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Base pair opening in a damped helicoidal Joyeux-Buyukdagli model of DNA in an external force field

J.B. Okaly®,">" A. Mvogo,">" C. B. Tabi®,** H. P. Ekobena Fouda,'*® and T. C. Kofané"2'!
' Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon

2African Centre of Excellence in Information and Communication Technologies, University of Yaounde I, P.O. Box 8390, Yaounde, Cameroon

3Botswana International University of Science and Technology, Private Bag 16 Palapye, Botswana
® (Received 9 June 2020; accepted 21 October 2020; published 1 December 2020)

Upon the Joyeux-Buyukdagli model of DNA, the helicoidal interactions are introduced, and their effects on
the dynamical behaviors of the molecule investigated. A theoretical framework for the analysis is presented
in an external force field, taking into account Stokes and hydrodynamics viscous forces. In the semi-discrete
approximation, the dynamics of the molecule is found governed by the cubic complex Ginzburg-Landau (CGL)
equation. By choosing an appropriate decoupling ansatz, the cubic CGL equation is transformed into a nonlinear
differential equation whose analytical solitary wave-like solutions can be explored by means of the direct method,
which is more tractable in case where the form of soliton solutions is known. Based on this, a dissipative bright-
like soliton solution is obtained. Numerical experiments have been done, and relevant results were brought out,
such as the quantitative and qualitative influences of the helical interactions on the parameters of the traveling
bubble. The important role-played by these interactions in the DNA biological processes is brought out, showing
that depending on the wave number, their effects can increase, decrease, or keep constant the bubble angular
frequency, velocity, amplitude, and width, as well as the energy involved by enzymes in the initiation of DNA
biological processes. This can prevent some coding or reading errors and resulting genetic damages. Analytical

predictions and numerical experiments were in good agreement.
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I. INTRODUCTION

In the last decades, a great deal of attention has been given
to nonlinear discrete systems [1-4] as a consequence of the
diversity of many applications to physical and biological phe-
nomena [5,6]. For example, the understanding of the nonlinear
dynamics of deoxyribonucleic acid (DNA), which is one of
the most fascinating problems of modern biophysics because,
in relation to its functions, DNA stores and protects all in-
formation that living organism needs to grow and reproduce.
Since the discovery of its double helix structure [7], DNA has
been the subject of various studies containing complex and
important knowledge. The dynamics of DNA provides var-
ious biological processes such as, replication, transcription,
translation, and transmission of genetic codes, just to mention
a few.

More recently, it has been shown that external agents (or
inhomogeneities) present in DNA molecular environment can
attack the molecule in an open state configuration, during
which the code has to be read. These attacks modified the pa-
rameters of the open state, what can create reading or coding
errors, which can cause unfavorable genetic mutations respon-
sible for an estimated 6000 diseases, including all cancers
[8-10]. Known as replicative senescence, the humans cells are
naturally programed to divide approximatively 50 times, to
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continuously replace defective or dead cells, what extend our
lifespan [11]. It has been also shown that genetic mutations,
which are not inherited in the vast majority, but occur over the
course of our lifetime can be eliminated, every DNA cell will
replace itself perfectly during cell division, and the humans
lifespan will achieve approximately 120 years [12]. Along the
same line, it was found that the number of DNA attacks in a
single humans cell exceeds 10 000 every day [13]. Since the
nature selects generally DNA molecules in a noisy crowded
environment, it is very important to block genetic mutations
during our lifetime.

Among the most powerful mutation-blocking agents is
chlorophyllin, which is a semi-synthetic, water-soluble form
of the plant pigment chlorophyll. It possesses DNA damage-
protection and DNA repair processes effects at much lower
amounts [14,15]. The Chlorophyllin actions limit the produc-
tion of molecular structures formed when an external agent
bonds with DNA. They decrease the harmful activities of
some enzymes, which attack the DNA molecule, and present
biochemical errors of varying degrees of severity [8,16]. It
seems that all these DNA repair processes caused by the
actions of chlorophyllin can modify some DNA molecular
parameters, such as the long-range interactions (LRI) [17,18],
hydrogen bonds angle [19], transport memory effects [20], or
stacking or helicoidal interactions [21-24].

Moreover, the spatial structure of the DNA molecule im-
plies the helicity of the double strands model. Although this
helicity is obvious, some authors demonstrated that when
helical interactions were considered, the wave switching was
possible [21], while others showed that increasing the helical
interactions destroys the soliton profile with time [22]. By the
way, Daniel and Vasumathi [23], and then Tabi et al. [25],
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also indicated that the increasing of the helical interactions
provides a better representation of the bubble traveling in the
DNA molecule by involving a larger number of base pairs in
the bubbles. Indeed, according to the later, the helical inter-
actions introduce a lengthscale variation in the bubble width,
while its profile is not affected. Thus, the effects of helicity on
DNA base pairs opening is far from been understood.

The key problem in this work is to investigate on the impact
of the helicoidal interactions on the dynamical properties of
the DNA molecule to know their contributions in the DNA
repair processes and how the genetic code is protected. For
this purpose, we add helical interactions to the original model
of DNA by Joyeux-Buyukdagli (JB) [26], instead of the spin-
like model used in Refs. [21-23]. We focus on the angular
frequency, group velocity, amplitude, and width of the soliton
solution, when the helicoidal interactions evolve. To attempt
this issue, we consider the homogeneous DNA molecule in
a damped medium by taking into account an external force
field. A detailed study of the equation of motion is done in the
semi-discrete approximation and a cubic complex Ginzburg-
Landau (CGL) equation found.

A breather-like soliton solution representing an open state
configuration in an individual strand of DNA, which col-
lectively represents a bubble moving in the DNA chain, is
obtained. Also found in numerous works, the soliton was
obtained in the DNA dynamics for the first time, as a result
of simulations of one strand of the molecule. The other strand
was used as a source of an interacting gravitational potential
field [27], analog of the gravitational field in the mechanical
model of Scott [28].

The rest of the paper is structured as follows. Section II
is devoted to the presentation of the model Hamiltonian and
discrete equations of motion for the in-phase and out-of-phase
motions, respectively. Using the multiple scale expansion
method in the semi-discrete approximation, the nonlinear dy-
namics of the molecule is presented in the nonviscous and
nonforced limit. In Sec. III, in a weakly external forces field,
the molecule is considered in the heavily damped medium by
taking into account the Stokes and hydrodynamics viscous
forces. Through the semi-discrete approximation together
with the direct method that has been used with success in
the nonlinear Schrédinger (NLS) equation with dissipation
by Kengne et al. [29], the bright-like soliton solution of the
equation of motion for the out-of-phase motion is derived.
Numerically and analytically, the qualitative and quantitative
impacts of the helical interactions on the dynamics of the
DNA molecule are discussed in the same section. The compar-
ison between numerical simulations of the soliton propagates
in the viscous and nonviscous medium is also done. Finally, a
brief summary of the paper is given in Sec. IV.

II. MODEL HAMILTONIAN AND EQUATION OF MOTION

In this work, we strongly rely on the extended model for
DNA dynamics, first introduced by Joyeux and Buyukdagli
[26]. Since the work of Watson and Crick [7], the DNA
molecule is known to be twisted. Thus, the double helix
makes the molecule helicoidal. By considering the helicoidal

geometry of the chain, the bases which, although distant along
the double helix become close in three-dimensional space
[30]. Thus, one observes the appearance of new interactions
mediated by water filament and which bridge the nonadja-
cent bases in a sequence. Such interactions yield qualitative
and quantitative changes in the dynamical behaviors of the
model [30-32]. In fact, indirect experiments and results from
Monte Carlo simulations indicate that water filaments make it
possible for phosphate groups from opposite major grooves
to interact [34,35]. This otherwise means that a nucleotide
at the site nth of one strand interacts with both (n + h)th
and (n — h)th nucleotides of the other strand. Since the DNA
helicoidal pitch is about 10 base pairs per turn, it is suitable to
assume i = 5.

Moreover, the topological constraints such as activation or
repression effects usually observed during the conformational
changes are induced by the helicoidal interactions. Indeed,
during DNA processes related to opening of base pairs, a local
unwinding of the helix with a local extra twist at the two ends
of the bubble is observed. This unwinding, which is due to
the topological constraints causes a long-range elastic stress
[33]. It is well known that the bases are hydrophobic. Thus,
the helicoidal structure of the DNA chain can be also seen as
a natural protection for bases from solvating water. Therefore,
the helicoidal interactions play a crucial in DNA molecule,
they contribute to protect the genetic code.

In the following, the helicoidal interactions are restricted
to the forces that appear due to the proximity is space of
bases of opposite strands. Therefore, to the original JB DNA
model, helical interactions are added in the sense of Dauxois
[36]. The resulting helicoidal JB model of DNA consider
DNA molecule as two elastic chains of nucleotides, which
represent both strands of the molecule. In the same strand,
the nucleotides are linked by the nearest-neighbor interactions
along the chains, and connected to each of the other strand by
the hydrogen bonds. The molecule is assumed homogeneous
and twisted, only transverse motions of DNA base pairs are
taken into consideration, while the longitudinal, rotation, and
torsional motions are neglected. Therefore, the model includes
two degrees of freedom. The parameter n defines a position
of the nucleotide pair, while x, and y, are the transverse
displacements from the equilibrium position of nucleotides
located on opposite strands. The Hamiltonian of such a model
is written as

1
H= Z {Em(xﬁ +y5) + Un(xna Yn—h> yn+h)

+ Vaxn, yu) + Wa(xns Yy X1, yn_l)}, e
where

1
Un(Gns Y- V) = KL (o = Ynei)? + G = Yuin)*],

Va(n, yn) = Dole™ @) — 117,

AH, [2 e bla—xa1)* _ p=bGn —,\»H)Z]

W, (s Yns Xn—1, ynfl) =

+ Kpl[(n = Xu—1)* 4+ O — Yu1)*1,
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where m is the average mass of the nucleotides independent
of the precise nature of the base pair at position n, and N
represents the number of the base pairs of the chain. The
function U, describes helical interactions. That is, a harmonic
coupling energy that connect a nucleotide nth of one strand
to both the (n + h)th and (n — h)th nucleotides on the other
strand. The on-site potential V,,(x,, y,) is due to the presence
of hydrogen bonds in base pairs. In the Peyrard-Bishop model,
such interactions are described by the Morse potential of
depth Dy (also known as the dissociation energy) and width a.
The Morse potential is an increasing function of the distance
between the two bases of a pair n, and therefore opposes
the breaking of the hydrogen bonds. The potential W, is the
sum of the two terms, namely, the backbone stiffness and
the stacking potential. Both terms are increasing functions of
|x, — x,—1] (as well as |y, — y,—1]), they oppose the stacking
(separation of successive bases belonging to the same strand)
of the bases. This stacking potential is modelled by a Gaussian
hole of depth Ag". It results essentially from hydrophobic
interactions with the solvent, and electronic interactions be-
tween successive base pairs on the same strand. At last, the
backbone stiffness is taken as a harmonic potential of con-
stant Kj. Its role consists in preventing dislocation of the
strands, by ensuring that base pairs belonging to the same
strand do not separate infinitely when approaching the melting
temperature.

The above three functions, namely, U,, V,,, and W,,, should
depend on the type of base pair. However, in the model under
study, the DNA molecule is assumed to be homogeneous.
Thus, all the above parameters keep their numerical values
along the DNA chain. All the nucleotides are assumed to be
discs with the same mass, therefore the value of the nucleotide
mass mentioned above is the average of the four possible
values.

The values of parameters used to perform our analysis
are those from the dynamical and denaturation properties
of DNA. They are [26] m = 300 amu, Dy = 0.04 eV, a =
445A~", AH =0.44eV,b=0.10 A=2, K, = 107° eVA~2,
and % = 0.22 eV. In this system of units (amu, A, eV),
a new time unit (tu) is defined as ltu = 1.018x10~'
[37].

It is convenient to introduce the coordinates u, describing
the movement of a center of mass of the nucleotide pair, and
v, a stretching of the nucleotides belonging to the same pair
defined as

u _xn+yn Xn — Yn
n \/z s —\/E ,

where u, and v, represent the in-phase and out-of-phase
motion, respectively. That is, the sum and difference displace-
ments of the bottom and top strands, respectively. Based on
the above, Eq. (1) becomes

2

and v, =

+ {%mvz +U W)+ V() + W<vn>}, )

where

_ 1 2 2
U(un) - Ek[(un - un—h) + (un - un+h) ]7

1
U(Un) = Ek[(vn + Un—h)2 + (v, + Un+h)2]v

V (v,) = Dole™ V2" — 12, )
AH, o

W) = (1 -e D=7 4 Kty — thy—1)?,
AH,

W) = == (1= e ") 4 Ky (v — v

From the Hamiltonian given in Eq. (1), it is possible to obtain
two nonlinear partial differential equations describing the in-
phase and out-of-phase motions of the DNA molecular chain,
respectively. This leads to

. 2K
Up = _[(unJrl - un) + (unfl - un)]
m
k
+ _[(unJrh - Mn) + (unfh - Mn)]
m

2bAH,
mC

—b(Up+1—=Yn b

[(tny1 — un)e

ey = u)e ] (Sa)

. 2K,
Up = 7[(Un+l = Up) + Uyt = V)]

k
— —[Wngn + V) + (Vpp + V1))
m

2bAH, , .
—b(vy41—vn)
+ v —vy)e
mC [( n+1 n)
- (Unfl - Un)e_b(vnil_vn)z]

24/2aD
| 2Y2aDy 0 g=av2un[g=av2uu _ 1], (5b)
m

In what follows, it is assumed that the oscillations of bases
are large enough to be anharmonic, but still insufficient to
break the bond since the plateau of the Morse potential is
not reached. Therefore, the base nucleotides are presumed to
oscillate around the bottom of the Morse potential. We obtain,
up to the third order of the Taylor expansion of exponential
functions, the following equation of motion:

i".n = J[(un-H - un) + (Up—1 — uy)]

+ K[(un+h - un) + (un—h - un)]

= S[(tn1 — ) + (-1 — 1)’ (62)
i}n = J[(le—l - vn) + (vn—l - vn)]

- K[(Un-HL + Un) + (Un—h + Un)]

= S[(Uns1 — V) + (Wpet — )]

2 2 3
—w, (v,, +av, + ﬂvn), (6b)
_ 2K, , 2bAH, __ 2V’AH, _k 2 _ 4a’Dy
WhereJ_[—m _’"f ],S_—mC,K_m,a)g_—m,
_ _ 3a _Ta
o= —ﬂ,andﬂ_ =

By comparing Eqgs. (6a) and (6b), one observes that the
nonlinear effects are more important in Eq. (6b). The ad-
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ditional nonlinear terms in Eq. (6b) come from the Morse
potential, which models the hydrogen bonds interactions.
Present in all biological systems, the hydrogen bonds are weak
bonds, which induce nonlinear effects.

It is well known that the out-of-phase motion is sup-
ported by the weak hydrogen bonds, it describes the pair
stretching, while the in-phase motion is related to the strong
covalent forces. Thence, the contribution of the amplitude of
in-phase oscillations in the DNA dynamics is little enough
or sometimes insistent. In the best of the cases, the in-phase
oscillations are detected as noise [38]. Therefore, the dynam-
ics of the DNA molecule can be well described by Eq. (6b).
For this reason, in what follows, our investigations will be
limited to the analysis of the stretching motion of each base
pair represented by the soliton solution of Eq. (6b).

To solve this equation, the multiple scale expansion method
appears as the appropriate mathematical technique because in
the DNA molecule, the stacking interactions between adjacent
base pairs are weak [37,39]. As mentioned above, the small
amplitude oscillation is assumed and the soliton solution set-
ting in the form

v, = 8(Fn!1€i0" + anleiie’l)
+ & [Fo + (Fpoe®™ + Fye 2], (7)

where ¢ < 1 is n arbitrary small real number, and 6 = grn —
ot the phase of the soliton. The parameters g and @ being
the wave number and the optical frequency of the linear ap-
proximation of the base pairs vibrations. The notation * stands
for complex conjugate. Therefore, after some algebra, one can

express the functions Fy and F, as [20]
Fo=pulR)?, F =bF, (8)

where F] is the solution of the following standard NLS equa-
tion, with rescaled variable x = &(z — vgt) with T = e%t:

aF, 92F,
i~ + P— 4+ QIF’F =0, 9)
ot ox?

l JR—
where

1
P = —{r*[J cos(qr) — Kh* cos(grh)] — v; },
2w g

2

wpa 3 6S 2
OQ=—-—|u+=B/a+BC|+ —[1 —cos(gr)]-,
1) 2 o
(10)
with
2 a)goc
B=40w" —g, C:m’ D=0,

¢ = w? +4J sin’(qr) + 4K cos*(qrh),

4K 77! ,
w=—2all+ . b=BC+iDC. (11)

2
We

The angular frequency and group velocity are given by
w® = w, + 4] sin*(qr/2) + 4K cos*(qrh/2),

v, = 5[1 sin(gr) — Khsin(grh)]. (12)

Equatin (9) is the CGL equation, its regulates the dynamics
of the envelope soliton in the DNA molecular chain. The
real parameters P and Q are the dispersion and nonlinearity
coefficients, respectively.

For small wave number g < 1, the large-width soliton is
observed [36]. Indeed, from Eq. (12) it is noticable that for
the large soliton, which corresponds to small wave number,
the group velocity, and the angular frequency of the soliton
are positive if and only if K < h]—, This corresponds to the
threshold maximal value of the helicoidal interaction constant
Ko = hj—z That is, for the values of K smaller than the
threshold maximal value, a vibration moving in the positive
x can be developed in the DNA molecular chain. Meanwhile,
a localized soliton can be observed in the DNA molecule only
if the helical interactions constant is less than the stacking
constant K < hj—, [23,40]. These results are in good agreement
with experimental observations [41-43].

We set h = 5 because the helix has a pitch of about ten
nucleotide pairs per turn [44]. Thus, in the framework of
the helicoidal JB DNA model studied in the present work,
the threshold maximal value of the helicoidal interactions
constant is Ky.x = 21—5 =5.87.107% eV A~2. Meanwhile, the
distance between nearest neighbors in the intrastrand coupling
is smaller than the distance between nearest neighbors in the
helical coupling. Although both energies are naturally similar,
the helical coupling energy is less important than intrastrand
coupling energy.

Its well known that the sign of the product PQ determines
the type of the soliton solution of the NLS equation [45]. For
instance, when PQ < 0, the plane wave solution is stable,
and the system has a dark-type soliton solution also known
as envelope hole. It is a finite-amplitude plane wave with a
dip near x = xo, such a solution does not correspond to the
small amplitude limit of breather mode. The case PQ > 0
corresponds to unstable plane waves solution, which tends
to split into wave packets that evolve into localized enve-
lope soliton-like excitations of a bell shape, with a vanishing
amplitude at |x| — oco. Accordingly, the breathing mode is
observed in the DNA molecule. In the following, we restrict
ourselves to small wave number (¢ < 1) selected in the range
of PQ > 0, for which the localized soliton solutions of a bell
shape with a large width is observed.

In Fig. 1, in the nonviscous and nonforced medium, we
present the angular frequency w, group velocity v, and the
product PQ, of the soliton in terms of wave number ¢, as
a function of the helicoidal interactions constant. The lines
clearly show that the angular frequency which is an increasing
function of both wave number and helicoidal interactions pa-
rameter K [see Fig. 1(a)], while the other parameters decrease,
increase, or remain constant when the helicoidal interactions
strength changes. For example, while the angular frequency
of the soliton always increases with both wave number and
helicoidal interaction constant, the group velocity decreases
if 0 < g < 0.185, and increases for 0.185 < g. The cases
q =0 (v, =0, stationary wave) and g = 0.185 correspond
to situations for which the group velocity is complectly
independent on the helicoidal interactions [see Figs. 1(b)
and 1(d)]. Moreover, we found out that for o = o, the prod-
uct PO (see Fig. 3) and the group velocity are positive if
an only if the wave number is selected in a finite interval,
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FIG. 1. Panels (a), (b), and (c) present the angular frequency, the group velocity, and the product PQ of the wave in the nonviscous and
nonforced medium in terms of the wave number ¢, for different values of the helicoidal interactions constant, respectively. Panel (d) represents
the evolution of the group velocity in terms of helicoidal interactions parameter K, for different values of the wave number g.

namely, g € [0, 0.24]. For this reason, in the present paper, we
restrict to the wave number selected in such a finite interval,
which correspond to biophysical situation of DNA molecule
described in Ref. [44].

In doing so, the stationary soliton solution of Eq. (9) is

Fi(x, 1) = Asech[L(x — x)]e"™ ™, (13)
where
1-2
A=u, "o —all mopr
2PQ 2P

and n = Z—‘, with n € [0, 0.5]. The parameters u, and u, are
real numbers, which represent the envelope and carrier wave
velocities, respectively. The constants xy and 1y are related
to the initial conditions. The general solution for the out-of-
phase motion Eq. (6b) is built by using Eqgs. (7), (8), and (13),
so that

V() = 2A, sech[L,(nr — vgt)] cos(gnr — Q)
+ ZAg sechz[Ls (nr — vgt)]

X {% + bcos[2(gnr — Qt)]} —+ 0(e), (14)

where
1-2
Ac=U 20 =a 2 90—
2PQ 2P
U, = eu,, .= PL’.

The parameters A,, L., and 2 are the amplitude, inverse
width, and angular frequency of the soliton, respectively.
Experimentally observed in the DNA molecule, the soliton
solution Eq. (14) represents a localized modulated wave also
known as breather [46,47]. It describes the breathing mode in
the DNA molecular chain. It represents the opening of few
base pairs traveling along the molecule in the form of bubble
with the velocity ve. This is shown by the solid blue lines in
Fig. 10.

In a coherent mode vibration for which the “effective” car-
rier and envelope velocities are assumed equal, i.e, vy, = %,
the soliton solution v, () is a one-phase function. So, one
obtains U, as a function of n

U, — 4P(w — qvg).
1—-2n

The coherency of the soliton solution of the model is effective,
so that the number N of the base pairs covered by a single
soliton is known. As in Ref. [44], one assumes that N is integer

15)
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FIG. 2. Evolution of the amplitude A,, and width & of the wave in the nonviscous and nonforced media. Panels (a;) and (b,), in terms of the
wave number ¢, for different values of the helicoidal interactions constant. Panels (a,) and (b,), in terms of the helicoidal interactions constant

K, for g = 0.24.

such that

2
N=—.
qr

In this framework, for the wave number picked from the finite
interval 0 < ¢ < 0.24 (A1), one gets

N > 1.

(16)

a7

This result is a range of the allowed values by Zdravkovi¢
et al. [44]. They found that in the framework of the PBD
model of DNA the number of opening base pairs should be
7 < N < 20. Moreover, from Eq. (14), the “effective” ampli-
tude A,, and width R of the soliton can be expressed as

In 2
An =2A1+A, E+BC , and N:L—. (18)

€

Figure 2 shows snapshots of the evolution of amplitude and
width of the soliton solution in terms of the wave number,
for different values of the helicoidal coupling constant K
[see Figs. 2(a;) and 2(b;)] on one hand, and versus the later for
q = 0.24 [see Figs. 2(a,) and 2(b,)] on the other hand. For the
above, depending on the values of the wave number, the lines
show that the amplitude and width are very sensitive to the
change in the molecule helicity via K. More precisely, when
the wave number g = 0.24, the amplitude of the soliton de-
creases and its width increases with increasing the helicoidal

coupling. The lines in Figs. 2(a;) and 2(b,) of also show the
linear evolution of both amplitude and width of the soliton
when the helicoidal interactions evolve. While the amplitude
decreases, the soliton width increases. That is, the higher the
helicoidal interactions, the higher the number of base pairs
in the bubble. In other words, the high values of the helicoidal
interactions, which corresponds to a large number of stretched
base pairs in the bubble, leads to a better representation of the
open state configuration. It is also a better activator of energy
for RNA-polymerase transport during the eventual opening
of the DNA double helix, for bases to be exposed out of
the stack. Moreover, when the helicoidal interaction constant
takes small values, the wave is more localized. As the soliton
is a mathematical instrument to represent breather mode in
DNA, physically, it stands the opening of some base pairs
moving in the form of bubble [46,47]. In such a context, a
more localized solitonic wave may correspond to the open-
ing of few base pairs in the bubble, experimentally observed
during the leading DNA biological processes of transcrip-
tion [48,49]. Similar observations were done in Ref. [23], in
which the authors used a spin-like model of DNA. Show-
ing that the impact of helical interactions on DNA behavior
are independent on the model into consideration. Then, the
soliton solution given in Eq. (39) can be a useful tool to
describe the dynamics of open state configuration in the DNA
molecule.
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II1. IMPACT OF VISCOSITY AND EXTERNAL FORCE

A. Equation of motion: The complex
Ginzburg-Landau equation

To protect the genetic information encoded in the bases
buried inside the DNA structure, the dynamics of the molecule
must be controlled. Usually, in mathematical physics, the
control of the dynamics of a nonlinear system is done by in-
vestigating the effects of dissipation, noise, and external force
on the system. Whereas dissipation leads to loss of energy
and hence affects the dynamics of system, the external driving
force behaves as a source of gain of energy, which helps in the
stabilization the system [50,51].

In the last decades, nonlinear systems with external tunable
driving forces attracted considerable attention because it can
be observed in numerous physical systems such as the plasma
driven by rf-fields, pulse propagation in twin-core fibers,
charge density waves with external electric field, double-layer
quantum Hall (pseudo) ferromagnets, DNA dynamics, and
Josephson junction [52-56]. In addition, the external factors
which generally lead to the driven (gain or loss) terms in the
CGL (as well as in the NLS) equation are very important for
their major role in controlling the diffusion induced amplitude
and phase turbulence in the system [57-59].

Indeed, the DNA chain is not homogeneous and its envi-
ronment known to be very noisy and inhomogeneous because
of the differences between the bases along the chain, the pres-
ence of enzymes, particles of the solvent, and other chemical
reactions, which lead to fluctuations in environmental condi-
tions and the nonuniform medium. Thus, it makes the relevant
parameters space and/or time dependent because external con-
tributions and differences among bases affect the properties
of the system change in space and/or time [60,61]. In doing
so, for a good agreement with experimental observations, one
must take into account DNA-environment interactions. Here,
we discuss the case where the DNA-environment interactions
can be reduced to dissipations or gain due to three different
forces, the Stokes viscous forces, caused by the interactions
between DNA nucleotides and particles of solvent [62], the
hydrodynamical viscous forces caused by the hydrodynamics
interactions between inner DNA nucleotides [57,58], and the

external forces field due to inhomogeneities, and additional
molecules or external agents [8,63].

In recent studies on the dynamical properties of some
physical systems in the presence of external forces field, the
case of constant forces [64], periodic forces [64—66], or cu-
bic anharmonic forces [67] were considered. However, since
the external factors strongly depend on time [60,61], in the
present study, we extend the above-mentioned studies by as-
suming the external forces in the form of nonlinear function
of a high degree of damping [68].

The realistic equation of motion is obtained by adding
the Stokes viscous forces F3' = —y*9{7), the hydrodynamics
viscous forces F? = y"(20, — 0,41 — v,_1), and the exter-
nal forces F* = kgv, + k10, + ko0, to the right-hand side of
Eq. (6b). The real positive constants ko, k;, and k, have the
dimension of a helicoidal or stacking interaction constant, a
viscosity constant, and a mass, respectively. The parameters
y*tand y" are the Stokes damping constant and hydrodynam-
ical damping coupling constant, respectively. As in Ref. [69],
we assume ySt = . Considering all the above, i.e., various
growth and damping forces, the studied model [see Eq. (6b)]
becomes

Uy =J[(Ung1 — V) + (Va1 — Vi)]
— K[nth + va) + Wan + va)]
— S[(Wns1 — V0)* + (Vae1 — )]
— a)z(vn + avﬁ + :3”;3;)
— Y00 4 Y™ (D1 — 20, + Da1)
+ kov, + k1v, + kov,,.

Equation (19) is a nonlinear differential-difference equation,
which describes the transverse out-of-phase motions of the
DNA molecular chain in an external force field, taking into
the Stokes and hydrodynamics viscous forces.

To apply the above-mentioned multiple scale approxima-
tion method, one assumes the soliton solution on the form

i0, —i6,
Uy, = 8[E1,l,yel s +F,:f1€ ! "'V]

19)

+ 82[Fn,(),y + (Fn,2,y32i9n'y + ’:2’}/6721'9,,# )]a (20)
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where 6, , = grn — w,t, the phase of the soliton in the heavy
damped medium, w, the complex angular frequency of the

base pairs vibrations.

In addition, we assume weak interactions between the
external forces field and the DNA molecule. Indeed, their

062402-8

contributions are assumed little enough to the whole DNA
dynamics, which is dominated by the other nonlinear terms in
the equation of motion [64]. Therefore, the external forces are
considered to be perturbed at the order €% [8,38]. The numer-
ical values of additional parameters used are y5' =y = 0.5
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tu=!,e =001, and kg = k; =k, = 1. Additionally, the func-
tions Fy and F, are found as

Foy = ulFi,°. Py =b,F,, (1)
with
b, = B|C; +iDCi, B =40’ — g,
C = ﬂ, D =4y o,
B} + D
x=2, y =y +aylin@r/2, 22

2
where u and ¢ are given in Eq. (11). Moreover, the function
Fi,(x, 7) is the slowly varying envelope soliton solution of
the following equation:

OF, I°F >
i— =+ P =5 + QP PRy + RyFiy =0, (23)
where
P, =P, +iP, Q,=0Q,+i0i R, =R, +iR;
with

P,

1
—[r*(J = xy™)cos(gr)
r

— K(rh)* cos(grh) — |vg|2],

1y
P, = — 5ry" cos(gr),

(1)20[

8
Qr:_
w

|:,u + %ﬂ/a +31C1]

r

6S
+ —[1 — cos(gr)I*,
w,

wga
Q0i=— C\Dy,
o,
R, = —ko+kix +k2(w3 - XZ),
R = — (ki — 2k ), (24

The angular frequency and group velocity are given by
w, =wy 1 — 82,

Vg i = —ryh sin(gr),

. X
wy = W, + iw;, Wi ==X, 8=;,

Vg = Vg, + Vg,

Ve = wi[(J — xy™)sin(gr) — Khsin(grh)], (25)
where w is the angular wave frequency for the linear modes
in absence of damping, which corresponds to the nonviscous
and nonforced limit given in Eq. (12). The subscripts r and
i are related, respectively, to the real and imaginary parts of
the parameter into consideration. Meanwhile, the damping
introduces an imaginary component of the frequency, i.e., an
exponential decay of the amplitude.

Equation (23) is the CGL equation governing the dynamics
of the heavy damped DNA molecule in a weak external forces
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field. Also viewed as a dissipative extension of the conser-
vative NLS equation, the CGL equation introduced seventy
years ago by Ginzburg and Landau [70] is one of the most uni-
versal equations of modern physics. Particularly, its describes
with good accuracy the dissipative nonlinear systems, which
typically involve gain and loss of matter or energy [71-73].
The CGL equation either in their original or modified forms
describe on a qualitative, and often even on a quantitative level
a wealth of phenomena and systems, from different branches
of physics to biology [74,75]. For example, if P, ~ Q; & R, =
0, the CGL equation becomes the dissipative NLS equation
or Standard NLS equation (if also R; = 0). When P, =~ Q, =~
R, =~ 0, it becomes the real Ginzburg-Landau (GL) equation,
and when P, & P, =~ 0, it is reduced to the complex Landau
equation or real Landau equation (if also O, ~ R, ~ 0). Based
on the Ginzburg-Landau (GL) theory, which is an extension
of the Landau [76] theory of second-order phase transitions
into the quantum phenomenon of superconductivity, the CGL
equation was one of the first nonlinear theories to show so-
lutions in the form of topological singularities. Physically,
the GL theory was based on the idea that in the absence
of a magnetic field, the normal metal-superconducting state
transition is a thermodynamic second-order transition.
Physically, in Eq. (23), the function F , (x, T) represents
the normalized envelope of the base pairs stretching, with
x=¢(z—vg,t)and T = €2z, the scaled space and time coor-
dinates, respectively. The parameters P, and Q, represent the
dispersion and nonlinearity coefficients, respectively. In fact,

the interplay between the nonlinearity Q,, which determines
how the wave frequency is amplitude modulated, and disper-
sion P,, which measures the wave dispersion, is responsible
for the occurrence of solitons. The cubic nonlinearity damping
terms Q; measures the saturation of the unstable wave, while
the gain bandwidth coefficient P, measures the relative growth
rate of perturbations whose spectra is concentrated near the
fundamental wave number g. The parameters R, and R; are
frequency shifted coefficients and the linear gain or loss, re-
spectively.

Seen also as perturbation terms of the standard NLS equa-
tion, the linear gain coefficient R,, the imaginary parts of
the dispersion coefficient P, and nonlinearity coefficient Q;,
come from the external forces, the hydrodynamics and Stokes
viscous forces, respectively. Since these additional terms are
not zero, Eq. (23) is not integrable, contrary to its counterpart
the standard NLS equation, which is completely integrable but
not applicable to the powerful physics situations described by
the CGL (as well as the modified NLS) equation.

For instance, since the nature generally selects inhomoge-
neous DNA molecules moving in noisy crowded environment,
the CGL (as well as the modified NLS) equation is well
adapted to describe the real dynamics of DNA systems.
It is well known that DNA is made of charged phosphate
groups along the strands, which interact through dipole-
dipole long-range interactions (LRI) [17]. Moreover, the DNA
environment is usually a biological fluid with very active bio-
logical entities such as enzymes, proteins, or other molecules,
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which cause Stokes damping [62], hydrodynamics damping
[57,58], inhomogeneities or external potential field [8—10],
or memory effects [20] on the dynamical behaviors of DNA
molecule.

Contrary to the NLS equation for which the solution are
conservative solitons, the solutions of CGL equation are dis-
sipative solitons, which usually exist during a limited lifetime
before eventually vanishing. Their existence are due to the
composite interplays of nonlinear or linear loss and amplifi-
cation, along with dispersion and the nonlinearity coefficient,
provides mechanisms to generate solitons that do not decay
[74,77-79]. The characteristics of dissipative solitons are de-
termined by the coefficients of the evolution equation. So,
they do not exist as families of solutions as in the case of
conservative soliton solutions [74]. Thus, only exact soliton
solutions related to the mathematical tools used and problems
on interest can be obtained.

In the quest for dissipative solitons, exact solutions play an
important role as they provide some remarkable mechanisms
to the understanding the formation of solitons in numerous
physical dissipative systems. It is a challenge to search for ex-
act dissipative soliton solutions because it can give rise to new
scenarios to establish double balances in dissipative nonlinear
systems, and opens the route toward more new dissipative
solitonic structures.

To investigate the impact of the mass inhomogeneities and
external one-site potential on the soliton solution, the simi-
larity transformation method was recently used [63,80] and

relevant results obtained. Also, the effects of the localized
and exponential stacking interaction inhomogeneities on the
amplitude, width, velocity, and phase of the moving soliton,
were successfully investigated with the aid of the perturba-
tion technique [8]. More recently, the lightly damping effects
on the amplitude and width of the open-state configuration,
describing the dynamical behaviors of DNA molecule in a
weakly dissipative medium was discussed [38].

B. Exact analytical bright-like soliton solutions
of the complex Ginzburg-Landau equation

The mathematical approach in this work was used success-
fully in a couple of works [29,38,81] among which Kengne
et al. [29] exclusively applied it to a dissipative NLS equation.
This was further extended to more complex problems involv-
ing the cubic CGL equation not only in electrical lattices
and in nonlinear microtubule RLC transmission line, but also
in the nonlinear dynamics of DNA molecule in the weakly
dissipative medium [38,81].

In the works mentioned above [29,38,81], the analysis
deals with the NLS equation with additional dissipative terms.
In this part, we exclusively implement the technique in the
description of dynamical properties of a physical systems
governed by a CGL equation. For this, the following ansatz
is introduced:

Fi,(x,7) = f(O)¢(X)etKrts®l (26)
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where

X(x, 1) = ao(t)x + bo(7). 27
The functions f(t), g(t), ap(t), and by(t) are real functions
of variable 7, while ¥ is a complex function of variable X.
The real numbers K; and % are the wave number and the
angular frequency, respectively. The functions f(t), ao(7),
and Ia’gg; are related to the amplitude, inverse width, and initial

position of the soliton. Inserting Eq. (26) in Eq. (23) yields

laof | X 9ag obp |0y dg
i—-—vY+i| —— — = - =
f ot ap 0T X o0t

b() 8610

ap 0T ot

92 0
a_xli — KXy + 2i1<1a08—ﬂ

+ (0, + IOV F @[V P IY] + (R, + iRV
=0.

v

+ (P + iﬂ-)[aé

(28)

We should remember that the equation for which we are
looking for a soliton solution is a CGL equation. So, in the
following, the complex function 1 (X) is assumed as [82,83]

v (X) = [pCO)1'H, (29)

where the constant ¢ appears as the chirp of the soliton to
be determined. The terms ¢(X ) represents the X -dependent
phase of the soliton. Inserting Eq. (29) and its derivatives into

Eq. (28) leads to

L0808 | (R iRy — (B, +iPK?
= — — r ;) — r 2}
ot ot re
X 0 by 0 ab
+i(1 +io) £ 0% 2009 | %0
ap 0T ap 0T ot

9
LR+ iP,-)Klao:| a_)(? (P +iP)(1 + io)dl

x 82—(p+ia(8—(p)2<pl + (0, +i0)f2p°
9x2 X r '

=0. (30)
To further proceed, we impose that the coefficient of the terms
g—)"(’ must vanish. Accordingly, we have
X0 by 0 ab
20 _209%b0 9% L op +iP)Kiap=0. (31)
ap 0T ap 0T aT

Equation (31) is always satisfied if and only if all its coef-
ficients are all zero. So that we have K; = 0, while ¢ and
by are constant real numbers. Thus, we assume that they are
proportional. For instance we assume b—g = —Xo, with xp a real
number related to the initial position of the soliton. Therefore,
one obtains

X(x, 1) = ap(x — xp), (32)
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and Eq. (30) becomes

daf . g
|:l?a—r + (Rr + lR,') — E](/)

3 99\’
P.+iP)1 +ioc)al| — +ioc| — | ¢!
+ (P +iP)( +lo)ao[aX2+lo<aX) 4] }

+(Qr +i0)
=0. (33)
From the above, one can seen that depending on the wave-like
functions used, the CGL equation can be solved for different
types of soliton-like solutions, such as bright-like, dark-like,
or kink-like soliton solutions. Meanwhile, the type of soliton-
like solution of Eq. (23) is controlled by Eq. (33). That is,
any solitary wave-like solution of Eq. (33) gives a soliton-like
solution of the CGL Eq. (23).

In the following, we restrict ourselves to bright-like soliton
solution of the bell shape with a pulse near x = xp, and a van-
ishing amplitude at |x| — oo, which represents an open-state
configuration in an individual strand of DNA. In fact, such
a solution has the appropriate profile to represent breathing
modes in DNA. Therefore, we look for the soliton solution of
Eq. (33) in the form

¢(X) = sech[mX], (34)

where m~! is related to the width of the soliton. Then, we
introduced Eq. (34) and its derivatives into Eq. (33). After
canceling the terms in sech[mX], the functions f(7) and g(7)

yield
g =, —w), flO=e"T™, (35
where
oy =wo+ Ry, yi=p+R;,
with
@y =Pi,L5, P, =P —0[2P,+0P],
vo=PiL3, Pi=P+d2P,—0P]

The parameters Ly = agmy and 1 are the initial inverse width
of the soliton and initial time, respectively. The parameter y; is
a gain or loss terms, its comes from both damping and external
forces.

The canceling of the terms in sech®[mX] yields

O | O
Ly = 2P, 0, L(r)= 2P2,,f(f)’ (36)

where
1 bt VA
PZ.rZPr__U[3Pi+UPr]v and U:‘::—\/_’
2 2a
with
a=PQ;—PQ, b=3/F0 +FQ0),

c=2PQ, —P.Q;)). A=b—4ac, P,,0, > 0.

The constant fj, related to the initial amplitude of the soliton
is to be determined.
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In our investigation, we found that when the chirp of
the soliton is o_, the product P, ,Q, is always negative
[see Fig. 3(a)], and when this chirp is o, this product is
always positive [see Fig. 3(b)]. Consequently, in the follow-
ing, we impose o = o, for which the soliton will be strongly
chirped.

In Fig. 4, we plotted some solitonic parameters such as the
angular frequency w,, the group velocity v, ., the “dispersion”
coefficients P; , and P, ,, the nonlinearity coefficient Q,, the
loss or gain parameters Yy, R;., and y; . versus the wave
number ¢, for different values of the helicoidal interactions
constant. It is obvious that all the above solitonic parameters
are positive except the linear R; ., which is negative. Thus,
the parameter yp, which is a consequence of viscosity acts
as a damping terms, while the parameter R; . which comes
from the external forces acts as a growth terms for the sys-
tems. Specifically, while the viscosity makes the amplitude
of the soliton to damp out, the external forces put energy
on it, and hence increases the life time of the soliton in the
DNA molecular structure. Furthermore, the parameter y; . is
positive. Accordingly, it behaves as a damping term. Also,
as stated above, one observes that depending on the value
of the wave number ¢, except the angular frequency which
increases, and the nonlinearity and linear gain coefficients
which decrease with the increasing of the helicoidal coupling
constant, the others parameters increase, decrease or remain
constant.

The soliton solution of the CGL equation is obtained from
Egs. (26) to (36) as

Fi,(x,7) = f(v)sech[L(T)(x — x0)]'"7 e~ (37)

where

f(r)= foe*)/l(rfro)’ L(t) = Loefyl(rfro).

Equation (37) is a dissipative soliton solution of the envelope
wave equation Eq. (23). It is a nonlinear localized soliton
solution of a nonconservative class, equivalent to those found
in Refs. [82,83]. Moreover, the terms e~ "1("~—™) enter in the
amplitude and width of the soliton that can increase or de-
crease these parameters depending on the range of variation
of the “the parameter” y;. More clearly, if y; > 0, the wave
amplitude decays with time showing that the system losses
energy, and if y; < O the wave amplitude grows as the wave
propagates, showing that the system gains energy.

Contrary to the NLS equation for which the wave ampli-
tude decays in response to dissipation, the dissipative solution
of the CGL equation does not automatically decay, the system
is active and consumes or gains energy. Thus, the soliton
amplitude (as well as the width) of the soliton can decay or
increases.

In the absence of damping and external forces, the disper-
sion and nonlinearity coefficients of both systems are equal,
ie, P, =P, =P, =P, and Q, = Q. Then, at the initial
time T = 79, the stationary soliton solutions given by Egs. (37)
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FIG. 11. The stretching nucleotide pairs at # = 1000 tu, for three values of the helical interactions constant, namely, K = 0 [(a;), j = 1, 2],
K = 0.5Knax [(bj), j =1,2)] and K = Ky [(cj), j = 1,2]. Panels (a;), (b)), and (c;) the nonviscous and nonforced medium. Panels (a,),

(by), and (c,) the viscous and forced medium.

and (13) should be equals. Thus, assuming Fi(x, 7 = 1p) = where

Fi,, (x, T = 19), one obtains

fO = U, (38)

The final solution v,(t) of the equation of motion (19) is
obtained from Egs. (20), (21), and (37), in the form

v, () =2F) ,(t)cos ®
+ﬂﬁﬂ{&cwme®y4xqmmx»+%éﬂ}
(39)
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]
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The real numbers A, ., L, ;, and €, . are, respectively, the
amplitude, inverse width, and angular frequency of the soliton
solution propagating in the forced-damped medium.

It is well established that the linear gain in the CGL
equation usually tends to amplify the noise which eventu-
ally perturbs the soliton [84]. However, in the final solution
[see Eq. (39)] the effective contributions of the external forces
represented by the frequency shift and linear gain are R, =
€?R, and R; , = &”R;, respectively, with ¢ < 1. Thus, the ex-
ternal forces contribution to the whole dynamics is negligible.
Hence, the soliton solution found here is stable. As observed
above [see Fig. 4(h)], the parameter y; . > 0. It behaves like
a damping term for the amplitude of the soliton, at the time
as a growth terms for its width. Thus, from Eq. (39) one
observes that the amplitude and width of the propagating wave
strongly depends on time. While the amplitude of the wave
decreases exponentially with time following the function e,
its width is an exponentially increasing function of time fol-
lowing the function e"'<’. The external forces field used here
was considered weak, and its contribution to the dynamics
negligible as compared to the damping forces. Hence, the
amplitude of the resulting dissipative soliton decay, while its
width increases as the soliton propagates along the molecular
structure. Therefore, the DNA system, as modeled here, loses
energy.

The coherency of the soliton solution imposes that the
envelope velocity V, and the carrier velocity V., assuming,
respectively, as V, = vg , and V, = %, should be equal. Based

on this V, =V, yields

4P r r r
U, = / (0 = qUsr), (40)
1—2n
with
P
P,, ===
v Pl,r

From Eq. (39) one obtains the time-dependent expression
of the “effective” amplitude A, ,,(¢) and width R, () of the
soliton solution in the damped-forced medium as

Ay,m(t) = 2Ay,e|:1 +Ay,£ (%ele + BC) — DIC1)1|,

2
R, (1) = T 41

V€

where the amplitude A, ; and the width L, , are given in
Eq. (39). At the initial times (+ = 0), we represent, in the
panels of Figs. 5 and 6, the evolution of the amplitude A, ,(?)
and the width R, (¢) of the soliton in terms of wave number,
for different values of the helicoidal coupling parameter K.
The plots show that when the helicoidal parameter increases,
both parameters increase, decrease, or remain constant de-
pending on the range of variation of the wave number. The
same observations can be made in Figs. 7 and 8 in which the
amplitude and width have been plotted in terms of K, for dif-
ferent values of the wave number ¢, at three different instants

t = 0tu, = 500 tu, and ¢+ = 1000 tu. The lines also show the
increasing of the width and the decreasing of the amplitude
of the soliton with time. For the value of the wave number
g = 0.24, we notice that the wave is more localized at t = 0
when the helical interactions constant is around K = 1.5.107°
eV A‘z; t = 500 when the helical interactions constant is
around K = 2.0.107° eV A2, and t = 1000 when the he-
lical interactions constant is around K = 2.5.107% eV A2
This shows in general that the wave is more localized when
the helicoidal interactions parameters takes small values less
than the half of the maximum possible value K < 0.5K.x =
2.93.10"%V A2,

C. Numerical investigations

Our aim in this section is to address the behaviors of the
DNA open-state configuration represented by the bright-like
soliton, when one molecular parameter evolve, namely, the
helicoidal constant. We also check the correctness and the
stability of our analytical solution (14) [as well as Eq. (13)],
and Eq. (39) [as well as Eq. (37)] derived in Sec. III B after
some approximations and hypotheses. We also check the long-
time evolution and robustness of the analytical solution in the
DNA discrete lattice. Therefore, the numerical simulations of
the discrete equations of motion (6b) and (19) is done. Our
analytical solutions, used as initial conditions, are involved
over a very long time with a large lattice. Moreover, we
describe a set of numerical experiments using the fourth-order
Runge-Kutta scheme with a time step At = 107> tu. Our time
step is chosen to preserve the total energy of the system to a
good accuracy over a complete run. We focus our attention
on the width and amplitude of the wave at a given time. The
numerical parameters used for simulations are n = 0.47 and
qg =0.24.

To start, we use Eqgs. (13) and (37) as initials conditions
in the first numerical experiment, and we present in Fig. 9
the space-time comparison of the numerical results of the
envelope soliton propagating in the nonviscous and nonforced
medium [Figs. 9(a) and 9(c)], and viscous and forced medium
[Figs. 9(b) and 9(d)]. As predicted analytically, the amplitude
and width of the soliton remain uniform during the propa-
gation in the nonviscous and nonforced media. However, by
considering the molecule in the viscous and forced environ-
ment, the amplitude of the soliton decays in time, at the same
time its width increases. Finally the soliton vanishes after a
certain time of propagation.

In our second numerical experiment, Eqs. (14) and (39)
are used as initial conditions, we compare the spatial evo-
lution of the soliton in the viscous forced, and nonviscous
and nonforced medium, at three different instants, t = O tu,
t =500 tu, and ¢ = 1000 tu. The results are summarized in
Fig. 10, where the respective panels show numerical sketches
of the formation of open-state configurations in terms bubble
transport in the viscous and nonviscous and nonforced DNA
lattice. The solid blue line represents the bubble in nonviscous
and nonforced medium, while the dash-dotted red line depicts
the bubble in the viscous and forced medium. Figure 10(a)
shows a good agreement between both simulations, showing
that our analytical solution is robust and suitable to predict the
formation of bubbles moving along a heavily damped DNA
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chain. The lines also show that the soliton propagates with a
constant amplitude and width in the nonviscous and nonforced
medium, while taking into account the viscosity and external
forces of the medium makes the amplitude to decrease, with
a reverse effect on the width. However, as per the analytical
predictions, the decreasing of the amplitude is pronounced
than the increase in the width.

To see how the helicoidal interactions affect the bubbles
dynamics in DNA molecule, in Fig. 11, we depicted our sam-
ples as the functions of base pairs position, for three helicoidal
interactions constant K, namely, K = 0, K = 0.5K,.x, and
K = Kpnax, respectively. Figures 11(a;), 11(b;), and 11(c;)
display the bubble propagation in the nonviscous and non-
forced medium. As stated in the analytical study (see Fig. 2),
one notices the decreasing of the bubble amplitude and in-
creasing of the number of opening base pairs in the bubble,
with the helicoidal interactions. In Figs. 11(ay), 11(b,), and
11(c,), we present the bubble propagation in the viscous and
forced medium. As predicted by the theory [see dash-dotted
green line in Figs. 7(c) and 8(c)], we observe that when
the helicoidal interaction constant increases from K = 0 to
K = 0.5K.x, the width of the bubble decreases, while its am-
plitude increases. However, when the helicoidal interactions
constant increases from K = 0.5K.x to K = K.x, the width
of the bubble increases, while its amplitude decreases.

Finally, one observes that in the nonviscous and nonforced
case, the amplitude of the wave decreases linearly, while
its width increases linearly as the wave propagates. In the
viscous-forced case, the amplitude and width of the propa-
gating wave can increase, decrease, or remain uniform, with
changing the helicoidal interaction strength. This is because in
the nonviscous and nonforced case, the soliton is conservative
soliton, while in the viscous and forced case, base pair oscil-
lations are supported by chirped dissipative soliton for which
the dynamics depends also on the viscous-forced character
of the systems. Moreover, in both cases, for g = 0.24 the
angular frequency and group velocity of the wave increase
when the helicoidal interaction strength gets pronounced. This
implies that the helicoidal force may then affect qualitatively
and quantitatively soliton propagation and enhance base pair
opening along the DNA homopolymers’ lattice.

D. Discussions

As can be seen from Figs. 1 to 8, when the helicoidal
interactions increase, the angular frequency, group velocity,
amplitude, and width of the soliton can increase, decrease,
or remain constant depending on the range of variation of
the wave number. These observations also indicate that the
impact of helicoidal interactions on DNA dynamics do not
depend on its environment. They can be seen as inner DNA
mechanisms due to endogenous repair processes within the
molecule caused by the actions of some DNA repairs factors,
such as chlorophyllin.

Although the DNA molecule is naturally inhomogeneous,
it contains four different bases with different masses paired
in different ways to constitute the genetic code according to
a specific sequence such as promotor (P), coding (C), sev-
eral regulatory regions, (R, Ry, R3), terminator (7). While
the G—C pair contains three hydrogen bonds, the A-T pair

contains only two hydrogen bonds. Accordingly, the energy
interactions for the G—C pair and A-T pair is different. Thus,
the base pairs pairing energy in DNA molecule is one-site
dependent. Using the quantum-chemical calculations, it was
shown that the total energies of stacking (as well as helicoidal)
interactions between different types of base pairs depend on
the type of interacting base pairs. Indeed, the stacking and
helical interactions in DNA systems are not constant, they are
functions of the base pairs of interest. So, the change in heli-
coidal interaction strength has strong biological implications,
as it may result from the intrinsic inhomogeneous nature of
the molecule.

In nature, it is well known that the external agents present
in the DNA crowded environment can attack the molecule
more than 10 000 times daily [13], which usually tends to
modulate the amplitude, width, and velocity of the propagat-
ing bubble, leading to reading or coding errors. What causes
genetic mutations and resulting biological pathologies [8—10].
Therefore, changing the helical interactions in DNA systems
could be advantageous for the DNA systems since it can
reduce or increase the bubble height and width as well as
the energy involved by enzymes during the execution of DNA
biological processes, what can counteract the harmful actions
of external agents and prevent in that sense some coding
or reading errors causing genetic mutations and subsequent
pathological diseases. The reader should however notice that
the case at hand is devoted to an idealized description of DNA,
where only DNA and fluid are present. Otherwise, real life is
much more complex, which involves temperature fluctuations,
inhomogeneities, and many other intrinsic factors that are not
included in the proposed model.

The transcription process is well executed with negligible
errors when the bubble width is small, while the replication
process need a large number of opening base pairs. Since the
helicoidal geometry of the DNA molecule can be seen as a
natural protection, which contribute to maintain the hydropho-
bic bases inside the stack, their modification is very important
in the biological functioning of the DNA molecule, it modifies
qualitatively and quantitatively the dynamics of the molecule.

IV. CONCLUSION

The primary motivation of this work comes from the pos-
sibility that some DNA endogenous factors, such as the modi-
fication of helical interactions have an impact on the pa-
rameters of the open-state configuration moving along the
DNA molecule in the form of bubble. The molecule has been
taken at the physiological temperature. The helicoidal inter-
actions were added to the original Joyeux-Buyukdagli model
of DNA. In the weak external forces field, by considering the
molecule in the heavily damped medium, the semi-discrete
approximations method was used, taking into account the
Stokes and hydrodynamics viscous forces. The dynamics was
found governed by a dissipative breather soliton solution of
the complex Ginzburg-Landau equation. It came out that the
parameters of the open-state configuration, such as the angular
frequency, group velocity, amplitude, and width, are functions
of the helicoidal interactions. They can increase, decrease,
or remain constant when the helicoidal interaction strength
evolves, which can counteract the harmful actions of external
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agents, which is responsible for unfavorable genetic mutations
and resulting biological pathologies. The confirmation of ana-
lytical predictions by numerical experiments were done with a
good accuracy. In our numerical investigations, we found out
that in nonviscous media, the wave travels without vanishing.
But, when viscous forces are taking into consideration, the
amplitude of the propagating wave progressively decreases,
the wave travels for a very short time and vanishes, reducing
in the same time the energy involved by enzymes in the

execution of DNA biological processes that require the un-
zipping and opening of the DNA structure.

As the DNA molecule executes its biological functions
generally in a noisy crowded environment, we propose to
investigate on the quantitative interplay between the external
agents and endogenous repairs processes. In an ongoing work,
we propose to study the full nonlinear dynamical properties of
an inhomogeneous helicoidal DNA chain without considering
the external forces as a perturbation.
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