

0

∫ ∞
0 e−s j (t+t ′ )R(t − t ′)dtdt ′) . (15)

This mutual information is a typical measure of redundancy
[16]. Redundancy is minimized when the correlation coeffi-
cient is minimized.

In the overdamped case, a straightforward calculation
gives, for si+1 = �isi,

ρ2 = �i

(1 + �i )2

(2λ + si + �isi)2

(λ + si )(λ + �isi )
. (16)

To equalize redundancy between two successive sets of neu-
rons, we must set ρ2 to be constant, which cannot be accom-
plished for this type of input. Some algebra reveals that equal-

ized redundancy implies negative neuronal timescales, a bio-
physical impossibility. In fact, redundancy equalization is ei-
ther unachievable or does not seem to imply logarithmic scal-
ing unless the input has exactly power-law autocorrelation as
was found in Ref. [16], based on calculations not shown here.

To minimize redundancy when the input moves according
to an overdamped Langevin equation, we must make forget-
ting rates si, si+1 as big as possible, while making �i as large
as possible as well. No matter the input, we tend to find that
neurons should all forget past stimulus information as quickly
as possible.
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Typically, e.g., when performing independent components
analysis [25], one finds that redundancy is reduced when
different neurons pick up on orthogonal aspects of the stim-
ulus. With this Laplace transform model of time cells, such
decoupling is not possible, and reducing redundancy requires
sending at least one of the neuronal forgetting rates to infinity.
In particular, to minimize redundancy when the input moves
according to an underdamped Langevin equation, or when
the input’s position has naturalistic statistics, some numerical
experiments suggest that we must make forgetting rates as dis-
similar as possible, i.e., si → 0, si+1 → ∞. This intuitively
makes some sense: to reduce correlation between neurons, we
should make their responses as dissimilar as possible.

In all cases, to minimize redundancy, we desire to set at
least one of the forgetting rates to be infinite, so as to decouple
the neurons as much as possible.

B. Efficient coding

Usually the efficient coding hypothesis [10] is phrased as
follows: We desire the channel p(y|x) that maximizes mu-
tual information subject to a capacity constraint, p∗(y|x) :=
arg maxp(y|x):I[X ;Y ]�C I[X ;Y ]. This, alone, is underdetermined,
and so we also impose another constraint: that p(y|x) be a
deterministic mapping, so that I[X ;Y ] = H[Y ] − H[Y |X ] =
H[Y ]. Hence, we are searching for neural responses that max-
imize the joint entropy, H[{ fsi (t )}N

i=1].
As it turns out, this objective function is directly related

to the redundancy objective function described in the previ-
ous subsection. Repeatedly using the information theoretic
identity H[X ;Y ] = H[X ] + H[Y |X ] yields

H
[{

fsi (t )
}N

i=1

] = H
[

fs1 (t )
] + H

[
fs2 (t )| fs1 (t )

] + . . .

+H
[

fsN (t )| fs1 (t ), . . . , fsN−1 (t )
]
. (17)

An approximate Markovianity property holds, in that fs(t )
is more strongly correlated with the far past when s is
smaller, and so H[ fs j (t )| fs1 (t ), . . . , fs j−1 (t )] is approximately
H[ fs j (t )| fs j−1 (t )]. (This conditional entropy is an upper
bound, achievable in the limit that s j − s j−1 → ∞, but
which holds approximately when s j − s j−1 is very large.)
Then, maximizing the joint entropy is approximately equiv-
alent to maximizing H[ fs j (t )| fs j−1 (t )], which is equivalent
to H[ fs j (t )] − I[ fs j (t ); fs j−1 (t )]. To the extent that H[ fs j (t )]
is roughly constant because s j is so large that its statistics
are governed mostly by the present input, we are left with a
minimization of I[ fs j ; fs j−1 (t )]– exactly the objective function
of the previous section. Hence, the results about redundancy
reduction hold for the efficient coding hypothesis, even though
the objective functions are not exactly the same.

C. Recollecting the past

There are a number of ways to measure memory, but
we focus on the simplest measure (memory capacity MC)
that was invented to calibrate the performance of reservoir
computers [13].

When the input has a single dominant timescale as in the
overdamped Langevin equation, a glance at the expression for
MC earlier suggests that MC will be maximized when the
neuronal timescale is exactly matched to the input’s timescale.

FIG. 1. A plot of memory capacity MC as a function of neuronal
forgetting rate s for a single model time cell (a one-node linear reser-
voir) for some example autocorrelation functions. For inputs whose
autocorrelation functions may be written as the sum (or integral) of
exponentials, MC is maximized when the forgetting rate is 0 if all of
the exponentials have sufficiently small oscillatory components. See
series expansion in the Appendix E.

However, this is not the case. See the Appendix E. For input
signals that do not have a significant oscillatory component,
optimizing memory capacity means sending all forgetting
rates to 0, so that at the limit, neurons are essentially estimates
of the mean input symbol, even when the mean is zero. Such
input includes both the overdamped Langevin equation and
the naturalistic signals considered in this paper. A sketch of
the argument is in the Appendix E.

Our finding here is similar to what was found for discrete-
time reservoir computers [13]. An example is shown in Fig. 1,
where we examine the behavior of memory capacity for some
examples of overdamped and underdamped systems.

When the input has significant oscillatory components,
then our argument for setting forgetting rates to 0 does not
hold. For example, when the input moves according to an un-
derdamped Langevin equation, MC is maximized at a nonzero
s. As the frequency increases in the underdamped system, we
find that the optimal forgetting rate generally increases as well
[when R(t ) = et cos (ωt ), the optimal s for MC as a function
of ω is approximately piecewise linear]. Examining the values
of m(τ ) directly, this can perhaps be explained by the fact
that remembering recent values very accurately is helpful in
remembering the values in the period before. See Fig. 2.

The case of multiple neurons seems qualitatively simi-
lar to that of the single node case when examining scaling
properties. We demonstrate this by examining the case of 10
neurons spaced equally between 0 and 1, scaling all of them
by a factor α and examining the values of MC for networks
generated in this manner. See Fig. 3. We still find that having
a higher-frequency component in the underdamped system
causes optimal forgetting rates that are greater than zero,
unlike the overdamped case.

In conclusion, if an input has significant oscilla-
tory components, then maximizing memory capacity MC
may lead to nonzero forgetting rates. But if the input’s
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FIG. 2. A plot of the memory function m(τ ), i.e., the squared
correlation coefficient between network state and input a time τ in the
past, for the autocorrelation function R(t ) = e−t cos(3t ) and neuronal
forgetting rates shown in the legend. Recall that MC = ∫ ∞

0 m(τ )dτ .
By appropriately setting the neuronal forgetting rate, you can acquire
information about both recent data and data farther in the past with
some periodicity.

autocorrelation function seems to be the sum of decaying
exponentials rather than a sum of oscillating and decay-
ing exponentials—as seems to be true for naturalistic video
[14]—then a series expansion in the Appendix E and numer-
ical experiments presented here all suggest that maximizing
memory capacity will yield forgetting rates that are as close
to zero as possible.

FIG. 3. Memory capacity as a function of scaling factor α for a
network made up of neurons with forgetting rates si = α i

10 for i =
1, . . . , 10, for various autocorrelation functions of the input. When
oscillations are of high-enough frequency, the optimal α for maximal
MC is nonzero.

D. Predicting the future

Finally, we might expect neurons to maximize something
like a predictive capacity PC, as described earlier. As we
detail in the Appendix C, perhaps surprisingly, linear recurrent
neurons can beat nonlinear recurrent neurons at predict-
ing input. As such, prediction already in part explains why
time cells might want to perform an approximate Laplace
transform.

Perhaps not surprisingly, PC is often optimized by setting
s → ∞, so that the current neuron acts best to only remem-
ber what it has just seen. This corresponds to the fact that
the present signal usually has more information about future
signals than past signals. To illustrate this phenomenon, we
consider the impinging process to have an autocorrelation
function of R(t ) = 1

2 e−λ1|t | + 1
2 e−λ2|t | and ask for the optimal

forgetting rate of a single time cell s. There is a considerable
region of values λ1 and λ2 for which this optimal forgetting
rate is infinite. This corresponds to having a time cell that
simply reads out the current value in the time series and has
no memory.

This is not surprising from the perspective of understand-
ing nearly Markovian signals. Recent stimuli convey more
information than past ones, and so to predict optimally, one
desires information about the most recent stimulus. But from
another perspective, this is quite surprising. Earlier results in
the static case [26] have shown that when predictive coding—
minimization of error in predicting the stimulus—is used to
optimize neuronal response properties, nontrivial neuronal
weights without needing a time cell that has no recurrent
connections. The key to the differences, in our opinion, are
based in differences in setup. Rather than a supervised learn-
ing setting in which neuronal weights are tuned to send an
input to a prescribed output, we consider a setting in which
there are no weights between model time cells (based on
Ref. [3]) and in which there is a learned mapping from infinite
past inputs to a future input. The recurrent weight therefore
represents not a connection to other neurons but a statement
about about feature extraction: Which of the past inputs are
most informative about the future input? And for many input
time series, the most informative input is the most recent one.

Thus, we examine time cells with maximal predictive ca-
pacity in the presence of an additional cell which explicitly
stores the present signal value. In other words, we imagine
the situation shown in Fig. 4. Rather than having only cells
that take an approximate Laplace transform by implement-
ing a recurrent architecture, we allow for simply one cell to
pass through all information about the present input. This
second cell’s architecture is entirely feedforward. It may be
biologically relevant that time cells are more predictive when
augmented by a single feedforward neuron. The optimal for-
getting rate then is finite and increases with increasing λ1, λ2.
See Appendix F.

As we have just seen, when the input moves according
to an overdamped Langevin equation, the optimal neuronal
timescale is some nontrivial function of the decay rate. Sim-
ilarly, when the input moves according to an underdamped
Langevin equation, we continue to see evidence of timescale
matching. The optimal neuronal timescale is not the oscilla-
tory timescale or the decay timescale but some nonobvious
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FIG. 4. A new biological setup that allows for increased pre-
dictive capacity. In both diagrams, the blue square represents the
environment and the green circle represents the neuron’s activation.
At left, a recurrent neuron representing the current time cell model.
At right, a feedforward neuron that we add to increase predictive
capacity, which merely relays current environment information to the
downstream region.

function of the two. The authors hope that the equations
developed here might aid future efforts to discover this
function.

Now we turn our attention to naturalistic signals that have
power-law autocorrelation functions. We find that the optimal
time constant of the additional time cell is a smoothly varying
function of the power-law coefficient α, assuming that the
input is naturalistic. For α between 1 and 1.789, PC has a
local maximum for a relatively small s, i.e., (s < 0.2). For
α < 1.56, this local maximum is the global maximum. See
Fig 5. Similarly, Fig. 6 in the Appendix F shows the optimal
(PC maximizing) time constant of a neuron for the natural-
istic stimulus. Roughly speaking, the optimal time constant
of the neuron matches the time constant of the input, a form
of timescale matching not seen in maximization of memory
previously. At α = 1.6, where the model time cell switches
from an optimal intermediate forgetting rate to an optimally
maximal forgetting rate.

IV. DISCUSSION

Surprisingly, the efficient coding hypothesis, maximization
of memory, and redundancy reduction led to the same optimal
model time cells when given naturalistic input—those that
remembered the past as well as possible but were relatively
useless for understanding the future. Predictive capacity fa-
vored time cells that forgot as much as possible, sans other
constraints. When we included a hand-made neuron that
stored the present input, time cells that maximized predictive
capacity had timescales tuned to the environment. We consid-
ered the case of higher-dimensional input in the Appendix B,
finding that our main conclusions were unaltered if spatial and

FIG. 5. Predictive capacity PC as a function of neuronal forget-
ting rate s for an input with an autocorrelation function R(t ) = 1

1+|t |α .
PC(s) is shown for various values of α. Intermediate forgetting rates
s tend to maximize PC for small enough α, though there appears to
be a phase transition in when an intermediate timescale is favored.

temporal components of the spatiotemporal autocorrelation
function were separable.

It is worth adding some cautionary words to these sweep-
ing conclusions. These analyses depend on exactly what
naturalistic input looks like. We followed Ref. [14]’s charac-
terization of natural video. If the autocorrelation function of
natural video were later found to be significantly oscillatory,
then our results here suggest that maximization of memory
capacity could explain observed neuronal forgetting rates.
And some inputs to time cells might easily be oscillatory
[27], and for such inputs, maximization of memory capac-
ity would adequately explain nonzero and finite neuronal
forgetting rates.

With that aside, to the best of our knowledge now, it
seems as though prediction might be closest to the correct
normative principle for time cells, as time cells have nonzero
forgetting rates [3]. This may seem strange, as time cells are
known for their ability to remember past events. However, one
needs memory for prediction, and so optimizing for prediction
does require memory of the “right” things [23]. For example,
remembering what happened 100 days ago may provide far
less useful information as to what will happen tomorrow than
remembrance of the previous day’s activities. A more rea-
sonable objective function might be one that balances both
memory and prediction, as memory has a coding cost, and
prediction is desirable [11,22–24]. It would be difficult to find
the appropriate objective function, however, without fitting to
the data, and so we left this potentially thorny issue for future
research.

It would also be interesting to see how our conclusions
change when the predictive metric is no longer predictive ca-
pacity but predictive information [11,22,24], when memory is
explicitly penalized while prediction is valued, when consid-
ering nonstationary stimuli, and when considering nonlinear
reservoirs for which the central limit theorem does not hold
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(see Appendix C). In future research, we would also hope
to better understand how redundancy, memory capacity, and
predictive capacity vary with the number of neurons, as we ran
into significant numerical integration difficulties here. Based
on the work shown here, these changes would result in model
time cells with nontrivial optimal time constants, as could be
expected [22–24].

In conclusion, we have provided a quantitative frame-
work for predicting optimal time constants of time

cells that we hope will prove useful for those in
neuroscience.
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APPENDIX A: DERIVATION OF MC AND PC IN CONTINUOUS TIME

Say we have m time cells, where the ith time cell’s activity is given in the main text:

fi(t ) =
∫ t

−∞
x(t ′)e−si (t−t ′ )dt ′. (A1)

In this section, we calculate closed-form expressions for MC and PC, which were defined in the main text as well. Throughout,
we assume stationarity, and we assume that the input’s mean value is 0 and that its variance is 1.

Recall that, in this case, the memory function is

m(τ ) = p	
τ C−1 pτ , (A2)

where

pτ = 〈x(t − τ ) f (t )〉t , C = 〈 f (t ) f (t )	〉t . (A3)

We integrate this memory function from τ being ∞ to 0 to get MC, and from 0 to ∞ to get PC. Using our earlier expression for
the activity f , we find that

(pτ )i =
〈
x(t − τ )

∫ t

−∞
x(t ′)e−si (t−t ′ )dt ′

〉
t

, (A4)

=
∫ t

−∞
〈x(t − τ )x(t ′)〉e−si (t−t ′ )dt ′, (A5)

=
∫ t

−∞
R(t − τ − t ′)e−si (t−t ′ )dt ′, (A6)

=
∫ ∞

0
R(t ′ − τ )e−sit ′

dt ′, (A7)

and

Ci j = 〈 fi(t ) f j (t )〉t , (A8)

=
〈 ∫ t

−∞
x(t ′)e−si (t−t ′ )dt ′

∫ t

−∞
x(t ′′)e−s j (t−t ′′ )dt ′′

〉
t

, (A9)

=
∫ t

−∞

∫ t

−∞
e−si (t−t ′ )e−s j (t−t ′′ )R(t ′ − t ′′)dt ′dt ′′, (A10)

=
∫ ∞

0

∫ ∞

0
e−sit ′

e−s j t ′′
R(t ′ − t ′′)dt ′dt ′′. (A11)

At this point, we recall that

R(t ) =
∫ ∞

0
F (λ)e−λ|t |dλ. (A12)

(One can also derive similar expressions by using the Fourier transform.) Plugging this in, we have

Ci j =
∫ ∞

0

∫ ∞

0
e−sit ′

e−s j t ′′
∫ ∞

0
F (λ)e−λ|t ′−t ′′|dλdt ′dt ′′, (A13)

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
F (λ)e−sit ′

e−s j t ′′
e−λ|t ′−t ′′ |dt ′dt ′′dλ, (A14)

=
∫ ∞

0
F (λ)

2λ + si + s j

(s + si )(s + s j )(si + s j )
dλ. (A15)
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When τ > 0, we find that

(pτ )i =
∫ ∞

0

∫ ∞

0
F (λ)e−λ|t ′−τ |dλe−sit ′

dt ′, (A16)

=
∫ ∞

0
F (λ)

(∫ τ

0
e−sit ′

e−λ(τ−t ′ )dt ′ +
∫ ∞

τ

e−sit ′
e−λ(t ′−τ )dt ′

)
dλ, (A17)

=
∫ ∞

0
F (λ)

2λe−siτ − (λ + si )e−λτ

λ2 − s2
i

dλ. (A18)

Otherwise, we find that

(pτ )i =
∫ ∞

0

∫ ∞

0
F (λ)e−λ|t ′−τ |dλe−sit ′

dt ′, (A19)

=
∫ ∞

0
F (λ)

e−λτ

λ + si
dλ. (A20)

Using our formula for the memory function m(τ ) and for MC, PC, we have

MC =
∫ ∞

0
m(τ )dτ, (A21)

=
∫ ∞

0

∑
i, j

(pτ )i(C
−1)i j (pτ ) jdτ, (A22)

=
∑
i, j

(C−1)i j

∫ ∞

0

[∫ ∞

0
F (λ)

2λe−siτ − (λ + si )e−λτ

λ2 − s2
i

dλ

][∫ ∞

0
F (λ)

2λ′e−s jτ − (λ′ + s j )e−λ′τ

(λ′)2 − s2
j

dλ′
]

dτ

=
∫ ∞

λ=0

∫ ∞

λ′=0

{
F (λ)F (λ′)(

λ2 − s2
i

)(
λ′2 − s2

j

)[
4λλ′

si + s j
− 2λ(λ′ + s j )

si + λ′ − 2λ′(λ + si )

λ + s j
+ (λ + si )(λ′ + s j )

λ + λ′

]}
dλ, dλ′ (A23)

= 1	(C−1 
 DMC)1, (A24)

with DMC having entries given in the main text, Eq. (11). Similarly,

PC =
∫ 0

−∞
m(τ )dτ, (A25)

=
∑
i, j

(C−1)i j

∫ 0

−∞

[∫ ∞

0
F (λ)

e−λτ

λ + si
dλ

][∫ ∞

0
F (λ′)

e−λτ

λ′ + si
dλ′

]
dτ, (A26)

=
∑
i, j

(C−1)i j

∫ ∞

0

∫ ∞

0

F (λ)F (λ′)
(λ + λ′)(λ + si )(λ′ + s j )

dλdλ′, (A27)

= 1	(C−1 
 DPC)1, (A28)

with DPC given in Eq. (13) of the main text.

APPENDIX B: EXTENSION TO THE CASE OF MULTIDIMENSIONAL INPUT

Much of the sensory input that we receive, e.g., natural video, is high dimensional. To that end, we consider extending our
analysis to the case of high-dimensional inputs, such that neuron i has activity fi given by

dfi

dt
= −si fi + v	

i x. (B1)

Now vi is a vector such that the input x, also a vector, is converted into a scalar. In this way, it is relatively straightforward to
alter the model of time cells.

However, the definitions of memory and predictive capacity need to be altered accordingly. We consider trying to predict
x j (t + τ ) from �f (t ) and to remember x j (t − τ ) from �f (t ), and calculating PC j and MC j , respectively, by integrating the squared
correlation coefficient over all τ . We then sum MC j and PC j over all dimensions j in order to get a final MC and PC.

Let (pτ )i, j = 〈x j (t + τ ) fi(t )〉t and Ci, j = 〈 fi(t ) f j (t )〉t , the latter as before, but the former with the additional index corre-

sponding to the dimension of the input. Also, let Rj,k (τ ) = 〈x j (t )xk (t − τ )〉 and
←→
R (τ ) be the matrix valued autocorrelation
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function with Rj,k (τ ) as the entries. Some algebra similar to that of the Appendix above and not shown here gives

(pτ )i, j =
∫ ∞

0
e−sit ′

[
←→
R (t ′ − τ ) �vi] jdt ′. (B2)

Note that [
←→
R (t ′ − τ ) �vi] j denotes the jth entry of the enclosed matrix-vector product. More straightforward algebra similar to

that of the one-dimensional case in the previous Appendix gives

Ci, j =
∫ ∞

0

∫ ∞

0
e−sit ′

e−s j t ′′
v	

i
←→
R (t ′ − t ′′)v jdt ′dt ′′, (B3)

Together, these determine the memory function for the jth element of the input:

mj (τ ) = ( �pj
τ )	C−1 �pj

τ (B4)

and from there, the total memory capacity and predictive capacity:

MC =
∑

j

∫ 0

−∞
mj (τ )dτ, PC =

∑
j

∫ ∞

0
mj (τ )dτ. (B5)

In other words, we can understand the effect of spatial correlations on memory and predictive capacity by understanding its
effects on pτ and C.

We have just shown that only the (spatiotemporal) autocorrelation function is relevant for these metrics. And, furthermore,
if the temporal component is constant or nearly constant across dimensions of the input, then we will find that

←−
R (τ ) = Sg(τ ),

where S is the spatial covariance matrix and g(τ ) represents the temporal component of autocorrelation function. In such a case,
under some conditions specified below, the analysis of optimal forgetting rates will not be governed by spatial patterns but by
g(τ ). For instance, we find

(pτ )i, j = (Svi ) j

∫ ∞

0
e−sit g(t − τ )dt, (B6)

so that pτ ’s τ dependence is strongly governed by g(t ), and

Ci, j =
∫ ∞

0

∫ ∞

0
e−sit ′

e−s j t ′′
g(t ′ − t ′′)v	

i Sv jdt ′dt ′′. (B7)

Note that this splits into an element-wise product of a spatial component (with elements v	
i Sv j) and a temporal component

[with elements
∫ ∞

0

∫ ∞
0 e−sit ′

e−s j t ′′
g(t ′ − t ′′)dt ′dt ′′]. Thus, when

←−
R (τ ) admits (or approximately admits) such a decomposition,

we find that C and (pτ ) j is roughly the same as that for a single pixel, and so analysis of one pixel is equivalent to an analysis
of all pixels. Natural video may fall into this class of inputs after spatial processing by the visual cortex if receptive fields are
sufficiently diffuse. More research will need to be conducted to elucidate the effects of the spatial component on maximization
of MC or PC.

APPENDIX C: OPTIMALITY OF THE LAPLACE TRANSFORM

In this section, we consider a slightly more general model for how neuronal activity evolves:

dfi

dt
= −ωi fi +

∑
j

Ji jφ( f j ) + x(t ). (C1)

Due to the nonlinearity φ, the neuronal activities will no longer be Laplace transforms of the input.
This is intractable unless we make some assumptions. As such, we assume that there are a very large number of neurons

N and that Ji j connections are randomly chosen from some distribution, where the mean is 0 and the variance is σ 2
J /N . Then

ηi(t ) = ∑
j Ji jφ(x j ) is normally distributed according to the central limit theorem. If this is the case, then the nonlinear term

in the new evolution equation corresponds to Gaussian noise, and the now-linear system with Gaussian noise can still be
analyzed.

We follow Ref. [28] in our treatment. We first characterize the noise properties:

〈ηi(t )〉 =
〈∑

j

Ji jφ(x j )

〉
= 0 (C2)
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and—assuming that N is so large that Ji j is roughly uncorrelated with φ( f j ), φ( fi )—we find

〈ηi(t )η j (t + τ )〉 =
〈(∑

k

Jikφ(xk )

)(∑
k′

Jik′φ(xk′ )

)〉
, (C3)

=
∑
k,k′

〈JikJjk′ 〉〈φ(xk )φ(xk′ )〉, (C4)

=
∑
k,k′

1

N

(
δi, jδk,k′σ 2

J

)〈φ(xk )φ(xk′ )〉, (C5)

= δi, j

N

∑
k

σ 2
J 〈φ(xk (t ))φ(xk (t + τ ))〉, (C6)

= δi, jσ
2
J 〈φ(x(t ))φ(x(t + τ ))〉. (C7)

Since the nonlinear term corresponds to Gaussian noise and the ωi fi term is linear, then given the input, fi is normally distributed
with mean 0 (since 〈x〉 = 〈η〉 = 0) and a covariance between fi(t ) and fi(t + τ ) of C(τ ):

C(τ ) := 〈 fi(t + τ ) fi(t )〉. (C8)

We then define

K (τ ) := 〈φ(x(t ))φ(x(t + τ ))〉, (C9)

which becomes

K (τ ) =
∫∫

φ(x)φ(y)
exp

[
1
2

C(0)x2−2C(τ )xy+C(0)y2

C(0)2−C(τ )2

]
2π

√
|C(0)2 − C(τ )2|

dxdy. (C10)

If we can now find a relationship between C(τ ) and K (τ ), we will be able to solve for both. To do this, we return to the original
evolution equation and solve explicitly for xi(t ):

ẋi + ωixi = ηi(t ) + f (t ), (C11)

e−ωit
d

dt
(eωit xi ) = ηi + f , (C12)

d

dt
(eωit xi ) = eωit (ηi + f ), (C13)

eωit xi(t ) =
∫ t

−∞
eωis[ηi(s) + f (s)]ds, (C14)

xi(t ) =
∫ t

−∞
e−ωi (t−s)[ηi(s) + f (s)]ds. (C15)

We know that xi given f is normally distributed. Its mean is clearly 0. C(τ ) is straightforwardly obtained:

〈xi(t )xi(t + τ )〉 =
〈{∫ t

−∞
e−ωi (t−s)[ηi(s) + f (s)]ds

}{∫ t+τ

−∞
e−ωi (t+τ−s)[ηi(s) + f (s)]ds

}〉
(C16)

=
∫ t

−∞

∫ t+τ

−∞
e−ωi (t−s)e−ωi (t+τ−s′ )〈[ηi(s) + f (s)][ηi(s

′) + f (s′)]〉dsds′, (C17)

C(τ ) =
∫ t

−∞

∫ t+τ

−∞
e−ωi (t−s)e−ωi (t+τ−s′ )[σ 2

J K (s − s′) + R(s − s′)
]
dsds′, (C18)

=
∫ 0

−∞

∫ τ

−∞
eωise−ωi (τ−s′ )[σ 2

J K (s − s′) + R(s − s′)
]
dsds′, (C19)

where R is the autocorrelation function of the input. In order to calculate PC and MC, we need

pτ = 〈x(t ) fi(t + τ )〉, (C20)

=
〈
x(t )

∫ t+τ

−∞
e−ωi (t+τ−s)[ηi(s) + x(s)]ds

〉
, (C21)

=
∫ t+τ

−∞
e−ωi (t+τ−s)〈x(t )ηi(s)〉 + 〈x(t )x(s)〉ds, (C22)

=
∫ τ

−∞
eωi (s−τ )R(s)ds. (C23)
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When i = j, we find that the activities of the two neurons are related via

〈 fi(t ) f j (t + τ )〉 =
〈{∫ t

−∞
e−ωi (t−s)[ηi(s) + x(s)]ds

}{∫ t+τ

−∞
e−ω j (t+τ−s′ )[η j (s

′) + x(s′)]ds

}〉
, (C24)

=
∫ t

−∞

∫ t+τ

−∞
e−ωi (t−s)e−ω j (t+τ−s′ )[〈ηi(s)η j (s

′)〉 + 〈ηi(s)x(s′)〉 + 〈η j (s)x(s′)〉 + R(s − s′)]dsds′

=
∫ t

−∞

∫ t+τ

−∞
e−ωi (t−s)e−ω j (t+τ−s′ )R(s − s′)dsds′, (C25)

=
∫ 0

−∞

∫ τ

−∞
eωise−ω j (τ−s′ )R(s − s′)dsds′. (C26)

This gives us our second relationship between C(τ ) and K (τ ).
Thus, we have

C(τ ) =
∫ 0

−∞

∫ τ

−∞
eωise−ωi (τ−s′ )[R(s − s′) + σ 2

J K (s − s′)
]
dsds′, (C27)

K (τ ) =
∫∫

φ(x)φ(y)
exp

[ − 1
2

C(0)x2−2C(τ )xy+C(0)y2

C(0)2−C(τ )2

]
2π

√
|C(0)2 − C(τ )2|

dxdy, (C28)

as the self-consistent equations.
In principle, that does it, but we seek some understanding from this math. To simplify things, we now assume that all the

neurons have the same timescale ω, giving

( �pτ )i =
∫ ∞

−τ

e−ω(s+τ )R(s)ds (C29)

and

(Cov)i j = 〈 fi(t ) f j (t )〉 (C30)

=
∫ 0

−∞

∫ 0

−∞
eωis+ω j s′[

σ 2
J K (s − s′)δi j + R(s − s′)

]
dsds′, (C31)

=
∫ ∞

0

∫ ∞

0
e−ω(s+s′ )R(s − s′)dsds′ + σ 2

J δi, j

∫ ∞

0

∫ ∞

0
e−ω(s+s′ )K (s − s′)dsds′, (C32)

which is the covariance matrix for f (t ). Meanwhile, we still have

C(τ ) =
∫ 0

−∞

∫ τ

−∞
eω(s+s′−τ )

[
R(s − s′) + σ 2

J K (s − s′)
]
dsds′, (C33)

K (τ ) =
∫∫

φ(x)φ(y)
exp

[ − 1
2

C(0)x2−2C(τ )xy+C(0)y2

C(0)2−C(τ )2

]
2π

√
|C(0)2 − C(τ )2|

dxdy, (C34)

as the self-consistent equations.
Notice that

Cov = R01N + σ 2
J K0IN , (C35)

where 1N is a N × N matrix of all 1’s, and IN is the N × N identity matrix. We also have

�pτ = Rτ 1N , (C36)

where now 1N is the length N vector of all 1’s. Then we have

PCτ = R2
τ 1	

N

(
R01N + σ 2

J K0IN
)−1

1N , (C37)

= R2
τ 1	

N

[
σ−2

J K−1
0

(
IN + R0

σ 2
J K0

1N

)−1]
1N , (C38)

= R2
τ

σ 2
J K0

1	
N

[ ∞∑
k=0

(−1)k

(
R0

σ 2
J K0

1N

)k
]

1N , (C39)
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= R2
τ

σ 2
J K0

1	
N

[ ∞∑
k=0

(
− R0N

σ 2
J K0

)k

1N

]
1N (C40)

= R2
τ N2

σ 2
J K0

[ ∞∑
k=0

(
− R0N

σ 2
J K0

)k
]

= R2
τ N2

σ 2
J K0

(
1 + R0N

σ 2
J K0

)−1

, (C41)

where

Rτ =
∫ ∞

0
e−ωsR(s − τ )ds, (C42)

R0 =
∫ ∞

0

∫ ∞

0
e−ω(s+s′ )R(s − s′)dsds′, (C43)

K0 =
∫ ∞

0

∫ ∞

0
e−ω(s+s′ )K (s − s′)dsds′. (C44)

Clearly, we can increase N arbitrarily and arbitrarily increase m(τ ). To get total PC, we integrate over τ and find the following:

PC = N2

σ 2
J K0

(
1 + R0N

σ 2
J K0

)−1 ∫ ∞

0
R2

τ dτ, (C45)

= N2

σ 2
J K0

(
1 + R0N

σ 2
J K0

)−1 ∫ ∞

0

∫ ∞

0

∫ ∞

0
e−ω(s+s′ )R(s − τ )R(s′ − τ )dsds′dτ. (C46)

If we look at how to maximize this, then we see that there is a critical parameter

ρ = N/σ 2
J K0, (C47)

which gives

PC = Nρ

1 + R0ρ

∫ ∞

0

∫ ∞

0

∫ ∞

0
e−ω(s+s′ )R(s − τ )R(s′ − τ )dsds′dτ. (C48)

PC is clearly maximized when ρ → ∞, which can be achieved by: the number of nodes N going to infinity, the nonlinearity
weight variances σ 2

J → 0, or the nonlinearity-controlled K0 → 0. When we are in that limit, we find

PCmax = N

∫ ∞
0

∫ ∞
0

∫ ∞
0 e−ω(s+s′ )R(s − τ )R(s′ − τ )dsds′dτ∫ ∞
0

∫ ∞
0 e−ω(s+s′ )R(s − s′)dsds′ . (C49)

Given that σJ → 0 is optimal, to maximize PC in this admittedly limited setup, we should opt to minimize nonlinearities.

APPENDIX D: RESULTS FOR A DIFFERENT MODEL TIME CELL

In this Appendix, the activity of time cell f (s) at time t is a direct readout of x(t − s). Assuming continuity of x(t ), this is
equivalent to assuming that the activity of time cell f (s) at time t is a direct readout of 1

s1+s2

∫ t−s2

t−s1
x(s′)ds′ for some s by the

intermediate value theorem. When we refer to this neuron’s timescale, we mean the delay time s.
If stationarity holds, then

I[ f (si ); f (si+1)] = I[x(t − si ); x(t − si+1)], (D1)

= I[x(0); x(si+1 − si )]. (D2)

Hence, equalizing redundancy between two neighboring neurons implies keeping si+1 − si a constant. This is emphatically not
the logarithmic scaling of Ref. [16]. One can extend this argument to any measure of redundancy, as any measure of redundancy
as described in Ref. [16] is a function of the joint probability distribution P( f (si ), f (si+1)) and hence subject to the restrictions
of stationarity. Note also that for almost all processes, I[ f (si ); f (si+1)] will tend to 0 as si+1 − si increases to infinity.

The efficient coding hypothesis argument in the main text applies equally well, and in some ways more rigorously, to these
model time cells. Hence, redundancy reduction and efficient coding are equivalent for these model time cells as well.

In order to remember the entire past as well as possible, one would want to place the receptive fields of neurons as far back as
possible, assuming that remembering what happened 3 years ago was as important as remembering what happened 1 day ago.
We would therefore expect that optimally, si → ∞.

Finally, for most signals, the recently observed signal is a better clue to the future than a previously observed signal, as
discussed in the main text. We would therefore expect si → 0 optimally.
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APPENDIX E: ADDITIONAL ANALYSIS OF MEMORY CAPACITY

In this Appendix, we analyze memory capacity of optimal time cells for a few different types of input statistics. In all
situations, we consider the one-node (one neuron, one time cell) case. For all these input types, we find that MC is maximized
as s → 0.

Let us start with the simplest possible input: a Markovian signal with timescale λ0:

R(t ) = e−λ0|t |.

In this case,

MC(s) = 4λ0 + s

2λ2
0 + 2λ0s

.

The derivation of this is somewhat tricky, but achievable by using F (λ) = δ(λ − λ0) and carefully keeping track of singularities.
One can check that there is a maximum of MC as s → 0.

When R(t ) is instead a mixture of timescales

R(t ) = 1
2 e−λ0|t | + 1

2 e−λ1|t |

then

MC(s) = 4λ0λ1(λ0 + λ1)3 + (
λ4

0 + 17λ3
0λ1 + 36λ2

0λ
2
1 + 17λ0λ

3
1 + λ4

1

)
s + 2(λ0 + λ1)

(
λ2

0 + 10λ0λ1 + λ2
1

)
s2

4λ0λ1(λ0 + λ1)(λ0 + s)(λ1 + s)(λ0 + λ1 + 2s)

+
(
λ2

0 + 6λ0λ1 + λ2
1

)
s3

4λ0λ1(λ0 + λ1)(λ0 + s)(λ1 + s)(λ0 + λ1 + 2s)
.

And for the case that F (λ) = { 1
b 0 < x < b
0 otherwise , we find that memory is maximized as s → 0, MC → ∞. This is a special case of the

class of F (λ) which takes on the form

F (λ) =
{ 1

b−a a < x < b

0 otherwise
,

which produces autocorrelation functions of the form

R(t ) = 2e−(a+b)|t |[ea|t |(1 + b|t |) − eb|t |(1 + a|t |)]
(a2 − b2)t2

.

These correspond to autocorrelation functions produced by averaging over an interval of characteristic timescales. In this
case, lims→0+ MC is available in closed form:

lim
s→0+

MC = 2 log
(

a
b

)
a − b

.

Setting a → 0 shows the logarithmic divergence of MC.
For an argument as to why MC is optimized by sending s → 0 in general when F (λ) is supported on the real numbers,

consider the one-node case. Then DMC reduces to

DMC =
∫ ∞

0

∫ ∞

0
F (λ)F (λ′)

2λ + 2λ′ + s

s(λ + λ′)(λ + s)(λ′ + s)
dλdλ′

and has the series expansion centered at s = 0∫ ∞

0

∫ ∞

0

{
F (λ)F (λ′)

[
2

λλ′s
− 2λ2 + 3λλ′ + 2λ′2

λ2λ′2(λ + λ′)
+ O(s)

]}
dλdλ′.

Multiplying by C(s)−1, we therefore have that

MC =
∫ ∞

0

∫ ∞

0

{
F (λ)F (λ′)

C(s)

[
2

λλ′s
− 2λ2 + 3λλ′ + 2λ′2

λ2λ′2(λ + λ′)
+ O(s)

]}
dλdλ′.

The two terms which, in s, have the largest contributions [ 2
λλ′s − 2λ2+3λλ′+2λ′2

λ2λ′2(λ+λ′ ) ], are both maximized by setting s → 0. It is clear

that for λ, λ′ > 0, 2
λλ′s increases unboundedly by decreasing s → 0. The constant coefficient in this expansion − 2λ2+3λλ′+2λ′2

λ2λ′2(λ+λ′ ) is

negative. Clearly, λ2λ′2(λ + λ′) > 0, and 2λ2 + 3λλ′ + 2λ′2 is a positive definite quadratic form, making

2λ2 + 3λλ′ + 2λ′2

λ2λ′2(λ + λ′)
positive. Hence, MC is maximized as s → 0.
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FIG. 6. Left: A plot of the optimal forgetting rate s for an environment with R(t ) = 1
2 (e−λ1|t | + e−|λ2 |t ), with λ1 and λ2 on the x axis and y

axis, respectively, and the value of s which maximizes PC denoted by color. Right: A plot of the log of the optimal forgetting rate, log s, as a
function of the parameter α for input autocorrelation functions of the form R(t ) = 1

1+|t |α . Note the sudden increase at α = 1.6 from optimal s
being finite to optimal s being the maximal s we searched over.

APPENDIX F: MAXIMIZING PREDICTIVE CAPACITY

In Fig. 6 (left), we show the optimal forgetting rate of a model time cell when impinged on by an input with autocorrelation
function R(t ) = 1

2 (e−λ1|t | + e−|λ2|t ). This model time cell was augmented with another cell that stored the present value.
In Fig. 6 (right), we show the optimal forgetting rate of a model time cell when impinged on by an input with autocorrelation

function R(t ) = 1
1+|t |α . This model time cell was augmented with another cell that stored the present value. Note that the optimal

forgetting rate attains some intermediate, nontrivial value for most α, indicating timescale matching. Furthermore, note that there
appears to be a phase transition at α ≈ 1.6 at which point the model time cell desires to have a maximal forgetting rate. The α’s
in our environment tend to be between 1 and 2 [14].
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